
LECTURE 9:

GENTLE INTRODUCTION TO

REGRESSION WITH TIME SERIES

Introductory EconometricsJan Zouhar



From random variables to random processes (cont’d)

Jan ZouharIntroductory Econometrics

2

 in cross-sectional regression, we were making inferences about the 

whole population based on a small sample

 a crucial assumption: random sampling

 the bridge between population characteristics (distribution of wages 

in a country) and the probabilistic machinery of random variables 

(distribution of a wage of a randomly drawn person)

 unfortunately, with time series, random sampling makes no sense:

 what would the underlying population be?

year GDP inflation unemp

2004 1,957.6 2.6 5.4

2005 2,035.4 2.8 4.5

… … … …



From random variables to random processes (cont’d)
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 random sampling makes the characteristics of different individuals 

independent

 it is difficult to imagine that GDP in 2004 is independent of that in 2005

 therefore, we will have to switch to a more advanced theoretical vehicle: 

random processes

 those who had taken courses in random processes would tell you it was 

difficult

→ we will omit many mathematical details, and focus on the intuition



New issues with time series
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 good news: everything we learnt with cross-sectional data will be used in 

time-series analysis, too

 bad news: many new pitfalls that can spoil the analysis

1. trends and seasonality: can result in spurious regression (see next 

slide)

2. lags in economic behaviour: government’s expenditure cuts will 

slowly percolate through the economy → lagged effect (the effect of 

today’s cuts will spread over quarters or even years)

3. persistence in time series: governments expenditure itself cannot 

change too dramatically from one year to another

 most real-life time series persistent, but the degree differs

 strong persistence of time series can again produce spurious 

regression (stationarity, unit-root issues)

 weak persistence problematic only if applies to u (serial 

correlation, or autocorrelation of u)



Spurious regression problem
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 both y and x both exhibit a monotonous trend, we will find a relationship 

even though they have nothing in common

Example: Norwegian salmon production vs GDP in the U.S.

 the data in salmon.gdt contain two annual time series (1983–2011)

 annual salmon production in Norway 

 GDP in the U.S. (bln. of 2005 dollars)

 do you think that there is a strong causal relationship?

 estimated equation in Gretl:

 Quizz: is salmon significant at the 5 % level? And how about 1 %?

^gdp = 1.34e+04 - 0.00551*salmon

(713)      (0.00103)

T = 29, R-squared = 0.514 

(standard errors in parentheses)
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Let’s look at the 

time series first:
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Fitted values are calculated as: 13,414 – 0.00551 ×



Option 1

 detrend all time series, i.e. create new variables where the linear trends 

have been subtracted

 two steps involved:

(1) regress xt on t (time, values 1,2,…,n)

(2) save residuals (this is the detrended xt)

Accounting for trends in the regressions
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salmon series and its linear trend detrended salmon series



Option 2:  add variable t (time) to the estimated equation

 salmon coefficient identical, std. errors nearly identical → can use both

 R-squareds different, but most variation explained by time in Option 2

→ use detrended dependent variable for the R-squared!

Accounting for trends in the regressions (cont’d)
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^gdp_detrended = 1.46e-013 + 0.000701*salmon_detrended

(52.7)      (0.000269)

T = 29, R-squared = 0.201 

(standard errors in parentheses)

^gdp = 5.14e+03 + 0.000701*salmon + 295*time

(304)      (0.000274)        (9.90)

T = 29, R-squared = 0.986 

(standard errors in parentheses)

Option 1: results

Option 2: results



Frisch-Waugh-Lovell theorem
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=====================================================================
Dependent variable:                 

----------------------------------------------------
gdp gdp_detrended          gdp
(1)           (2)         (3)          (4)   

---------------------------------------------------------------------
year               294.72010***                19.29931*             

(9.90449)                 (9.90449)             

salmon               0.00070**                 0.00070**             
(0.00027)                 (0.00027)             

salmon_detrended                   0.00070**                 0.00070 
(0.00026)                (0.00990)

Constant         -578,999.30000***           -38,976.06000*          
(19,909.28000)             (19,909.28000)          

---------------------------------------------------------------------
Observations            29            29           29          29    
R2                    0.98613       0.20106     0.20106      0.00018 
=====================================================================



Using dummies to account for specific events
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Example: fertility equation

 frequency: annual data, 1913–1984

 gfr = the number of births per 1000 women aged 15–44

 ww2 = 1 for years 1941–1945, = 0 otherwise

   0 1 2t t tgfr ww u

time

β0

β1

expected fertility

WW2 period







Using dummies to account for specific events (cont’d)
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Example: fertility equation 2

 pill = 0 before 1963, = 1 afterwards

   0 1t t tgfr pill u

time

β0

β1

expected fertility

contraceptive pill 

introduced





0 1 2t t t t
gfr β β ww2 β pill u   

16



Seasonality
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 seasonal patterns are noticeable with quarterly, monthly, or daily data

 note that many time series in the online databases are “seasonally 

adjusted”, meaning that specialized algorithms have been used to even 

out the differences between seasons → these series can be used without 

further ado

 when using a seasonally unadjusted series, we can still use a simple fix 

that accounts for the seasonal variation: periodic dummies, i.e. dummy 

variables that identify individual periods

Example: durable goods

 open durgoods.gdt in Gretl

 change dataset structure to a quarterly time series (Data → Dataset 

structure)

 add periodic dummies (Add → Periodic dummies)

 this creates variables dq1,…, dq4

(dq1 stands for “dummy for quarter 1”)
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values of the periodic dummies



Seasonality (cont’d)
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 to describe the seasonal pattern in dishwasher sales, run the regression

 the dishwasher time series and the fitted values are shown below, F-test 

for joint significance: p-value = 0.89 → no statistical evidence of 

seasonality

       0 1 2 3t t t t tdish dq1 dq2 dq3 u



Seasonality (cont’d)
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 with refrigerator series, that’s a different story:

 joint significance: p-value = 0.000 079, strong evidence of seasonality

(i.e. we reject the null of no seasonal pattern)



Seasonality (cont’d)
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 interpretation: just as with other category dummies

 we omitted dq4 → quarter 4 is the base period

 e.g., the coefficient on dq1 tells us that in quarter 1, sales are higher by 

62,125 than in quarter 4 (on average) 

Model 2: OLS, using observations 1978:1-1985:4 (T = 32)

Dependent variable: frig

coefficient   std. error   t-ratio    p-value 

---------------------------------------------------------

const 1160.00       59.9904     19.34     9.81e-018 ***

dq1           62.1250 84.8393      0.7323   0.4701   

dq2          307.500      84.8393      3.625    0.0011    ***

dq3          409.750      84.8393      4.830    4.42e-05  ***

Mean dependent var 1354.844   S.D. dependent var 235.6719

Sum squared resid 806142.4   S.E. of regression   169.6785

R-squared            0.531797   Adjusted R-squared   0.481632

F(3, 28)             10.60102   P-value(F)           0.000079

...



Seasonality (cont’d)
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 conclusion: with seasonally unadjusted data, it makes sense to add 

both a time trend and periodic dummies in addition to your independent 

variables of interest

 note that this can be done also in case the dependent variable is logged, 

only the interpretation changes:

 results imply that in quarter 1, sales increase by 5.3 % compared with 

the baseline level of quarter 4

^l_frig = 7.05 +  0.0530*dq1 + 0.234*dq2 + 0.304*dq3

(0.0458)(0.0647)     (0.0647)    (0.0647)

T = 32, R-squared = 0.517 

(standard errors in parentheses)



^l_frig = 7.30 + 0.183*dq2 + 0.252*dq3 - 0.0555*dq4 - 0.0365*time + 0.00113*sq_time
(0.0590)(0.0470)   (0.0471)    (0.0473)     (0.00742)     (0.000218)

T = 32, R-squared = 0.764 

Null hypothesis: the regression parameters are zero for the variables
dq2, dq3, dq4

Test statistic: F(3, 26) = 19.323, p-value 8.49373e-007



Finite distributed lag (FDL) model
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Example: fertility equation 3

 pe = real dollar value of personal tax exemption

 here, δ0 is the impact propensity (= immediate effect) of a unit increase 

in pe

 the δ parameters capture the effect of a temporary increase in pe:

 assume that pe equals c except for period 0, where it increases to c + 1:

           0 0 1 1 2 2 3 3t t t t t tgfr pe pe pe pe u

time

c

pet

−2 1 2 3−1 0

1

4
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time

d

gfrt

−2 1 2 3−1 0

δ0

4

δ1 δ2
δ3

c
1

c

pet–1
1

c

pet
1

pet–2

c
1

pet–3

the effect of 

a temporary 

change in pe, 

or the lag 

distribution

a temporary 

change in pe

occurs in 

subsequent 

periods in 

lagged 

versions of pe





Finite distributed lag (FDL) model (cont’d)
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 long-run propensity (LRP): the effect of a permanent unit increase in 

pe
      0 1 2 3LRP

time

d

gfrt

−2 1 2 3−1 0

δ0

4

δ1

δ2

δ3

c

pet
1

the effect of 

a permanent 

change in pe, 

or long-run  

propensity





0 1 2 3 0 1 1 2 2 3 3t t t t t t t t
gfr β βww2 β pill β t δ pe δ pe δ pe δ pe u

  
        



Finite distributed lag (FDL) model (cont’d)
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Estimating LRP

 a natural estimator of LRP is

 so we just add up the coefficients on pe and its lags

 more work is required in case we need std. errors or 95% CI for LRP

 we’ll use a simple trick: the equation can be rewritten as follows

 this gives us the following procedure:

1. Create variables A, B, and C.

 in Gretl: Add → Define new variable… → A = pe(–1) – pe etc.

2. Regress gfr on pe, A, B and C; now, LRP is the coefficient on pe, and 

we can read off its std. error and calculate the 95% CI if needed.

      0 1 2 3
ˆ ˆ ˆ ˆLRP

    

   

  

  

     

        

0 0 1 1 2 2 3 3

0 1 1 2 2 3 3LRP ( ) ( ) ( )

t t t t t t

t t t t t t t t

A B C

gfr pe pe pe pe u

pe pe pe pe pe pe pe u
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