LECTURE 6: HETEROSKEDASTICITY

Jan Zouhar Introductory Econometrics

Summary of MLR Assumptions

MLR.1 (linear in parameters)

MLR.2 (random sampling)

- the basic framework (we have to start somewhere)
- MLR.3 (no perfect collinearity)
 - **a** technical assumption that allows us to estimate the model
- MLR.4 (zero conditional mean of u)
 - the key one for causal work, cannot be tested statistically, has to be argued from the economic theory
- □ MLR.1 though MLR.4 already give us *unbiasedness* of OLS
- $\hfill\square$ typically, we want more than this
- \square we want to know we're using the best estimator the BLUE one
- □ for this, we needed the assumption of constant error variance:

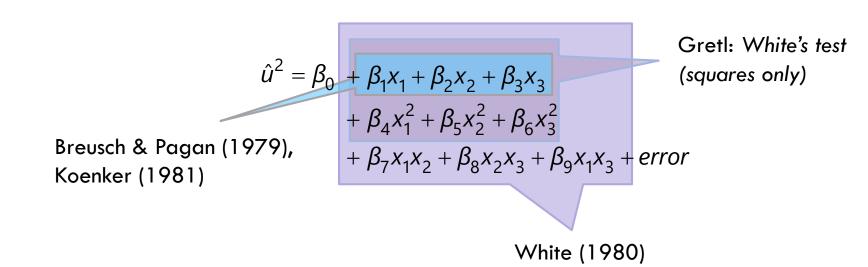
MLR.5 (homoskedasticity)

Summary of MLR Assumptions

- 3
- with MLR.1 through MLR.5, we know OLS is BLUE
- we also know the variance and the asymptotic sampling distribution of the OLS estimator (we use this to compute standard errors and carry out *t*-tests and *F*-tests)
- $\hfill\square$ the important questions for this lecture:
 - what happens if MLR.5 is violated in my equation?
 - can I test MLR.5 statistically?
- \Box then we had another one:

MLR.6 (normality)

- this completes CLRM
- we needed MLR.6 for small-sample properties of OLS
- this is a technical thing, we won't be bothered with it anymore


How do I Find Out That MLR.5 Is Violated?

- there's a bunch of statistical tests to find out; all of them have their limitations
- we won't cover the theory behind them here (see Wooldridge, Chapter 8 for a thorough discussion)
- for now, just note that they all use the information about *u* that is contained in the *residuals* from OLS regression
- □ therefore, you always have to run the OLS regression first
- □ after you do so, Gretl offers you some of the most widely-used tests in Tests → Heteroskedasticity
 - □ in any of the tests, just look at the final *p*-value
 - the hypotheses are always like this:

H₀: homoskedasticity H₁: heteroskedasticity

 therefore, *p*-values less than 0.05 indicate a problem with heteroskedasticity

How do I Find Out That MLR.5 Is Violated?

What Should I Do If MLR.5 Is Violated?

- basically, there are two different approaches
 - 1. try and come up with a more sophisticated method than OLS (and, hopefully, a BLUE one)
 - one such method is the generalized least squares estimator (GLS), see Wooldridge, Chapter 8
 - 2. use OLS to estimate the model, but calculate the standard errors (and the resulting t-ratios and F-statistics) in a different way
 - the idea here is that even without MLR.5, OLS has many favorable properties (*unbiasedness* and some others)
 - the only thing that doesn't really work is the estimate of σ (with heteroskedasticity, there is no "universal" σ in the first place)
 - we needed this for standard errors and *p*-values, so we'll have to calculate these differently
- we won't cover the theory here (see Wooldridge, Chapter 8 for a thorough discussion)
- □ fortunately, all of this can be done in *Gretl* very easily

Heteroskedasticity-Robust Inference with OLS

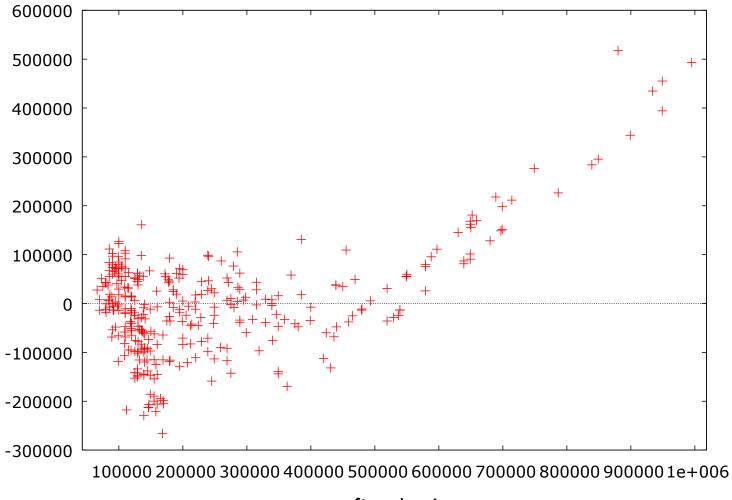
- 7
- □ I'll start with the second approach
- $\hfill\square$ I estimate the equation using OLS (Model \rightarrow Ordinary least squares), but use the Robust standard errors option:

gretl: specify model		
OLS		
const price bdrms lotsize sqrft colonial I_price I_lotsize I_sqrft	Dependent variable	
 Robust standard errors configure Help Clear OK		

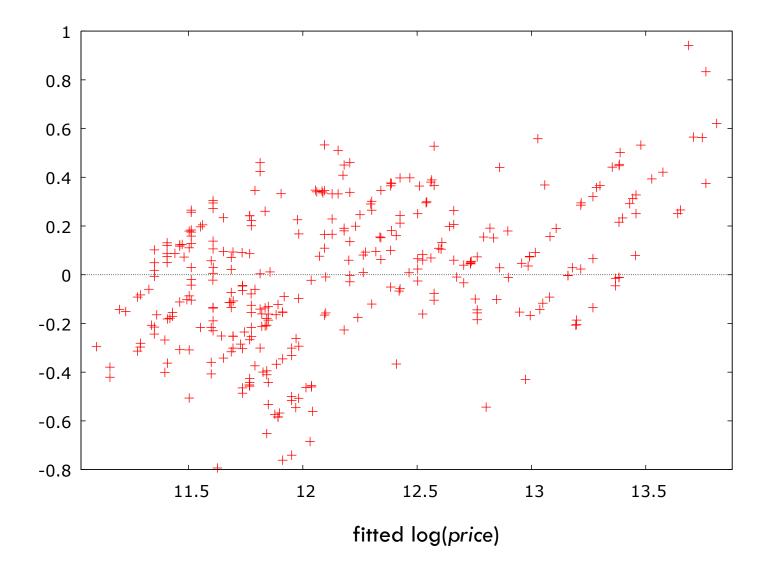
Heteroskedasticity-Robust Inference with OLS (cont'd)

 the only thing that differs is the last three columns in the table and the overall F-test, these were calculated differently; the rest is the same

📓 gretl: model 1	- 2 (B)				
<u>F</u> ile <u>E</u> dit <u>T</u> ests <u>S</u> ave <u>G</u> raphs <u>A</u> nalysis <u>L</u> aTeX					
Model 1: OLS, using observations 1-88 Dependent variable: 1_price Heteroskedasticity-robust standard errors, variant HC1					
	coefficient	std. error	t-ratio	p-value	
const	-1.34959	0.811580	-1.663	0.1001	
l lotsize	0.167819	0.0440357	3.811	0.0003	***
lsqrft	0.707193	0.109045	6.485	6.02e-09	***
bdrms	0.0268305	0.0327181	0.8201	0.4145	
colonial	0.0537962	0.0489041	1.100	0.2745	
Mean dependent	t var 5.633	180 S.D. de	pendent var	0.30353	73
Sum squared re	esid 2.813	624 S.E. of	regression	0.18411	17
R-squared	0.649	069 Adjuste	d R-squared	0.63215	57
	34.49				
Log-likelinoo					
Schwarz crite:	rion -30.85	211 Hannan-	Quinn	-38.2485	51
Log-likelihood for price = -469.1 Excluding the constant, p-value was highest for variable 2 (bdrms)					


Dependent variable: l_price					
	Ordinary SE	HC1 SE			
const	12.6** (0.0428)	12.6** (0.0409)			
km1000	-0.00148** (0.000264)	-0.00148** (0.000272)			
age	-0.110** (0.00695)	-0.110** (0.00679)			
combi	0.0899** (0.0235)	0.0899** (0.0278)			
diesel	0.165** (0.0241)	0.165** (0.0236)			
LPG	0.0521 (0.0610)	0.0521 (0.0809)			
octavia	0.564** (0.0250)	0.564** (0.0206)			
superb	1.07** (0.0510)	1.07** (0.0480)			

```
Dependent variable: price
```


```
...
Breusch-Pagan test for heteroskedasticity (robust variant) -
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 44.4887
with p-value = P(Chi-square(5) > 44.4887) = 1.84309e-008
White's test for heteroskedasticity -
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 65.9639
with p-value = P(Chi-square(16) > 65.9639) = 5.02484e-008
Dependent variable: l_price
...
```

```
Breusch-Pagan test for heteroskedasticity (robust variant) -
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 15.5747
with p-value = P(Chi-square(5) > 15.5747) = 0.00816946
```

```
White's test for heteroskedasticity -
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 29.9919
with p-value = P(Chi-square(16) > 29.9919) = 0.0180442
```


fitted price

GLS estimation

- 13
- $\hfill\square$ in order to run GLS estimation, use Other linear models \rightarrow Heteroskedasticity corrected)
- $\hfill\square$ the window looks just as with OLS:

📓 gretl: specify model		
Heteroskedasticity corrected		
const price bdrms lotsize sqrft colonial I_price I_lotsize I_sqrft	Dependent variable	
Help <u>C</u> lea	ar <u>C</u> ancel <u>O</u> K	

GLS estimation

 the *Gretl* output looks a bit different now; the results under the table (including the R-squared) have a slightly different interpretation

```
gretl: model 2
 File Edit Tests Save Graphs Analysis LaTeX
 Model 2: Heteroskedasticity-corrected, using observations 1-88
 Dependent variable: 1 price
             coefficient std. error t-ratio p-value
            -0.666843 0.631073 -1.057
                                              0.2937
   const
   1 lotsize 0.231019 0.0547308 4.221 6.18e-05 ***
            0.541765 0.0948327 5.713 1.69e-07 ***
  l sgrft
              0.0354503 0.0260389 1.361
  bdrms
                                              0.1771
  colonial
           0.0353411
                         0.0477197 0.7406 0.4610
 Statistics based on the weighted data:
 Sum squared resid 429.6738 S.E. of regression 2.275257
 R-squared
                 0.600115 Adjusted R-squared 0.580844
                  31.13994 P-value(F)
                                                7.83e-16
 F(4, 83)
 Log-likelihood -194.6369 Akaike criterion
                                               399.2738
 Schwarz criterion 411.6605 Hannan-Quinn
                                               404.2641
 Statistics based on the original data:
 Mean dependent var 5.633180 S.D. dependent var
                                                0.303573
 Sum squared resid 2.998114 S.E. of regression
                                                0.190058
 Excluding the constant, p-value was highest for variable 5 (colonial)
```

LECTURE 6: HETEROSKEDASTICITY

Jan Zouhar Introductory Econometrics