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 multiple regression = regression with multiple explanatory variables

 notation & terminology that we’ll use in all the formulas:

 k number of explanatory variables

 n number of observations

 y the explained (dependent) variable

 x1, x2, …, xk explanatory variables

 i subscript that indicates the observation number

 j subscript that indicates the explanatory variable

 xij the ith observation of xj

 if we regress y on x1, x2, …, xk, it means we work with the model

y = β0 + β1x1 + β2x2 + … + βkxk + u

 note: in literature, matrix/vector notation is heavily used in multiple 

regression. I’ll try to avoid it in this course. However, sometimes we’ll 

use the matrix symbol X to refer to all the available data on 

explanatory variables.
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Reason 1

 we’ve seen the motivation for multiple regression in our discussion of the 

omitted variable bias in the previous lecture

 if we need to estimate the effect of x on y, believing we have a problem 
with the x ← z → y relationship, we can solve the problem with 

regressing y on x and z rather than on x only

 primary drawback of the simple regression:

 statistics: breach of the E[u|x] = 0 assumption (SLR.4)

 economics: difficult to draw ceteris paribus conclusions about how x 

affects y (causal interpretation)

 multiple regression allows us to explicitly control for many other factors 

which simultaneously affect the dependent variable

 once we control for a factor, the ceteris paribus condition with respect to 

this factor is automatically fulfilled (see later)
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 example: wages vs. education

 imagine we want to measure the (causal) effect of an additional year 

of education on a person’s wage

 if we want to the model  wage = β0 + β1 educ + u and interpret β1 as 

the ceteris paribus effect of educ on wage, we have to assume that 

educ and u are uncorrelated (SLR.4)

 consider a different model now: wage = β0 + β1 educ + β2 exper + u, 

where exper is a person’s working experience (in years)

 since the equation contains experience explicitly, we will be able to 

measure the effect of education on wage, holding experience fixed

 this is still far from “complete” ceteris paribus, but we’re definitely 

getting closer

 we’ll still have to rule out the correlation between educ and u

 by including exper in our equation, we effectively pulled it out of u

 note that in the new model, our primary interest is still the value of 

β1, exper is only a control variable here
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Reason 2

 multiple regression analysis is also useful for generalizing functional 

relationships between variables

 example: consumption vs. income

 suppose family consumption (cons) is a quadratic function of family 

income (inc):

cons = β0 + β1 inc + β2 inc2 + u

 in reality, consumption is dependent on only one observed factor, 

income; formally, we can treat this as a linear regression model with 

two variables 

y = β0 + β1x1 + β2x2 + u

where  x1 = inc and  x2 = inc2.

 note that the interpretation of the coefficients has to be adjusted

 obviously, β1 is not the effect of a unit change in inc on cons now; it 

makes no sense to measure the effect of inc while holding inc2 fixed
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 as you’ll see, most of the properties of the simple regression model 

directly extend to the multiple regression case (perhaps even those you 

would not expect to)

→ basically, we’ll keep talking about the same principles

 we derived many of the formulas for the simple regression model; 

however, with multiple variables, formulas can get pretty messy

 therefore, I’ll just give you the results in most cases; most of the 

derivations can be found in Wooldridge or other textbooks

 as far as the interpretation of the model is concerned, there’s a new 

important fact:

 the coefficient βj captures the effect of jth explanatory variable, 

holding all the remaining explanatory variables fixed

 this is true even if we don’t have even a single pair of observations 

where “all the remaining explanatory variables” are identical

→ this brings us closer to the ceteris paribus setting used in laboratory 

experiments in natural sciences (see lecture 1)
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 recall that in simple regression, we derived the formulas for estimates in 

three different ways, taking on the descriptive, causal and forecasting

approach 

 we could do the same thing with multiple explanatory variables

 descriptive approach: conditional expectation:

E[y|x1,…,xn] = β0 + β1x1 + β2x2 + … + βkxk

 causal approach: structural model:

y = β0 + β1x1 + β2x2 + … + βkxk + u

 + assumptions about u: E[u|x1,…,xn] = 0

 forecasting approach: best fit of the

approximate relationship

0 1 1
ˆ ˆ ˆˆ k ky x x     

estimation using 

the idea of 

sample analogue

best fit using OLS
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 as in simple regression, the resulting estimates are identical

 similarly as before, we can define:

 population regression model:

 sample regression model:

 fitted values of y:

 residuals:

0 1 1i i k ik iy x x u      

0 1 1
ˆ ˆ ˆ– ˆˆi i i i i k iku y y y x x       

0 1 1
ˆ ˆ ˆ ˆi i k ik iy x x u      

0 1 1
ˆ ˆ ˆˆi i k iky x x     
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 sample analogue:

 from the population model (+ assumptions about u), we know

 the sample analogue of this is

 substituting                                                   gives you a system of k + 1 

linear equations with k + 1 unknowns

E

E

E

1

0

[ ] 0

[ ] 0k

u

x u

x u







1

1
1

1

0ˆ

0ˆ

0ˆ

in

i in

ik in

u

x u

x u













0 1
ˆ ˆ ˆ, , , .k  

0 1 1
ˆ ˆ ˆˆi i i k iku y x x      

normal equations
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 OLS:

 with OLS, we minimize the residual sum of squares, SSR

 as with a single variable, we have to set all partial derivatives to zero:

 we’re back at the same system of equations

 we won’t solve this explicitly here (this can only be done in matrix 
notation)

 instead, we’ll let Gretl do the job

0

1

0 1 1ˆ

1 0 1 1ˆ

0 1 1ˆ

ˆ ˆ ˆ2 ( ) 0

ˆ ˆ ˆ2 ( ) 0

ˆ ˆ ˆ2 ( ) 0
k

SSR
i i k ik

SSR
i i i k ik

SSR
ik i i k ik

y x x

x y x x

x y x x







  

  

  













      

      

      







ˆiu
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1. The sample average of the residuals is zero (see the first of normal 

equations). Consequently, sample average of the fitted values equals 

the sample average of y.

2. The sample covariance between each independent variable and the 

residuals is zero (see normal equations again). Consequently, the 

sample covariance between the fitted values and the residuals is zero.

3. The point                           always lies on the regression “line”, i.e.

(this follows immediately from 1).

1 1 1 1

0

( – )ˆ ˆ ˆ ˆi i i i in n n n

y

y y y u y u y       

1 1
0 1 11 1

1
0 1 11

0 0 0

ˆ ˆ ˆ( )ˆ ˆ ˆ

ˆ ˆ ˆ 0ˆ ˆ ˆ

i i i k ik in n

i i i k ik in

y u x x u

u x u x u

  

  

 



    

 
     
 
 

 

  

1 2( , , , , )ky x x x

0 1 1
ˆ ˆ ˆ

k ky x x     
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 recall that before we defined:

 total sum of squares (SST):

 explained sum of squares (SSE):

 residual sum of squares (SSR):

 we define them exactly the same way for the multiple regression model

 it is straightforward to show that once again

SST = SSE + SSR

 therefore, we can still use

 however, there is an interesting property here:

 what happens to the R2 when we add a regressor to the model?

2 2
1 1( )ˆ ˆn n

i i ii iSSR y y u    

 
2

1( )n
iiSST y y

 
2

1( )ˆn
iiSSE y y

2 1
SSE SSR

R
SST SST

  
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The effect of an additional regressor on R2

 intuitively, R2 should go up; we’ll show this is mathematically true

 imagine we estimate two regression models:

y = β0 + β1x1 + u (1)

y = γ0 + γ1x1 + γ2x2 + u (2)

 as we know, OLS tries to minimize SSRs in both models (we’ll denote 

them SSR1 and SSR2)

 let β0 and β1 be the OLS estimates of parameters in model (1)

 if in model (2) I take

I’ll have SSR1 = SSR2, and the R2’s will be equal

 unless x2 is completely useless in explaining y, OLS will come up with 

something better than me, resulting in a higher R2

0 0 1 1 2
ˆ ˆ, , 0,ˆ ˆ ˆ      

ˆiy ˆiy
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 economists sometimes like to choose models based on R2

(we’ll talk about this in more detail later on)

 this means that you’ll always end up adding more variables when 

comparing nested models

 because of this, econometricians came up with adjusted R-squared, 

which enables a comparison of nested models (even though this should 

be done with care)

Nested vs. non-nested models:

▪ nested models:

model 1: regress y on x1, x2

model 2: regress y on x1, x2, x3

▪ non-nested models:

model A: regress y on x1, x2

model B: regress y on x1, x3

x1 x2 x3

x1 x2 x3



Adjusted R-squared (     )

 the basic idea is to take R2 and penalize for additional regressors

 as I’ll be telling you, additional regressors can cause trouble especially 

when we have few observations → the correction has to account for this

 the resulting formula is

 as you can see,                unless  R2 = 1  (this is very unlikely) or k = 0 (no 

regressors) or n ≤ k + 1 (too few obs., but OLS doesn’t work then)

this is greater than 1 

and grows with k

Goodness of Fit (cont’d)
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2 2 1
1 (1 – )

1

n
R R

n k


  

 

2R

2 2R R

0 1R2R2–
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 consider a regression of y on x1, x2

 when we talked about the omitted variable bias, we saw that the bias 

in the estimate of β1 (when regressing y on x1 only) was due to the 

indirect effect x1 → x2 → y

 we would somehow like to show that this problem has been fixed here, 
that the path x1 → x2 → y has been “blocked” in       by adding x2

explicitly in the model, and that       contains only the direct effect
x1 → y

 in other words, we want to show that       captures the partial effect of 

x1 on y, after the effect of the other variables has been accounted for

x2

x1
y

1̂

1̂

indirect effect

direct effect

1̂
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 if I need to know the “net” effect of x1 with x2 being “partialled out”, I can 

proceed as follows:

1. first, I run the regression of x1 on x2, and save the residuals (I’ll 

denote these as    )

 the residuals represent whatever is left in x1 after we subtract all 

that x1 has in common with x2

2. next, I run the regression of y on 

 fortunately, the       from                        is numerically identical to      

from    (see Wooldridge, page 77), so that the latter 

is already “partialled out”

1̂ 0 1 1
ˆ ˆˆ ˆy r   1̂

0 1 1 2 2
ˆ ˆ ˆŷ x x    

x1

x2

1̂ry

1̂r

1̂r

x1 and x2 “have 

something in common” 

(are correlated)
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 imagine we estimate two regression models:

y = β0 + β1x1 + u

y = γ0 + γ1x1 + γ2x2 + u

 is it possible that       and       are identical?

 theoretically, yes, but one of the two situations would have to arise:

1. the partial effect of x2 on y is zero in the sample, i.e., 

2. x1 and x2 are uncorrelated in the sample

 in both cases, there’s no indirect effect (no x1 → x2 → y path)

x2

x1
y

x2

x1
y

no partial effect of x2 on y x1 and x2 uncorrelated

1̂ 1̂

2 0̂ 
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 now we’ll talk about some statistical properties of the OLS estimators

(i.e., expected values, variances, sampling distributions)

 remember that statistical properties have nothing to do with a 

particular sample, but rather with the property of estimators when 

random sampling is done

 again, we’ll need a set of assumptions about the model 

Assumption MLR.1 (linear in parameters) :

The population model can be written as

y = β0 + β1x1 + β2x2 + … + βkxk + u,

where β0, β1,…, βk are are the unknown parameters (constants) of 

interest, and u is an unobservable random error or random disturbance 

term.
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 note that SLR.3 was telling us that there is sample variation in x

 now, not only do we need variation in all explanatory variables, but we 

need them to vary separately

Assumption MLR.2 (random sampling):

We have a random sample of size n, (xi1 , xi2 ,…, xik , yi ), i = 1,…, n

following the population model defined in MLR.1.

Assumption MLR.3 (no perfect collinearity):

In the sample (and therefore in the population), none of the 

independent variables is constant, and there are no exact linear 

relationships among the independent variables.
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 estimating this equation clearly is a problem:

y = β0 + β1x + β2x + u

 this is the same as estimating 

y = β0 + β1x1 + β2x2 + u

where x1 = x2

 it doesn’t help if x1 and x2 are scaled differently: if x2 = cx1, we have  

y = β0 + β1x1 + (cβ2)x1 + u,

which is no better than before

 it doesn’t even help if x2 = cx1 + d, we’re back at the same problem:

y = (β0 + dβ2) + β1x1 + (cβ2)x1 + u,

 mostly, if you encounter a relationship like this in your data, you’ve done 

something wrong, such as estimating

log(cons) = β0 + β1log(inc)+ β2log(inc2) + u

 Quizz: what’s the problem with this equation?
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 note that this implies E[u|xj] = 0  for any j, i.e., all the explanatory 

variables are uncorrelated with u

 remember all the implications of this on causality issues

 again, we can’t test this assumption with statistical means

 possible violations

 correlation of xj and u (can be sometimes argued from outside)

 misspecification of the model form:

 omitting an important variable

 using the wrong functional form (using the level-level form instead 

of log-log or log-level etc.)

Assumption MLR.4 (zero conditional mean of u):

The error u has an expected value of zero, given any value of

the independent variables. In other words,  E[u|x1,…,xk] = 0.
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 for a proof, would need an explicit formula for     , which we haven’t 

derived here; then, the proof is similar as in the simple regression case

 note:

 we cannot use the unbiasedness property to say things like: “my 

estimate of β1, namely 3.5, is unbiased”

 unbiasedness = a property of the estimator, not the estimate!

 it tells us that if we collected multiple random samples, OLS doesn’t 

systematically overestimate or underestimate the real values

Theorem: Unbiasedness of OLS

Under the assumptions MLR.1 through MLR.4, the OLS estimators are 

unbiased. In other words, 

for any values of the population parameter βj .

E ˆ[ ] , 0,1, ,j j j k  

ˆ
j
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 suppose we regress y on x1 and x2, even though x2 has no partial effect on 

y in our population, i.e., β2 = 0 in the population model

y = β0 + β1x1 + β2x2 + u

 obviously, it’s not a clever thing to include x2 in the regression model, 

but sometimes we just don’t know x2 is irrelevant

 the question is, did we cause any harm to the estimate of β1?

 in terms of unbiasedness, the answer is no

 we know that all OLS estimates are unbiased for any values of β2, 

including zero

 note that we know that not including an important variable may 

cause a bias (omitted variable bias)

 however, including irrelevant variables (or overspecifying the model) 

reduces the accuracy of the estimated coefficients

 more precisely, including x2 in the equation above typically 

increases the sampling variance of      1̂
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 suppose we regress y on x1 and x2, even though x2 has no partial effect on 

y in our population, i.e., β2 = 0 in the population model

y = β0 + β1x1 + β2x2 + u

 obviously, it’s not a clever thing to include x2 in the regression model, 

but sometimes we just don’t know x2 is irrelevant

 the question is, did we cause any harm to the estimate of β1?

 in terms of unbiasedness, the answer is no

 we know that all OLS estimates are unbiased for any values of β2, 

including zero

 note that we know that not including an important variable may 

cause a bias (omitted variable bias)

 however, including irrelevant variables (or overspecifying the model) 

reduces the accuracy of the estimated coefficients

 more precisely, including x2 in the equation above typically 

increases the sampling variance of      1̂
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 in order to describe the variance nicely, we need another assumption

(note that MLR.1 through MLR.5 are collectively known as the Gauss-

Markov assumptions for cross-sectional regression)

Assumption MLR.5 (homoskedascticity):

Var[u|x1,…,xk] = σ2.

Theorem: Sampling variances of the OLS estimators

Under assumptions MLR.1 through MLR.5,

where  SSTj = Σ(xij – xj)
2 is the total sample variation in xj and Rj

2 is 

the R-squared from regressing xj on all other independent variables 

(and including an intercept).

var
2

1 2
ˆ[ | ,..., ] , 1, ,

(1 )
j k

j j

x x j k
SST R


  



–
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 note: for j = 1, the denominator in the formula for conditional variance 

contains SST and R2 from the regression of x1 on x2,…,xk (rather than 

from the “original” regression of y on the x’s; y plays no role here)

2

2(1 )j jSST R





If xj is uncorrelated with other independent variables, this R-squared is zero. With 

increasing correlation between the x’s, the accuracy of OLS estimators diminishes. The 

possible linear relationship between the x’s is called multicollinearity.

Remember that σ2 is the variance 

of the error term u. If the variance 

of u diminishes, the accuracy of 

OLS estimators grows.

What can help: adding explana-

tory variables (taking some factors 

out of u)

The more the total 

variation in xj , the more 

accurate the OLS estimates 

of βj will be.

What can help: adding 

more observations 

increases SSTj . 
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 it is obvious from the formula that for given σ2 and SSTj , the smallest 

variance of the OLS estimator is obtained when       is zero

 this happens if, and only if, xj has zero sample correlation between 

and every other explanatory variable

 remember that       tells us the fraction of xj’s sample variance that can 

be explained with a linear combination of the remaining x’s

 let’s make clear that we are not talking about exact linear relationship 

between the x’s (i.e., perfect multicollinearity), which is ruled out by 

MLR.3

 exact linear relationship means that e.g. xj can be expressed as a 

linear combination of the remaining x’s

 then,            , and the denominator in the variance formula is zero 

 in practice, violating MLR.3 is either due to an extremely bad luck in 

collecting the data, or (more likely) due to a mistake in putting up the 

model (see Exercise 4.2 in the tutorials)

2
jR

2
jR

2 1jR 
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 an       close to 1 does not violate MLR.3, but reduces the accuracy of 

 if the linear relationship between the xj and the remaining x’s gets 

stronger,       approaches 1 and the resulting              grows above all 

limits

 sometimes the expression              is called the variance inflation 

factor (VIFj) 

 this is the terminology that Gretl uses; the variance formula becomes:

 we can see that:

 questions:

 in my sample,                . Is it too much?

 what values of       indicate a problem with multicollinearity?

 there’s no clear answer (for instance, σ2 and SSTj matter as well)

2
jR

2
jR var ˆ[ ]j

2

1

1 jR

var
2

1
ˆ1 [ ]j jR VIF     

var
2

1
ˆ[ | ,..., ]j k j

j

x x VIF
SST


  

ˆ
j

2 0.83jR 
2
jR
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 the simple answer is: not quite

 remember that we can try to reduce the      variance by:

 adding more variables (reduces σ2): this can only make the collinearity

problem even worse

 adding more observations (increases SSTj): this typically doesn’t 

change       (but, on the other hand, it cannot do any harm either) 

 example: imagine we are interested in estimating the effect of various 

school expenditure categories (teacher salaries, instructional materials, 

athletics,…) on student performance

 it is likely that expenditures on the individual categories are highly 

correlated (wealthier schools spend more on everything)

 therefore, it will be difficult to separate the effect of a single category

 perhaps we are asking a question that may be too subtle for the 

available data to answer with any precision

 on the other hand, assessing the effect of total expenditures might be 

relatively simple (i.e., changing the scope of the analysis might help)

2
jR

ˆ
j



Multicollinearity: Is There a Way Out? (cont’d)

Jan ZouharIntroductory Econometrics

31

 on the other hand, sometimes we don’t really care about 

multicollinearity among the control variables

 example: in our wages vs. education exercise, we (more-or-less) 

developed the equation to estimate the returns to schooling

 we decided to regress wages on:

 education

 work experience

 age

 industry

 …

 we’re only really interested in βeducation; therefore, we don’t mind if the 

coefficients on the control variables are not quite precise

 the only thing that really matters is                 , multicollinearity 

among the control variables doesn’t spoil this

2
educationR

this is the key variable

control variables, needed for the model to 

be “correct”
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 as in the simple regression case, we want to estimate               or its 

square root,           , but the formula we know contains the variance of 

the random error, σ2

→ first, we need to estimate σ2:

 the logic behind this estimate is the same as with simple regression

 the term n – k – 1 is the degrees of freedom (df) of the regression:

df =  no. of observations   – no. of estimated parameters

var ˆ[ ]j

sd ˆ( )j

Theorem: Unbiased estimation of σ2

Under the Gauss-Markov assumptions MLR.1 through MLR.5,

is an unbiased estimator of σ2.

2
ˆ

1

SSR

n k
 

 
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 the square root of       is called the standard error of the regression

 it’s important to distinguish between the standard deviation and the 

standard error of 

 the standard deviation of      is the square root of the conditional 

variance of      (for brevity, we typically omit the conditioning in the 

formulas)

 the standard error of      is the thing we can calculate in practice

 this is the standard error reported by Gretl and other stat. packages 

 note: se relies on     ; therefore, se is a valid estimator of sd only if the 

homoskedasticity assumption is fulfilled

2̂

sd
2

1 2
ˆ( )

(1 )j jSST R


 



1̂

1̂

1̂

se
2

1 2

ˆˆ( )
(1 )j jSST R


 



1̂

2̂
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 Gauss-Markov theorem justifies the use of OLS for multiple regression; it 

states that OLS is, in certain sense, the best among possible competing 

estimators

 we already know one justification of OLS: under MLR.1 through 

MLR.2, OLS is unbiased

 however, many different unbiased estimators can be developed

 so what is it that makes OLS so good? intuitively, we would like the 

use the most accurate estimator; i.e., the estimator with the smallest 

variance

 the Gauss-Markov theorem shows that, within a certain class of 

unbiased estimators, OLS is the one that exhibits the smallest 

variance among all competing estimators

Theorem: Gauss Markov theorem.

Under the assumptions MLR.1 through MLR.5, OLS estimator is the best 

linear unbiased estimator (BLUE) of the regression coefficients. 
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 on the meaning of BLUE:

 Best:

 “best” actually means “the one with the lowest variance”

(or, more generally, the one with the lowest mean squared error)

 Linear:

 an estimator of multiple regression coefficients is linear, if the 

estimate of each of the regression coefficients can be calculated as a 

linear combination of the values of the dependent variable (y), i.e. 

there exist values wij, such that the estimate of βj equals

 OLS can be shown to be a linear estimator

 Unbiased

 i.e., the expected value of the estimate of βj is the real value βj

 Estimator

1
n

ij ii w y
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 the discussion of the OLS sampling distribution in multiple regression 

will be almost identical to the simple regression case 

 recall we need to know the sampling distribution of the estimates in 

order to carry out hypothesis testing (next lecture)

 we’ll start with the model satisfying the MLR.1 through MLR.5 

assumptions only; this will only allow for asymptotical (or large-sample) 

results

 for small samples, asymptotic analysis is useless; we’ll have to add the 

normality assumption as with simple regression



 once again, we’ll work with the standardized estimators:

 for small samples, we need an additional assumption:

Theorem: Asymptotic normality of the OLS estimators

Under the assumptions MLR.1 through MLR.5, as the sample size 

increases, the distributions of standardized estimators converge 

towards the standard normal distribution Normal(0,1).
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Assumption MLR.6 (normality):

The population error u is independent of the explanatory variables and 

is normally distributed with zero mean and variance σ2 :

u ~ Normal(0, σ2).

se

ˆ

ˆ( )

j j

j

 




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 MLR.6 implies both MLR.4 and MLR.5 (why?)

 a succinct way to put the population assumptions (all but MLR.2) is: 

y|x ~ Normal(β0 + β1 x1 + … + βk xk , σ2)

y

x1
x2

x3
x

PRF: E 0 1[ | ]y x x  

P
ro

b
(y

|
x
)

identical normal distributions
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 with MLR.6, we can derive exact (as opposed to asymptotical) sampling 

distribution of OLS:

 note: the last formula is especially important, as the standardized 

estimates can easily be computed, given a hypothesized value of βj

Theorem: Sampling distributions under normality.

Under the assumptions MLR.1 through MLR.6, conditional on the sample 

values of the explanatory variables,

which implies that                                                .

Moreover, it holds                                       (Student’s t distribution).

  sdˆ ˆ( ) Normal(0,1)j j j   

varˆ ˆNormal( , )j j j  

  se 1
ˆ ˆ( )j j j n kt     
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