LECTURE 7:
MORE ON FUNCTIONAL FORMS

Jan Zouhar Introductory Econometrics

What transforms do we use, and when?

\square we already know that linear regression can be used to describe nonlinear relationships (we've been using logs routinely, after all)
\square there is a plethora of functional transforms one can think of, but practitioners mostly restrict themselves to the following four

transform	formula	description
Units change	$x / 1000$	Only used as a matter of convenience (to make results easier to read).
Logs	$\log (x)$	Changes interpreted on a relative scale. May help reduce the effect of outliers (CEO salary example).
Squares	x^{2}	Allows for a u-shaped or inverted-u-shaped relationship (as in age vs wage).
Interactions	$x_{1} \cdot x_{2}$	Effect of x_{1} depends on the level of x_{2} and vice versa.

More on the use of logarithms

\square remember we used the following approximation:

$$
\text { change in } \log (y) \approx \text { relative change in } y
$$

\square relative changes are a bit tricky: if my wage increases by 50% next month, and decreases by 50% the following month, the total effect is a drop of 25%

$$
\text { wage } \times 1.5 \times 0.5=0.75 \text { wage }
$$

\square consider a country where the average wage is 100 for men and 125 for women; then

- women earn by 25% more than men
- men earn less by 20% less than women
\square in other words, the base category (men or women) matters
\square as we know, in regressions it does not (see next slide); is there anything wrong?

OLS estimates		
Dependent variable: l_wage		
	(1)	(2)
const	$\begin{gathered} 0.4317 * * \\ (0.1045) \end{gathered}$	$\begin{aligned} & 0.08352 \\ & (0.1011) \end{aligned}$
educ	$\begin{gathered} 0.08584 * * \\ (0.007183) \end{gathered}$	$\begin{gathered} 0.08584 * * \\ (0.007183) \end{gathered}$
exper	$\begin{aligned} & 0.009691^{*} * \\ & (0.001433) \end{aligned}$	$\begin{aligned} & 0.009691 * * \\ & (0.001433) \end{aligned}$
smsa	$\begin{gathered} 0.1592 * * \\ (0.04241) \end{gathered}$	$\begin{gathered} 0.1592 \star * \\ (0.04241) \end{gathered}$
female	$\begin{gathered} -0.3482 * * \\ (0.03722) \end{gathered}$	
male		$\begin{gathered} 0.3482 * * \\ (0.03722) \end{gathered}$
n	526	526
R -squared	0.3696	0.3696
lnL	-292.1	-292.1

Intercept has changed, why?

Coefficients on other variables unaffected by the base category

Different base categories, only the sign has changed

More on the use of logarithms

$\square \beta_{\text {female }}$ in model (1) equals $-\beta_{\text {male }}$ in model (2)
\square interpreting this the usual way,

- women earn by 35% less than men
- men earn less by 35% more than women
\square but: $0.65 \times 1.35=0.88 \neq 1$
\square in fact, there is no inconsistence, all of this is due to our approximate interpretation of the logarithm, which only works for small changes (in the log, or small relative changes)
\square Exact interpretation: if e.g. $\log (w a g e)=\beta_{0}+\beta_{1} e d u c+\beta_{2}$ female $+u$, exponentiating both sides, and writing down for men and women yields
men: wage $=\exp \left(\beta_{0}+\beta_{1} e d u c+u\right)$
women: wage $=\exp \left(\beta_{0}+\beta_{1} e d u c+\beta_{2}+u\right)=\exp \left(\beta_{2}\right) \times \exp \left(\beta_{0}+\beta_{1} e d u c+u\right)$
\square wage for women $=\exp \left(\beta_{2}\right) \times$ wage for men

More on the use of logarithms

\square interpreting the results in our previous Gretl output:
$\square \exp (0.35)=1.42$, men earn by 42% more than women
$\square \exp (-0.35)=0.70$, women earn by 30% less than men
\square note that this solves the apparent inconsistency, as $1.42 \times 0.7=1$; or, in general,

$$
\begin{aligned}
\exp \left(\beta_{\text {female }}\right) \times \exp \left(\beta_{\text {male }}\right) & =\exp \left(\beta_{\text {female }}+\beta_{\text {male }}\right) \\
& =\exp \left(-\beta_{\text {male }}+\beta_{\text {male }}\right) \\
& =\exp (0) \\
& =1
\end{aligned}
$$

\square to conclude, the exact relative change in y due to a unit change in x_{j} is

$$
\begin{aligned}
\Delta y / y & =\exp \left(\beta_{j}\right)-1, \quad \text { or } \\
\% \Delta y & =100\left[\exp \left(\beta_{j}\right)-1\right]
\end{aligned}
$$

Squares

\square allow for a changing sign of the relationship
\square note that while logarithms are a non-linear transform, they do not allow the relationship to change sign (log is strictly increasing)
\square many nonlinear functions allow this, but the quadratic is the simplest one \rightarrow hardly ever we use anything beyond that
unemployment probability

Example

\square wage vs. work experience
\square we estimate

$$
\text { wage }=\beta_{0}+\beta_{1} \text { exper }+\beta_{2} \text { exper }^{2}+u
$$

\square In Gretl: first we need to create a new variable containing squared experience (Add \rightarrow Squares of selected variables)
\square the estimated equation (using Wooldridge's wage1 data) is:

```
^\mp@code{wage = 3.73 + 0.298*exper - 0.00613*sq_exper}
    (0.346)(0.0410) (0.000903)
n = 526, R-squared = 0.093
(standard errors in parentheses)
```

\square Quizz: is this a u or an inverted-u curve? Where is the turning point?

Squares

\square a plot may help answer these questions (Graphs \rightarrow Fitted, Actual plot \rightarrow Against exper)

Actual and fitted wage versus exper

\square but the turning point will not be guessed accurately from the plot, and the plot looks ugly if we include control variables

Where exactly is the turning point?

\square use first-order conditions for a maximum/minimum of a function
\square differentiate the equation wage $=\beta_{0}+\beta_{1}$ exper $+\beta_{2}$ exper $^{2}+u$ with respect to exper and set equal to zero:

$$
\frac{\partial w a g e}{\partial \text { exper }}=\beta_{1}+2 \beta_{2} \text { exper }=0
$$

\square so the turning point is: exper $=-\frac{\beta_{1}}{2 \beta_{2}}$
\square our estimate of the turning point (based on the estimated equation) is

$$
\text { estimated turning point }=-\frac{\text { coefficient on the linear term }}{2 \times \text { coefficient on the squared term }}
$$

\square in our example, this is exper $=-\frac{0.298}{2(-0.00613)}=24.3$ years

```
^wage = -3.96 + 0.268*exper - 0.00461*sq_exper + 0.595*educ
    (0.752) (0.0369) (0.000822) (0.0530)
```

Actual and fitted wage versus exper

More on squares

$\square \mathrm{u}$ or inverted-u shape? Determined by the sign of the coefficient on the squared term (positive $\rightarrow u$; negative \rightarrow inverted u)
\square partial effect of experience:

$$
\frac{\Delta w a g e}{\Delta \text { exper }} \approx \frac{\partial w a g e}{\partial \text { exper }}=\beta_{1}+2 \beta_{2} \text { exper }, \quad \text { so } \quad \Delta w a g e \approx\left(\beta_{1}+2 \beta_{2} \text { exper }\right) \Delta \text { exper }
$$

\square in particular, the change in wage brought about by a unit increase in experience (Δ exper $=1$) is $\beta_{1}+2 \beta_{2}$ exper
\square now wait, we used to log the wage in most regressions
\square fortunately, \log is an increasing function, \log (wage) increases whenever wage does, so our turning point formulas work even for

$$
\log (\text { wage })=\beta_{0}+\beta_{1} \text { exper }+\beta_{2} \text { exper }^{2}+u
$$

\square partial effect: $\Delta \log ($ wage $) \approx\left(\beta_{1}+2 \beta_{2}\right.$ exper $) \Delta$ exper, so

$$
\% \Delta w a g e \approx 100\left(\beta_{1}+2 \beta_{2} \text { exper }\right) \Delta \text { exper }
$$

Interactions

Example: Do returns to schooling differ for men and women?

\square Or: is the effect of education on the wage moderated by gender?

\square What do you think is the case in your country? Any objective reasons why women should be rewarded more/less for their education than men?
\square How do we formulate a model that allows the effect of education to vary with gender?

$$
\begin{align*}
& \text { wage }=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { female }+u \tag{1}\\
& \text { wage }=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { female }+\beta_{3} \text { female } \cdot e d u c+u \tag{2}
\end{align*}
$$

\square It is easily seen that the effect of additional year of education, $\frac{\Delta w a g e}{\Delta e d u c}$, is

- β_{1} in equation (1)
- $\beta_{1}+\beta_{3}$ female in equation (2)

$$
\text { wage }=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { female }+u
$$

Interactions

$$
\text { wage }=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { female }+\beta_{3} \text { female } \cdot \text { educ }+u
$$

Model 1: OLS, using observations 1-526
Dependent variable: wage

	coefficient	std. error	t-ratio	p-value
const 0	0.200496	0.843562	0.2377	0.8122
educ 0	0.539476	0.0642229	8.400	$4.24 \mathrm{e}-016$
female -1	-1.19852	1.32504	-0.9045	0.3661
femaleXeduc -0	-0.0859990	0.103639	-0.8298	0.4070
Mean dependent var	ar 5.896103	S.D. dep	dent var	3.693086
Sum squared resid	d 5300.170	S.E. of	gression	3.186469
R-squared	0.259796	Adjusted	-squared	0.255542
F (3, 522)	61.07022	P -value(7.44e-34
Log-likelihood	-1353.942	Akaike c	terion	2715.885
Schwarz criterion	n 2732.946	Hannan-Q		2722.565

\square What is the interpretation of the intercept?
\square What is the interpretation of the $\beta_{\text {educ }}$?
\square What is the interpretation of the $\beta_{\text {female }}$?
\square What is the effect of an additional year of education on a woman's wage?
\square Do returns to schooling differ for men and women?

Variable centering

- Sample median of educ is 12
\square Create new variable educ_12 = educ -12 ; new interpretation?
Model 3: OLS, using observations 1-526
Dependent variable: l_wage

	coefficient	std. error	t-ratio	p-value	
const	1.46091	0.0493213	29.62	1.27e-113	
educ_12	0.0876179	0.00902612	9.707	$1.39 \mathrm{e}-020$	
female	-0.345893	0.0379530	-9.114	$1.73 \mathrm{e}-018$	
femaleXeduc_12	-0.00481837	0.0138472	-0.3480	0.7280	
exper	0.00970891	0.00143735	6.755	3.85e-011	
smsa	0.159559	0.0424996	3.754	0.0002	
nonwhite	-0.00966693	0.0613298	-0.1576	0.8748	

Mean dependent var	1.623268	S.D. dependent var	0.531538
Sum squared resid	93.47959	S.E. of regression	0.424399
R-squared	0.369785	Adjusted R-squared	0.362500
F(6, 519)	50.75480	P-value(F)	$4.38 \mathrm{e}-49$
Log-likelihood	-292.0139	Akaike criterion	598.0278
Schwarz criterion	627.8849	Hannan-Quinn	609.7182

Multicollinearity vs. squares \& interactions

Variance Inflation Factors
Minimum possible value $=1.0$
Values > 10.0 may indicate a collinearity problem

exper	13.216
sq_exper	13.493
educ	1.867
female	22.899
femaleXeduc	22.869
nonwhite	1.013
smsa	1.059

Variance Inflation Factors
Minimum possible value $=1.0$
Values > 10.0 may indicate a collinearity problem

exper_17	1.639
sq_exper_17	1.639
educ_12	1.867
female	1.050
femaleXeduc_12	1.650
nonwhite	1.013
smsa	1.059

sq_exper_17 versus exper_17 (with least squares fit)

How do we decide about the functional form?

\square even if we restrict ourselves to squares, logs, and interactions, there's many different functional forms we can produce with given variables; how do we choose?
\square lecture 2 revisited:

Why use simple models:

Simple models are:

- easier to estimate.
- easier to interpret (e.g., $\beta_{1}=\Delta$ wage $/ \Delta$ educ etc.).
- easier to analyze from the statistical standpoint.
- safe: they serve as a good approximation to the real relationship, the functional nature of which might be unknown and/or complicated. Things can't go too wrong when using a simple model.
Further reading: Angrist and Pischke (2008): Mostly Harmless Econometrics: An Empiricist's Companion.

Tests for functional form misspecification

\square even though some statistical tests have been developed to detect functional form misspecification, we should use them sparingly: they can lead to overspecified (= overly complicated) models that do not interpret easily
\square the most important criteria are: (i) our research question and the underlying economic theory, and (ii) the desired interpretation of the parameters (see Slide 2 of this presentation)

Using F-tests for joint significance

\square it is straightforward to check for the omission of squares and interactions in a particular model using an F-test
\square just add squares and/or interactions of the regressors and use the F-test for joint significance
\square Gretl uses this for logarithms as well

Tests for functional form misspecification

Ramsey's RESET test

- a popular test for general functional form misspecification
\square procedure:

1. First, use OLS to estimate your equation, say

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u .
$$

2. Save the fitted values, \hat{y}.
3. Estimate the equation

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\delta_{1} \hat{y}^{2}+\delta_{2} \hat{y}^{3}+u
$$

and use the F -test for joint significance of \hat{y}^{2} and \hat{y}^{3}.
\square note that \hat{y}^{2} and \hat{y}^{3} are themselves functions of cubes, squares, and interactions of the x s, but using \hat{y}^{2} and \hat{y}^{3} instead of all possible interactions and squares saves up on degrees of freedom dramatically

```
Auxiliary regression for RESET specification test
OLS, using observations 1-328
Dependent variable: l_price
    coefficient std. error t-ratio p-value
\begin{tabular}{lccrrr} 
const & -778.711 & 214.096 & -3.637 & 0.0003 & \(* * *\) \\
km1000 & 0.138152 & 0.0372679 & 3.707 & 0.0002 & \(* * *\) \\
age & 10.2993 & 2.78202 & 3.702 & 0.0003 & \(* * *\) \\
combi & -8.39722 & 2.26483 & -3.708 & 0.0002 & \(* * *\) \\
diesel & -15.3748 & 4.14411 & -3.710 & 0.0002 & \(* * *\) \\
LPG & -4.84540 & 1.31218 & -3.693 & 0.0003 & \(* * *\) \\
octavia & -52.6445 & 14.2247 & -3.701 & 0.0003 & \(* * *\) \\
superb & -190.411 & 27.0420 & -3.713 & 0.0092 & \(* * *\) \\
yhat^2 & 7.51842 & 2.06297 & 3.644 & 0.0003 & \(* * *\) \\
yhat^3 & -0.199197 & 0.0561879 & -3.545 & 0.0005 & \(* * *\) \\
\hline
\end{tabular}
Warning: data matrix close to singularity!
Test statistic: F = 24.093873,
with p-value = P(F(2,318) > 24.0939) = 1.81e-010
```

- Numerical instability!
- In this case, the version with a squared term only is preferred

Auxiliary regression for RESET specification test OLS, using observations 1-328
Dependent variable: l_price

	coefficient	std. error	t-ratio	p -value	
const	-19.9472	5.54465	-3.598	0.0004	
km1000	0.00611032	0.00131867	4.634	5.24e-06	
age	0.442007	0.0944437	4.680	4.24e-06	***
combi	-0.373065	0.0820537	-4.547	7.75e-06	***
diesel	-0.692139	0.147900	-4.680	$4.25 \mathrm{e}-06$	***
LPG	-0.200290	0.0722966	-2.770	0.0059	***
octavia	-2.24280	0.479250	-4.680	4.25e-06	***
superb	-4.60119	0.969330	-4.747	3.13e-06	***
yhat^2	0.205809	0.0351040	5.863	$1.14 \mathrm{e}-08$	***

Test statistic: $\mathrm{F}=34.372892$,
with p-value $=P(F(1,319)>34.3729)=1.14 \mathrm{e}-008$

Price or log(price)?

```
price
Non-linearity test (squares)
    Test statistic: LM = 87.3563
    with p-value = P(Chi-square(2) > 87.3563) = 1.07352e-019
Non-linearity test (logs) -
    Test statistic: LM = 52.1271
    with p-value = P(Chi-square(2) > 52.1271) = 4.79459e-012
RESET test for specification
    Test statistic: F(2, 318) = 82.1404
    with p-value = P(F(2, 318) > 82.1404) = 1.7427e-029
log(price)
Non-linearity test (squares) -
    Test statistic: LM = 37.1925
    with p-value = P(Chi-square(2) > 37.1925) = 8.38964e-009
Non-linearity test (logs) -
Test statistic: LM = 11.4947
    with p-value = P(Chi-square(2) > 11.4947) = 0.00319124
RESET test for specification -
Test statistic: F(2, 318) = 24.0939
    with p-value = P(F(2, 318) > 24.0939) = 1.8072e-010
```

LECTURE 7:
MORE ON FUNCTIONAL FORMS

Jan Zouhar Introductory Econometrics

