LECTURE 7: MORE ON FUNCTIONAL FORMS

Jan Zouhar Introductory Econometrics

What transforms do we use, and when?

- 2
- we already know that linear regression can be used to describe nonlinear relationships (we've been using logs routinely, after all)
- there is a plethora of functional transforms one can think of, but practitioners mostly restrict themselves to the following four

transform	formula	description
Units change	x/1000	Only used as a matter of convenience (to make results easier to read).
Logs	log(x)	Changes interpreted on a relative scale. May help reduce the effect of outliers (CEO salary example).
Squares	x ²	Allows for a u-shaped or inverted-u-shaped relationship (as in age vs wage).
Interactions	$\mathbf{x}_1 \cdot \mathbf{x}_2$	Effect of x_1 depends on the level of x_2 and vice versa.

- 3
- remember we used the following approximation:

change in $log(y) \approx$ relative change in *y*

 relative changes are a bit tricky: if my wage increases by 50% next month, and decreases by 50% the following month, the total effect is a drop of 25%

 $wage \times 1.5 \times 0.5 = 0.75 wage$

- consider a country where the average wage is 100 for men and 125 for women; then
 - women earn by 25% more than men
 - men earn less by 20% less than women
- $\hfill\square$ in other words, the base category (men or women) matters
- as we know, in regressions it does not (see next slide); is there anything wrong?

OLS estimat Dependent v	es ariable: l_wag	е	
	(1)	(2)	
const	0.4317** (0.1045)	0.08352 (0.1011)	<pre>Intercept has changed, why?</pre>
educ	0.08584** (0.007183)	0.08584** (0.007183)	Coefficients on
exper	0.009691** (0.001433)		other variables unaffected by the
smsa	0.1592** (0.04241)	0.1592** (0.04241)	base category
female	-0.3482** (0.03722)		Different base categories, only
male		0.3482** (0.03722)	the sign has changed
n R-squared lnL	526 0.3696 -292.1	526 0.3696 -292.1	

More on the use of logarithms

- \square β_{female} in model (1) equals $-\beta_{male}$ in model (2)
- \Box interpreting this the usual way,
 - women earn by 35% less than men
 - □ men earn less by 35% more than women
- □ but: $0.65 \times 1.35 = 0.88 \neq 1$
- in fact, there is no inconsistence, all of this is due to our approximate interpretation of the logarithm, which only works for small changes (in the log, or small relative changes)
- □ Exact interpretation: if e.g. $log(wage) = \beta_0 + \beta_1 educ + \beta_2 female + u$, exponentiating both sides, and writing down for men and women yields

men: $wage = \exp(\beta_0 + \beta_1 e duc + u)$

women: $wage = \exp(\beta_0 + \beta_1 educ + \beta_2 + u) = \exp(\beta_2) \times \exp(\beta_0 + \beta_1 educ + u)$

□ wage for women = $\exp(\beta_2)$ × wage for men

- 6
- □ interpreting the results in our previous Gretl output:
 - exp(0.35) = 1.42, men earn by 42% more than women
 - exp(-0.35) = 0.70, women earn by 30% less than men
- □ note that this solves the apparent inconsistency, as $1.42 \times 0.7 = 1$; or, in general,

$$\exp(\beta_{female}) \times \exp(\beta_{male}) = \exp(\beta_{female} + \beta_{male})$$
$$= \exp(-\beta_{male} + \beta_{male})$$
$$= \exp(0)$$
$$= 1$$

□ to conclude, the *exact* relative change in *y* due to a unit change in x_j is

$$\Delta y / y = \exp(\beta_j) - 1$$
, or
 $\Delta y = 100[\exp(\beta_j) - 1]$

Squares

- allow for a changing sign of the relationship
- note that while logarithms are a non-linear transform, they do not allow the relationship to change sign (log is strictly increasing)
- many nonlinear functions allow this, but the quadratic is the simplest one → hardly ever we use anything beyond that



Squares

Example

- □ wage vs. work experience
- \square we estimate

$$wage = \beta_0 + \beta_1 exper + \beta_2 exper^2 + u$$

- In Gretl: first we need to create a new variable containing squared experience (Add → Squares of selected variables)
- the estimated equation (using Wooldridge's wage1 data) is:

```
^wage = 3.73 + 0.298*exper - 0.00613*sq_exper
(0.346)(0.0410) (0.000903)
n = 526, R-squared = 0.093
```

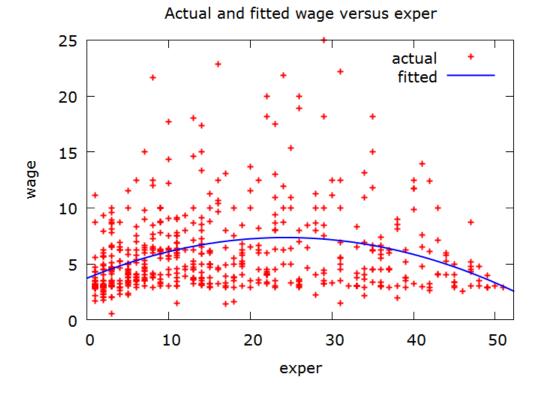
```
(standard errors in parentheses)
```

□ Quizz: is this a **u** or an **inverted-u** curve? Where is the turning point?

Squares

(cont'd)

□ a plot may help answer these questions (Graphs \rightarrow Fitted, Actual plot \rightarrow Against exper)



 but the turning point will not be guessed accurately from the plot, and the plot looks ugly if we include control variables

Introductory Econometrics

Where exactly is the turning point?

10

- use first-order conditions for a maximum/minimum of a function
- □ differentiate the equation $wage = \beta_0 + \beta_1 exper + \beta_2 exper^2 + u$ with respect to *exper* and set equal to zero:

$$\frac{\partial wage}{\partial exper} = \beta_1 + 2\beta_2 exper = 0$$

□ so the turning point is: $exper = -\frac{\beta_1}{2\beta_2}$

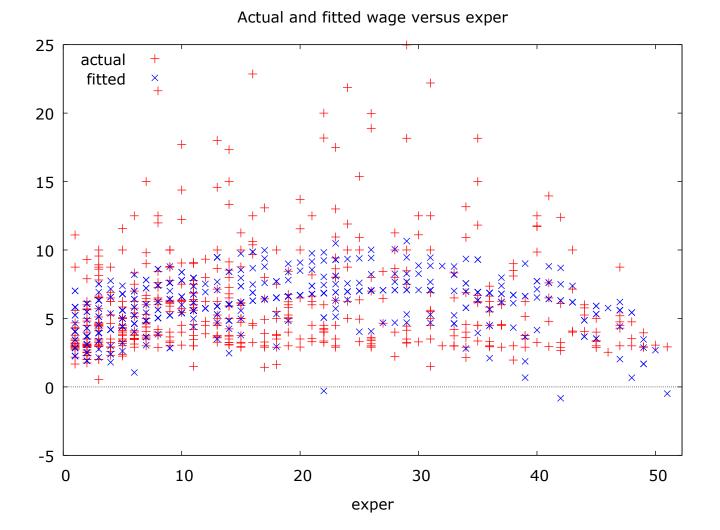
□ our estimate of the turning point (based on the estimated equation) is

estimated turning point = $-\frac{\text{coefficient on the linear term}}{2 \times \text{coefficient on the squared term}}$

□ in our example, this is
$$exper = -\frac{0.298}{2(-0.00613)} = 24.3$$
 years

Introductory Econometrics

^wage = -3.96 + 0.268*exper	- 0.00461*sq_	exper + 0.595*educ
(0.752) (0.0369)	(0.000822)	(0.0530)



More on squares

- 12
- u or inverted-u shape? Determined by the **sign** of the coefficient on the **squared term** (positive → u; negative → inverted u)
- **partial effect** of experience:

 $\frac{\Delta wage}{\Delta exper} \approx \frac{\partial wage}{\partial exper} = \beta_1 + 2\beta_2 exper, \quad \text{so} \quad \Delta wage \approx (\beta_1 + 2\beta_2 exper) \Delta exper$

- □ in particular, the change in wage brought about by a unit increase in experience ($\Delta exper = 1$) is $\beta_1 + 2\beta_2 exper$
- □ now wait, we used to log the wage in most regressions
- fortunately, log is an increasing function, log(*wage*) increases whenever *wage* does, so our turning point formulas work even for

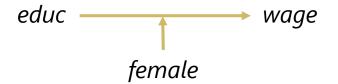
$$\log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + u$$

□ partial effect:
$$\Delta \log(wage) \approx (\beta_1 + 2\beta_2 exper) \Delta exper$$
, so $\% \Delta wage \approx 100 (\beta_1 + 2\beta_2 exper) \Delta exper$

Introductory Econometrics

Example: Do returns to schooling differ for men and women?

• Or: is the effect of education on the wage **moderated** by gender?



- What do you think is the case in your country? Any objective reasons why women should be rewarded more/less for their education than men?
- How do we formulate a model that allows the effect of education to vary with gender?

$$wage = \beta_0 + \beta_1 educ + \beta_2 female + u \tag{1}$$

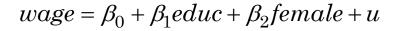
$$wage = \beta_0 + \beta_1 educ + \beta_2 female + \beta_3 female \cdot educ + u \quad (2)$$

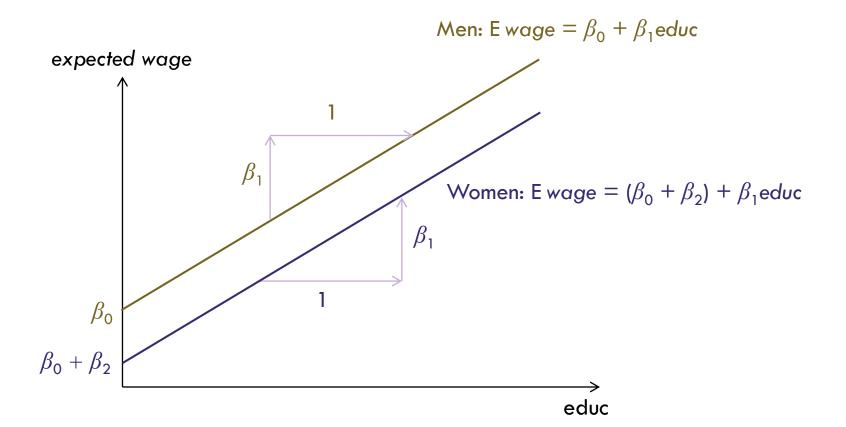
- □ It is easily seen that the effect of additional year of education, $\frac{\Delta wage}{\Delta educ}$, is □ β_1 in equation (1)
 - $\square \quad \beta_1 + \beta_3 female \text{ in equation (2)}$

Introductory Econometrics

14

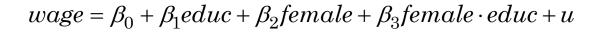
(cont'd)

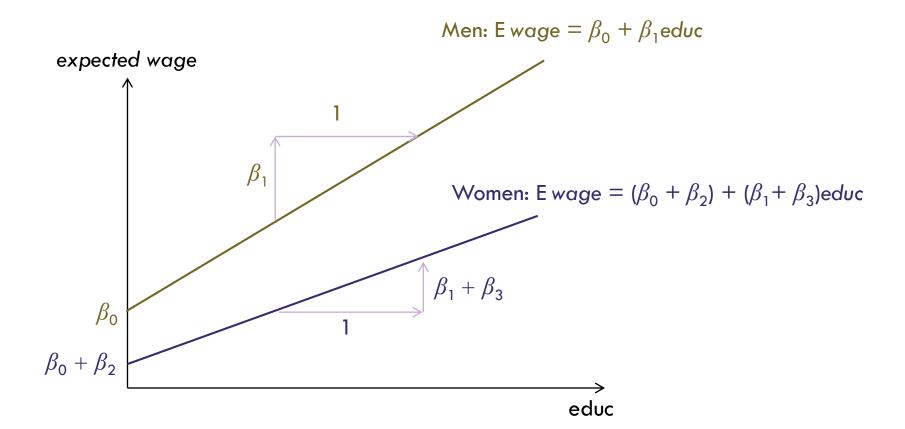




15

(cont'd)





Model 1: OLS, using observations 1-526 Dependent variable: wage

	coefficient	std. error	t-ratio	p-value
const educ female	0.200496 0.539476 -1.19852	0.843562 0.0642229 1.32504	0.2377 8.400 -0.9045	0.8122 4.24e-016 *** 0.3661
femaleXeduc	-0.0859990	0.103639	-0.8298	0.4070
Mean dependent Sum squared res R-squared F(3, 522) Log-likelihood Schwarz criteri	id 5300.170 0.259796 61.07022 -1353.942	S.D. depen S.E. of re Adjusted R P-value(F) Akaike cri Hannan-Qui	egression -squared terion	3.693086 3.186469 0.255542 7.44e-34 2715.885 2722.565

- □ What is the interpretation of the intercept?
- □ What is the interpretation of the β_{educ} ?
- □ What is the interpretation of the β_{female} ?
- □ What is the effect of an additional year of education on a woman's wage?
- Do returns to schooling differ for men and women?

Variable centering

- \Box Sample median of *educ* is 12
- □ Create new variable $educ_{12} = educ 12$; new interpretation?

Model 3: OLS, using observations 1-526 Dependent variable: l_wage

	coefficient	std. error	t-ratio	p-value	
const	1.46091	0.0493213	29.62	1.27e-113	***
educ_12	0.0876179	0.00902612	9.707	1.39e-020	***
female	-0.345893	0.0379530	-9.114	1.73e-018	***
<pre>femaleXeduc_12</pre>	-0.00481837	0.0138472	-0.3480	0.7280	
exper	0.00970891	0.00143735	6.755	3.85e-011	***
smsa	0.159559	0.0424996	3.754	0.0002	***
nonwhite	-0.00966693	0.0613298	-0.1576	0.8748	
Mean dependent var	1.623268	S.D. dependen	t var	0.531538	
Sum squared resid	93.47959	S.E. of regre	ssion	0.424399	
R-squared	0.369785	Adjusted R-sq	uared	0.362500	
F(6, 519)	50.75480	P-value(F)		4.38e-49	
Log-likelihood	-292.0139	Akaike criter	ion	598.0278	
Schwarz criterion	627.8849	Hannan-Quinn		609.7182	

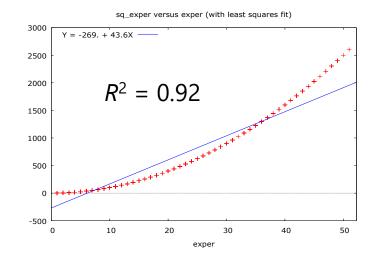
Multicollinearity vs. squares & interactions

Variance Inflation Factors Minimum possible value = 1.0 Values > 10.0 may indicate a collinearity problem

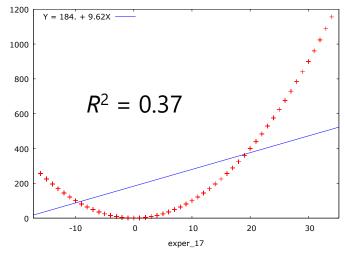
exper	13.216
sq_exper	13.493
educ	1.867
female	22.899
femaleXeduc	22.869
nonwhite	1.013
smsa	1.059

Variance Inflation Factors Minimum possible value = 1.0 Values > 10.0 may indicate a collinearity problem

exper_17	1.639
sq_exper_17	1.639
educ_12	1.867
female	1.050
<pre>femaleXeduc_12</pre>	1.650
nonwhite	1.013
smsa	1.059



sq_exper_17 versus exper_17 (with least squares fit)



How do we decide about the functional form?

19

- even if we restrict ourselves to squares, logs, and interactions, there's many different functional forms we can produce with given variables; how do we choose?
- \square lecture 2 revisited:

Why use simple models:

Simple models are:

- easier to estimate.
- easier to interpret (e.g., $\beta_1 = \Delta wage / \Delta educ$ etc.).
- easier to analyze from the statistical standpoint.
- safe: they serve as a good approximation to the real relationship, the functional nature of which might be unknown and/or complicated. Things can't go too wrong when using a simple model.

Further reading: Angrist and Pischke (2008): Mostly Harmless Econometrics: An Empiricist's Companion.

Tests for functional form misspecification

- 20
- even though some statistical tests have been developed to detect functional form misspecification, we should use them sparingly: they can lead to overspecified (= overly complicated) models that do not interpret easily
- the most important criteria are: (i) our research question and the underlying economic theory, and (ii) the desired interpretation of the parameters (see Slide 2 of this presentation)

Using F-tests for joint significance

- it is straightforward to check for the omission of squares and interactions in a particular model using an *F*-test
- just add squares and/or interactions of the regressors and use the *F*-test for joint significance
- \Box Gretl uses this for logarithms as well

Tests for functional form misspecification (cont'd)

Ramsey's RESET test

- □ a popular test for general functional form misspecification
- □ procedure:
 - 1. First, use OLS to estimate your equation, say

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u.$$

- 2. Save the fitted values, \hat{y} .
- 3. Estimate the equation

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \delta_1 \hat{y}^2 + \delta_2 \hat{y}^3 + u$$

and use the F-test for joint significance of \hat{y}^2 and \hat{y}^3 .

□ note that \hat{y}^2 and \hat{y}^3 are themselves functions of cubes, squares, and interactions of the *x*'s, but using \hat{y}^2 and \hat{y}^3 instead of all possible interactions and squares saves up on degrees of freedom dramatically

Auxiliary regression for RESET specification test OLS, using observations 1-328 Dependent variable: l_price

	coefficient	std. error	t-ratio	p-value	
const km1000 age combi	-778.711 0.138152 10.2993 -8.39722	214.096 0.0372679 2.78202 2.26483	-3.637 3.707 3.702 -3.708	0.0003 0.0002 0.0003 0.0003 0.0002	*** *** ***
diesel LPG octavia	-8.39722 -15.3748 -4.84540 -52.6445	2.20485 4.14411 1.31218 14.2247	-3.708 -3.710 -3.693 -3.701	0.0002 0.0003 0.0003	*** ***
superb	<u>-100,411</u>	27.0420	<u>-3.713</u>	0.0003	***
yhat^2 yhat^3	7.51842 -0.199197	2.06297 0.0561879	3.644 -3.545	0.0003 0.0005	*** ***

Warning: data matrix close to singularity!

Test statistic: F = 24.093873, with p-value = P(F(2,318) > 24.0939) = 1.81e-010

- Numerical instability!
- In this case, the version with a squared term only is preferred

Auxiliary regression for RESET specification test OLS, using observations 1-328 Dependent variable: l_price

	coefficient	std. error	t-ratio	p-value
const	-19.9472	5.54465	-3.598	0.0004 ***
km1000	0.00611032	0.00131867	4.634	5.24e-06 ***
age	0.442007	0.0944437	4.680	4.24e-06 ***
combi	-0.373065	0.0820537	-4.547	7.75e-06 ***
diesel	-0.692139	0.147900	-4.680	4.25e-06 ***
LPG	-0.200290	0.0722966	-2.770	0.0059 ***
octavia	-2.24280	0.479250	-4.680	4.25e-06 ***
superb	-4.60119	0.969330	-4.747	3.13e-06 ***
yhat^2	0.205809	0.0351040	5.863	1.14e-08 ***

Test statistic: F = 34.372892, with p-value = P(F(1,319) > 34.3729) = 1.14e-008

Price or log(*price*)?

price

```
Non-linearity test (squares)
   Test statistic: LM = 87.3563
   with p-value = P(Chi-square(2) > 87.3563) = 1.07352e-019
Non-linearity test (logs) -
   Test statistic: LM = 52.1271
   with p-value = P(Chi-square(2) > 52.1271) = 4.79459e-012
RESET test for specification
   Test statistic: F(2, 318) = 82.1404
   with p-value = P(F(2, 318) > 82.1404) = 1.7427e-029
```

log(price)

```
Non-linearity test (squares) -
   Test statistic: LM = 37.1925
   with p-value = P(Chi-square(2) > 37.1925) = 8.38964e-009
Non-linearity test (logs) -
Test statistic: LM = 11.4947
   with p-value = P(Chi-square(2) > 11.4947) = 0.00319124
RESET test for specification -
Test statistic: F(2, 318) = 24.0939
   with p-value = P(F(2, 318) > 24.0939) = 1.8072e-010
```

LECTURE 7: MORE ON FUNCTIONAL FORMS

Jan Zouhar Introductory Econometrics