LECTURE 9: GENTLE INTRODUCTION TO REGRESSION WITH TIME SERIES

Jan Zouhar Introductory Econometrics

From random variables to random processes

- 2
- in cross-sectional regression, we were making inferences about the whole population based on a small sample
- a crucial assumption: random sampling
 - the bridge between population characteristics (distribution of wages in a country) and the probabilistic machinery of random variables (distribution of a wage of a randomly drawn person)
- □ unfortunately, with time series, random sampling makes no sense:

year	GDP	inflation	unemp
2004	1,957.6	2.6	5.4
2005	2,035.4	2.8	4.5

what would the underlying population be?

From random variables to random processes (cont'd)

- 3
- random sampling makes the characteristics of different individuals independent
- □ it is difficult to imagine that GDP in 2004 is independent of that in 2005
- therefore, we will have to switch to a more advanced theoretical vehicle: random processes
- those who had taken courses in random processes would tell you it was difficult
- \rightarrow we will omit many mathematical details, and focus on the intuition

New issues with time series

- 4
- good news: everything we learnt with cross-sectional data will be used in time-series analysis, too
- □ bad news: many new pitfalls that can spoil the analysis
 - **1. trends and seasonality**: can result in *spurious regression* (see next slide)
 - 2. lags in economic behaviour: government's expenditure cuts will slowly percolate through the economy \rightarrow lagged effect (the effect of today's cuts will spread over quarters or even years)
 - **3. persistence in time series**: governments expenditure itself cannot change too dramatically from one year to another
 - most real-life time series persistent, but the degree differs
 - strong persistence of time series can again produce spurious regression (*stationarity*, *unit-root* issues)
 - weak persistence problematic only if applies to u (serial correlation, or autocorrelation of u)

Spurious regression problem

- 5
- both y and x both exhibit a monotonous trend, we will find a relationship even though they have nothing in common

Example: Norwegian salmon production vs GDP in the U.S.

- □ the data in salmon.gdt contain two annual time series (1983-2011)
 - annual salmon production in Norway
 - □ *GDP* in the U.S. (bln. of 2005 dollars)
- do you think that there is a strong causal relationship?
- estimated equation in Gretl:

```
^gdp = 1.34e+04 - 0.00551*salmon
(713) (0.00103)
T = 29, R-squared = 0.514
(standard errors in parentheses)
```

□ Quizz: is *salmon* significant at the 5 % level? And how about 1 %?

Introductory Econometrics

Jan Zouhar

Accounting for trends in the regressions

Option 1

- *detrend* all time series, i.e. create new variables where the linear trends have been subtracted
- □ two steps involved:

(1) regress x_t on t (time, values 1, 2, ..., n)

(2) save residuals (this is the detrended x_t)

salmon series and its linear trend

detrended salmon series


```
(cont'd)
```

9

Option 2: add variable *t* (time) to the estimated equation

Option 1: results

```
^gdp_detrended = 1.46e-013 + 0.000701*salmon_detrended
(52.7) (0.000269)
T = 29, R-squared = 0.201
(standard errors in parentheses)
```

Option 2: results

```
^gdp = 5.14e+03 + 0.000701*salmon + 295*time
(304) (0.000274) (9.90)
T = 29, R-squared = 0.986
(standard errors in parentheses)
```

- \Box salmon coefficient identical, std. errors nearly identical \rightarrow can use both
- □ R-squareds different, but most variation explained by *time* in Option 2 \rightarrow use detrended dependent variable for the R-squared!

Frisch-Waugh-Lovell theorem

	Dependent variable:						
	gdp (1)	gdp_0 (2)	detrended (3)	gdp (4)			
year	294.72010*** (9.90449)		19.29931* (9.90449)				
salmon	0.00070** (0.00027)		0.00070** (0.00027)				
salmon_detrended		0.00070** (0.00026)		0.00070 (0.00990)			
Constant	-578,999.30000*** (19,909.28000)		-38,976.06000* (19,909.28000)				
Observations R2	29 0.98613	29 0.20106	29 0.20106	29 0.00018			

Introductory Econometrics

Using dummies to account for specific events

11

Example: fertility equation

- □ frequency: annual data, 1913–1984
- \Box gfr = the number of births per 1000 women aged 15–44
- ww2 = 1 for years 1941–1945, = 0 otherwise

 $gfr_t = \beta_0 + \beta_1 ww 2_t + u_t$

expected fertility

Using dummies to account for specific events (cont'd)

14

Example: fertility equation 2

 \square *pill* = 0 before 1963, = 1 afterwards

$$gfr_t = \beta_0 + \beta_1 pill_t + u_t$$

- □ seasonal patterns are noticeable with quarterly, monthly, or daily data
- □ note that many time series in the online databases are "seasonally adjusted", meaning that specialized algorithms have been used to even out the differences between seasons → these series can be used without further ado
- when using a seasonally unadjusted series, we can still use a simple fix that accounts for the seasonal variation: periodic dummies, i.e. dummy variables that identify individual periods

Example: durable goods

- open durgoods.gdt in Gretl
- □ change dataset structure to a quarterly time series (Data \rightarrow Dataset structure)
- \Box add periodic dummies (Add \rightarrow Periodic dummies)
- this creates variables dq1,..., dq4
 (dq1 stands for "dummy for quarter 1")

values of the periodic dummies

gretl: edit data								- 🗆 🗙
+ < 🖯 🗙	dish_ 1978:1							
	dish	frig	wash	dur	dq1	dq2	dq3	dq4 ^
1978:1	841	1317	1271	252.6	1	0	0	0
1978:2	957	1615	1295	272.4	0	1	0	0
1978:3	999	1662	1313	270.9	0	0	1	0
1978:4	960	1295	1150	273.9	0	0	0	1 _
1979:1	894	1271	1289	268.9	1	0	0	0
1979:2	851	1555	1245	262.9	0	1	0	0
1979:3	863	1639	1270	270.9	0	0	1	0
1979:4	878	1238	1103	263.4	0	0	0	1
1980:1	792	1277	1273	260.6	1	0	0	0
1980:2	589	1258	1031	231.9	0	1	0	0
1980:3	657	1417	1143	242.7	0	0	1	0
1980:4	699	1185	1101	248.6	0	0	0	1
1981:1	675	1196	1181	258.7	1	0	0	0
1981:2	652	1410	1116	248.4	0	1	0	0
1981:3	628	1417	1190	255.5	0	0	1	0
1981:4	529	919	1125	240.4	0	0	0	1 _

□ to describe the seasonal pattern in dishwasher sales, run the regression

$$dish_t = \beta_0 + \beta_1 dq \mathbf{1}_t + \beta_2 dq \mathbf{2}_t + \beta_3 dq \mathbf{3}_t + u_t$$

□ the dishwasher time series and the fitted values are shown below, F-test for joint significance: p-value = $0.89 \rightarrow$ no statistical evidence of seasonality

(cont'd)

with refrigerator series, that's a different story:

Actual and fitted frig

 joint significance: p-value = 0.000 079, strong evidence of seasonality (i.e. we reject the null of no seasonal pattern)

Jan Zouhar

- interpretation: just as with other category dummies
- we omitted $dq4 \rightarrow$ quarter 4 is the base period
- e.g., the coefficient on dq1 tells us that in quarter 1, sales are higher by 62,125 than in quarter 4 (on average)

Model 2: OLS, using observations 1978:1-1985:4 (T = 32) Dependent variable: frig									
	coeffici	ient s	td.	error	;	t-ratio	p-	value	
const dq1 dq2 dq3	1160.00 62.12 307.50 409.75) 2 50 00 50	59.9 84.8 84.8 84.8	904 393 393 393		19.34 0.7323 3.625 4.830	9.8 0.4 0.0 4.4	31e-018 701 0011 2e-05	* * * * * * * * *
Mean depender Sum squared R-squared F(3, 28)	nt var resid	1354.84 806142. 0.53179 10.6010	4 4 7 2	S.D. S.E. Adjus P-val	depe of : ted .ue(]	endent var regressior R-squarec F)	r d	235.671 169.678 0.48163 0.00007	9 5 2 9

- conclusion: with seasonally unadjusted data, it makes sense to add both a time trend and periodic dummies in addition to your independent variables of interest
- note that this can be done also in case the dependent variable is logged, only the interpretation changes:

 results imply that in quarter 1, sales increase by 5.3 % compared with the baseline level of quarter 4 ^l_frig = 7.30 + 0.183*dq2 + 0.252*dq3 - 0.0555*dq4 - 0.0365*time + 0.00113*sq_time (0.0590)(0.0470) (0.0471) (0.0473) (0.00742) (0.000218)

T = 32, R-squared = 0.764

Null hypothesis: the regression parameters are zero for the variables
 dq2, dq3, dq4
 Test statistic: F(3, 26) = 19.323, p-value 8.49373e-007

Example: fertility equation 3

 \Box *pe* = real dollar value of personal tax exemption

$$gfr_{t} = \beta_{0} + \delta_{0}pe_{t} + \delta_{1}pe_{t-1} + \delta_{2}pe_{t-2} + \delta_{3}pe_{t-3} + u_{t}$$

- □ here, δ_0 is the **impact propensity** (= immediate effect) of a unit increase in *pe*
- \Box the δ parameters capture the effect of a **temporary increase** in *pe*:
 - **a** assume that *pe* equals *c* except for period 0, where it increases to c + 1:

Temporary unit change

Finite distributed lag (FDL) model

- 29
- long-run propensity (LRP): the effect of a permanent unit increase in pe

$$LRP = \delta_0 + \delta_1 + \delta_2 + \delta_3$$

Permanent unit change

 $gfr_{t} = \beta_{0} + \beta_{1}ww2_{t} + \beta_{2}pill_{t} + \beta_{3}t + \delta_{0}pe_{t} + \delta_{1}pe_{t-1} + \delta_{2}pe_{t-2} + \delta_{3}pe_{t-3} + u_{t}$

Estimating LRP

- □ a natural estimator of LRP is LRP = $\hat{\delta}_0 + \hat{\delta}_1 + \hat{\delta}_2 + \hat{\delta}_3$
- \Box so we just add up the coefficients on *pe* and its lags
- $\hfill\square$ more work is required in case we need std. errors or 95% CI for LRP
- we'll use a simple trick: the equation can be rewritten as follows

$$\begin{split} gfr_t &= \beta_0 + \delta_0 p e_t + \delta_1 p e_{t-1} + \delta_2 p e_{t-2} + \delta_3 p e_{t-3} + u_t \\ &= \beta_0 + \text{LRP} \, p e_t + \delta_1(\underbrace{p e_{t-1} - p e_t}_A) + \delta_2(\underbrace{p e_{t-2} - p e_t}_B) + \delta_3(\underbrace{p e_{t-3} - p e_t}_C) + u_t \end{split}$$

- this gives us the following procedure:
 - 1. Create variables *A*, *B*, and *C*.
 - in Gretl: Add \rightarrow Define new variable... $\rightarrow A = pe(-1) pe$ etc.
 - 2. Regress *gfr* on *pe*, *A*, *B* and *C*; now, LRP is the coefficient on *pe*, and we can read off its std. error and calculate the 95% CI if needed.

LECTURE 9: GENTLE INTRODUCTION TO REGRESSION WITH TIME SERIES

Jan Zouhar Introductory Econometrics