# LECTURE 8: PREDICTIONS

Jan Zouhar Introductory Econometrics

## Two kinds of predictions

2

consider the model

$$bweight = \beta_0 + \beta_1 cigs + u$$

estimated as

$$bweight = 3,395 - 14.57 cigs$$

□ assume we know a pregnant woman who smokes 10 cigarettes a day

- □ there are two kinds of predictions we might be interested in:
  - 1. predict the actual weight of the woman's baby, denoted  $bweight_P$
  - 2. predict E[bweight | cigs = 10], the average birth weight for a mother smoking 10 cigarettes a day, denoted  $\theta$
- □ point prediction is the same in both cases:  $3,395 14.57 \times 10$ , denoted  $\hat{\theta}$
- $\hfill\square$  what differs is the 95% CI (or, the standard errors)
  - 1. 95% CI for the birth weight of a baby of a particular mother (smoking 10 cigarettes a day), typically called the **prediction interval**
  - 2. 95% CI for a mean in the category of mothers (smoking 10 cigarettes a day), i.e. 95% CI for  $\theta$

Introductory Econometrics







Cigarettes



#### Introductory Econometrics

Jan Zouhar



Cigarettes

# 95% CI for $\vartheta$

- □ we are interested in the 95% CI for  $\theta = \beta_0 + 10\beta_1$
- $\Box$  it is useful to rewrite the estimated equation as

$$bweight = \beta_0 + \beta_1 cigs + u$$
$$= \underbrace{\beta_0 + 10\beta_1}_{\theta} + \beta_1 (\underbrace{cigs - 10}_{A}) + u$$
$$= \theta + \beta_1 A + u$$

- □ this gives us a simple procedure to find the 95% for E[bweight | cigs = 10]
  - 1. Create a new variable A = cigs 10. Gretl: (Add  $\rightarrow$  Define new variable  $\rightarrow A = cigs - 10$ )
  - 2. Regress *bweight* on A. The intercept (constant) in this equation is  $\theta$ , and the 95% CI for the intercept is constructed as usual, i.e.  $\hat{\theta} \pm c \cdot \operatorname{se}(\hat{\theta})$ , where c is either the number 2, or, if more precision is required, the 97.5<sup>th</sup> percentile of t with n k 1 degrees of freedom. Gretl: (Analysis  $\rightarrow$  Confidence intervals for coefficients)



## Prediction intervals

predicted value:  $bweight^P = \beta_0 + \beta_1(10) + u = \theta + u$ 

- $\Box$  point prediction:  $\hat{\theta}$ 
  - this makes sense as E u = 0
- □ **prediction error**:  $\hat{e}^P = bweight^P bweight_P$  (=  $\theta + u \hat{\theta}$ )
- two sources of the predictions error:
  - 1. the population regression function is not estimated precisely; simply put,  $\hat{\theta} \neq \theta$
  - 2. random variation around the mean: u
- $\Box \text{ we have: } \operatorname{var}(\hat{e}^{P}) = \operatorname{var}(\theta + u \hat{\theta}) = \operatorname{var}\hat{\theta} + \operatorname{var} u = \operatorname{var}\hat{\theta} + \sigma^{2}$

$$\operatorname{se}(\hat{e}^{P}) = \sqrt{\left[\operatorname{se}(\hat{\theta})\right]^{2} + \hat{\sigma}^{2}}$$

□ and the 95% CI is  $\hat{\theta} \pm c \cdot \operatorname{se}(\hat{e}^P)$ 

Introductory Econometrics

Jan Zouhar

## Prediction intervals

- 10
- obtaining the prediction interval for a pregnant woman who smokes 10 cigarettes a day:
  - 1. Create a new variable A = cigs 10. Gretl: (Add  $\rightarrow$  Define new variable  $\rightarrow A = cigs - 10$ )
  - 2. Regress *bweight* on A. The intercept (constant) in this equation is  $\theta$ , its std. error is  $se(\hat{\theta})$ . The regression output will probably contain either  $\hat{\sigma}^2$  or  $\hat{\sigma}$ . (In Gretl,  $\hat{\sigma}$  is called S.E. of regression).

3. Calculate 
$$\operatorname{se}(\hat{e}^P) = \sqrt{\left[\operatorname{se}(\hat{\theta})\right]^2 + \hat{\sigma}^2}$$
.

- 4. Calculate the 95% prediction interval as  $\hat{\theta} \pm c \cdot \operatorname{se}(\hat{e}^{P})$ .
- with multiple regression models the procedure is analogous:
  - □ all explanatory variables need to be specified, say  $x_1 = c_1, ..., x_k = c_k$
  - we regress y on  $(x_1 c_1), \dots, (x_k c_k)$  in step 2, the rest is the same





12

consider the model

$$\log y = \beta_0 + \beta_1 x + u \tag{1}$$

- □ how do we predict, say, E[y | x = 10]?
- □ the model implies that  $y = e^{\beta_0 + \beta_1 x + u}$
- $\Box$  therefore:

$$E[y | x] = E[e^{\beta_0 + \beta_1 x + u} | x]$$
$$= \underbrace{e^{\beta_0 + \beta_1 x}}_{A} \cdot \underbrace{E[e^u | x]}_{B}$$

- □ *A* is consistently estimated as  $e^{\hat{\beta}_0 + \hat{\beta}_1 x}$ , where  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are parameter estimates from (1) and *x* is replaced with the specified value
- $\square$  *B* is more tricky; here we'll discuss two options:
  - 1. If we assume that *u* is normally distributed, then  $B = \exp(\sigma^2 / 2)$
  - 2. Duan's (1983) estimator: estimate *B* as the sample mean of exponentiated residuals from (1), i.e.  $B = \frac{1}{n} \sum_{i=1}^{n} \exp(\hat{u}_i)$

Introductory Econometrics

Jan Zouhar

| 🦉 gretl: model 2                                                                             |                                               |                  | -           | -     |     | × |
|----------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|-------------|-------|-----|---|
| <u>F</u> ile <u>E</u> dit <u>T</u> ests <u>Save</u> <u>G</u> raphs <u>A</u> nalysis <u>L</u> | ſeX                                           |                  |             |       |     | 6 |
| Model 2: OLS, <u>F</u> itted values                                                          |                                               |                  |             |       |     |   |
| Dependent var <u>R</u> esiduals                                                              |                                               |                  |             |       |     |   |
| Squared residuals                                                                            | Squared residuals                             |                  |             |       |     |   |
| Error sum of squares                                                                         | Error sum of squares                          |                  | p-value     |       |     |   |
| Standard error of the requ                                                                   | ression                                       | 04               | 0.0002      | ***   |     |   |
| educ R-squared                                                                               |                                               | 17               | 2.60e-025   | ***   |     |   |
| exper T*R-squared                                                                            |                                               | 59               | 2.79e-012   | ***   |     |   |
| experse Log likelihood                                                                       | Log likelihood   Akaike Information Criterion |                  | 2.48e-010   | ***   |     |   |
| tenure Akaike Information Criter                                                             |                                               |                  | 7.08e-08    | ***   |     |   |
| nonwhite Payerian Information Criter                                                         |                                               |                  | 0.6542      |       |     |   |
| female <u>Bayesian Information Citterion</u>                                                 |                                               | 56               | 1.33e-016   | ***   |     |   |
| smsa <u>H</u> annan-Quinn Informati                                                          | ion Criterion                                 | 57               | 8.64e-05    | ***   |     |   |
| Define <u>n</u> ew variable                                                                  |                                               |                  | 0 531530    |       |     |   |
| Sum squared resid 81 45340                                                                   | F of reares                                   | , var<br>ssion ( | 0.396542    |       |     |   |
| R-squared 0.450863 A                                                                         | Adjusted R-sou                                | ared             | 0.493442    |       |     |   |
| F(7, 518) 60.75682 F                                                                         | P-value(F)                                    |                  | 1.72e-63    |       |     |   |
| Log-likelihood -255.7956 A                                                                   | Akaike criteri                                | ion              | 527.5912    |       |     |   |
| Schwarz criterion 561.7137 H                                                                 | lannan-Quinn                                  |                  | 540.9517    |       |     |   |
|                                                                                              |                                               |                  |             |       |     |   |
| Log-likelihood for wage = -1109.63                                                           |                                               |                  |             |       |     |   |
| Furthering the senset of males are bighter for mariable 5 (sensitive)                        |                                               |                  |             |       |     |   |
| Excluding the constant, p-value w                                                            | vas nignest io                                | or var.          | Lable 5 (no | JUMUT | .e) |   |
|                                                                                              |                                               |                  |             |       |     |   |
|                                                                                              |                                               |                  | 1           |       |     |   |

 $\hat{B} = \frac{1}{n} \sum_{i=1}^{n} \exp(\hat{u}_i) = 1.0807$ 

 $\hat{B} = \exp(0.396542^2 / 2) = 1.0818$ 

# LECTURE 8: PREDICTIONS

Jan Zouhar Introductory Econometrics