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 in cross-sectional regression, we were making inferences about the 

whole population based on a small sample

 a crucial assumption: random sampling

 the bridge between population characteristics (distribution of wages 

in a country) and the probabilistic machinery of random variables 

(distribution of a wage of a randomly drawn person)

 unfortunately, with time series, random sampling makes no sense:

 what would the underlying population be?

year GDP inflation unemp

2004 1,957.6 2.6 5.4

2005 2,035.4 2.8 4.5

… … … …
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 random sampling makes the characteristics of different individuals 

independent

 it is difficult to imagine that GDP in 2004 is independent of that in 2005

 therefore, we will have to switch to a more advanced theoretical vehicle: 

random processes

 those who had taken courses in random processes would tell you it was 

difficult

→ we will omit many mathematical details, and focus on the intuition



New issues with time series
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 good news: everything we learnt with cross-sectional data will be used in 

time-series analysis, too

 bad news: many new pitfalls that can spoil the analysis

1. trends and seasonality: can result in spurious regression (see next 

slide)

2. lags in economic behaviour: government’s expenditure cuts will 

slowly percolate through the economy → lagged effect (the effect of 

today’s cuts will spread over quarters or even years)

3. persistence in time series: governments expenditure itself cannot 

change too dramatically from one year to another

 most real-life time series persistent, but the degree differs

 strong persistence of time series can again produce spurious 

regression (stationarity, unit-root issues)

 weak persistence problematic only if applies to u (serial 

correlation, or autocorrelation of u)



Spurious regression problem
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 both y and x both exhibit a monotonous trend, we will find a relationship 

even though they have nothing in common

Example: Norwegian salmon production vs GDP in the U.S.

 the data in salmon.gdt contain two annual time series (1983–2011)

 annual salmon production in Norway 

 GDP in the U.S. (bln. of 2005 dollars)

 do you think that there is a strong causal relationship?

 estimated equation in Gretl:

 Quizz: is salmon significant at the 5 % level? And how about 1 %?

^gdp = 1.34e+04 - 0.00551*salmon

(713)      (0.00103)

T = 29, R-squared = 0.514 

(standard errors in parentheses)
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Let’s look at the 

time series first:
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Fitted values are calculated as: 13,414 – 0.00551 ×



Option 1

 detrend all time series, i.e. create new variables where the linear trends 

have been subtracted

 two steps involved:

(1) regress xt on t (time, values 1,2,…,n)

(2) save residuals (this is the detrended xt)

Accounting for trends in the regressions
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salmon series and its linear trend detrended salmon series



Option 2:  add variable t (time) to the estimated equation

 salmon coefficient identical, std. errors nearly identical → can use both

 R-squareds different, but most variation explained by time in Option 2

→ use detrended dependent variable for the R-squared!

Accounting for trends in the regressions (cont’d)
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^gdp_detrended = 1.46e-013 + 0.000701*salmon_detrended

(52.7)      (0.000269)

T = 29, R-squared = 0.201 

(standard errors in parentheses)

^gdp = 5.14e+03 + 0.000701*salmon + 295*time

(304)      (0.000274)        (9.90)

T = 29, R-squared = 0.986 

(standard errors in parentheses)

Option 1: results

Option 2: results



Frisch-Waugh-Lovell theorem
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=====================================================================
Dependent variable:                 

----------------------------------------------------
gdp gdp_detrended          gdp
(1)           (2)         (3)          (4)   

---------------------------------------------------------------------
year               294.72010***                19.29931*             

(9.90449)                 (9.90449)             

salmon               0.00070**                 0.00070**             
(0.00027)                 (0.00027)             

salmon_detrended                   0.00070**                 0.00070 
(0.00026)                (0.00990)

Constant         -578,999.30000***           -38,976.06000*          
(19,909.28000)             (19,909.28000)          

---------------------------------------------------------------------
Observations            29            29           29          29    
R2                    0.98613       0.20106     0.20106      0.00018 
=====================================================================



Using dummies to account for specific events
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Example: fertility equation

 frequency: annual data, 1913–1984

 gfr = the number of births per 1000 women aged 15–44

 ww2 = 1 for years 1941–1945, = 0 otherwise

   0 1 2t t tgfr ww u

time

β0

β1

expected fertility

WW2 period







Using dummies to account for specific events (cont’d)
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Example: fertility equation 2

 pill = 0 before 1963, = 1 afterwards

   0 1t t tgfr pill u

time

β0

β1

expected fertility

contraceptive pill 

introduced





0 1 2t t t t
gfr β β ww2 β pill u   

16



Seasonality
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 seasonal patterns are noticeable with quarterly, monthly, or daily data

 note that many time series in the online databases are “seasonally 

adjusted”, meaning that specialized algorithms have been used to even 

out the differences between seasons → these series can be used without 

further ado

 when using a seasonally unadjusted series, we can still use a simple fix 

that accounts for the seasonal variation: periodic dummies, i.e. dummy 

variables that identify individual periods

Example: durable goods

 open durgoods.gdt in Gretl

 change dataset structure to a quarterly time series (Data → Dataset 

structure)

 add periodic dummies (Add → Periodic dummies)

 this creates variables dq1,…, dq4

(dq1 stands for “dummy for quarter 1”)
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values of the periodic dummies



Seasonality (cont’d)
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 to describe the seasonal pattern in dishwasher sales, run the regression

 the dishwasher time series and the fitted values are shown below, F-test 

for joint significance: p-value = 0.89 → no statistical evidence of 

seasonality

       0 1 2 3t t t t tdish dq1 dq2 dq3 u



Seasonality (cont’d)
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 with refrigerator series, that’s a different story:

 joint significance: p-value = 0.000 079, strong evidence of seasonality

(i.e. we reject the null of no seasonal pattern)



Seasonality (cont’d)
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 interpretation: just as with other category dummies

 we omitted dq4 → quarter 4 is the base period

 e.g., the coefficient on dq1 tells us that in quarter 1, sales are higher by 

62,125 than in quarter 4 (on average) 

Model 2: OLS, using observations 1978:1-1985:4 (T = 32)

Dependent variable: frig

coefficient   std. error   t-ratio    p-value 

---------------------------------------------------------

const 1160.00       59.9904     19.34     9.81e-018 ***

dq1           62.1250 84.8393      0.7323   0.4701   

dq2          307.500      84.8393      3.625    0.0011    ***

dq3          409.750      84.8393      4.830    4.42e-05  ***

Mean dependent var 1354.844   S.D. dependent var 235.6719

Sum squared resid 806142.4   S.E. of regression   169.6785

R-squared            0.531797   Adjusted R-squared   0.481632

F(3, 28)             10.60102   P-value(F)           0.000079

...



Seasonality (cont’d)
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 conclusion: with seasonally unadjusted data, it makes sense to add 

both a time trend and periodic dummies in addition to your independent 

variables of interest

 note that this can be done also in case the dependent variable is logged, 

only the interpretation changes:

 results imply that in quarter 1, sales increase by 5.3 % compared with 

the baseline level of quarter 4

^l_frig = 7.05 +  0.0530*dq1 + 0.234*dq2 + 0.304*dq3

(0.0458)(0.0647)     (0.0647)    (0.0647)

T = 32, R-squared = 0.517 

(standard errors in parentheses)



^l_frig = 7.30 + 0.183*dq2 + 0.252*dq3 - 0.0555*dq4 - 0.0365*time + 0.00113*sq_time
(0.0590)(0.0470)   (0.0471)    (0.0473)     (0.00742)     (0.000218)

T = 32, R-squared = 0.764 

Null hypothesis: the regression parameters are zero for the variables
dq2, dq3, dq4

Test statistic: F(3, 26) = 19.323, p-value 8.49373e-007



Finite distributed lag (FDL) model
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Example: fertility equation 3

 pe = real dollar value of personal tax exemption

 here, δ0 is the impact propensity (= immediate effect) of a unit increase 

in pe

 the δ parameters capture the effect of a temporary increase in pe:

 assume that pe equals c except for period 0, where it increases to c + 1:

           0 0 1 1 2 2 3 3t t t t t tgfr pe pe pe pe u

time

c

pet

−2 1 2 3−1 0

1

4
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time

d

gfrt

−2 1 2 3−1 0

δ0

4

δ1 δ2
δ3

c
1

c

pet–1
1

c

pet
1

pet–2

c
1

pet–3

the effect of 

a temporary 

change in pe, 

or the lag 

distribution

a temporary 

change in pe

occurs in 

subsequent 

periods in 

lagged 

versions of pe





Finite distributed lag (FDL) model (cont’d)
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 long-run propensity (LRP): the effect of a permanent unit increase in 

pe
      0 1 2 3LRP

time

d

gfrt

−2 1 2 3−1 0

δ0

4

δ1

δ2

δ3

c

pet
1

the effect of 

a permanent 

change in pe, 

or long-run  

propensity





0 1 2 3 0 1 1 2 2 3 3t t t t t t t t
gfr β βww2 β pill β t δ pe δ pe δ pe δ pe u

  
        



Finite distributed lag (FDL) model (cont’d)
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Estimating LRP

 a natural estimator of LRP is

 so we just add up the coefficients on pe and its lags

 more work is required in case we need std. errors or 95% CI for LRP

 we’ll use a simple trick: the equation can be rewritten as follows

 this gives us the following procedure:

1. Create variables A, B, and C.

 in Gretl: Add → Define new variable… → A = pe(–1) – pe etc.

2. Regress gfr on pe, A, B and C; now, LRP is the coefficient on pe, and 

we can read off its std. error and calculate the 95% CI if needed.

      0 1 2 3
ˆ ˆ ˆ ˆLRP

    

   

  

  

     

        

0 0 1 1 2 2 3 3

0 1 1 2 2 3 3LRP ( ) ( ) ( )

t t t t t t

t t t t t t t t

A B C

gfr pe pe pe pe u

pe pe pe pe pe pe pe u
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