Lecture 4: Multiple Regression

Jan Zouhar Introductory Econometrics

What is Multiple Regression?

- multiple regression = regression with multiple explanatory variables
- **notation & terminology** that we'll use in all the formulas:
 - number of explanatory variables
 - \square *n* number of observations
 - □ *y* the explained (dependent) variable
 - $x_1, x_2, ..., x_k$ explanatory variables
 - *i* subscript that indicates the *observation number*
 - *j* subscript that indicates the *explanatory variable*
 - x_{ij} the *i*th observation of x_i
 - if we **regress** y on $x_1, x_2, ..., x_k$, it means we work with the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

note: in literature, matrix/vector notation is heavily used in multiple regression. I'll try to avoid it in this course. However, sometimes we'll use the matrix symbol X to refer to all the available data on explanatory variables.

Introductory Econometrics

Jan Zouhar

Why Do We Need Multiple Regression?

Reason 1

- we've seen the motivation for multiple regression in our discussion of the omitted variable bias in the previous lecture
- □ if we need to estimate the effect of x on y, believing we have a problem with the $x \leftarrow z \rightarrow y$ relationship, we can solve the problem with regressing y on x and z rather than on x only
- □ primary drawback of the simple regression:
 - *statistics*: breach of the E[u | x] = 0 assumption (SLR.4)
 - *economics*: difficult to draw *ceteris paribus* conclusions about how *x* affects *y* (causal interpretation)
- multiple regression allows us to explicitly control for many other factors which simultaneously affect the dependent variable
- once we control for a factor, the *ceteris paribus* condition with respect to this factor is automatically fulfilled (see later)

Why Do We Need Multiple Regression? (cont'd)

□ **example**: wages vs. education

- imagine we want to measure the (causal) effect of an additional year of education on a person's wage
- if we want to the model wage = β₀ + β₁ educ + u and interpret β₁ as the *ceteris paribus* effect of *educ* on wage, we have to assume that *educ* and u are uncorrelated (SLR.4)
- consider a different model now: $wage = \beta_0 + \beta_1 educ + \beta_2 exper + u$, where *exper* is a person's working experience (in years)
 - since the equation contains experience explicitly, we will be able to measure the effect of education on wage, *holding experience fixed*
 - this is still far from "complete" *ceteris paribus*, but we're definitely getting closer
 - we'll still have to rule out the correlation between *educ* and *u*
 - by including *exper* in our equation, we effectively pulled it out of *u*
- note that in the new model, our primary interest is still the value of β₁, *exper* is only a *control variable* here

Reason 2

- multiple regression analysis is also useful for generalizing functional relationships between variables
- **example**: consumption vs. income
 - suppose family consumption (*cons*) is a quadratic function of family income (*inc*):

$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$

 in reality, consumption is dependent on only one observed factor, income; formally, we can treat this as a linear regression model with two variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

where $x_1 = inc$ and $x_2 = inc^2$.

- **note** that the interpretation of the coefficients has to be adjusted
- obviously, β_1 is not the effect of a unit change in *inc* on *cons* now; it makes no sense to measure the effect of *inc* while holding *inc*² fixed

Simple Regression vs. Multiple Regression

- 6
- as you'll see, most of the properties of the simple regression model directly extend to the multiple regression case (perhaps even those you would not expect to)

 \rightarrow basically, we'll keep talking about the same principles

- we derived many of the formulas for the simple regression model; however, with multiple variables, formulas can get pretty messy
- therefore, I'll just give you the results in most cases; most of the derivations can be found in Wooldridge or other textbooks
- as far as the interpretation of the model is concerned, there's a new important fact:
 - the coefficient β_j captures the effect of jth explanatory variable, holding all the remaining explanatory variables fixed
 - this is true even if we don't have even a single pair of observations where "all the remaining explanatory variables" are identical
 - \rightarrow this brings us closer to the *ceteris paribus* setting used in laboratory experiments in natural sciences (see lecture 1)

- 7
- recall that in simple regression, we derived the formulas for estimates in three different ways, taking on the *descriptive*, *causal* and *forecasting* approach
- □ we could do the same thing with multiple explanatory variables
 - *descriptive approach*: conditional expectation: $E[y | x_1,...,x_n] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$
 - causal approach: structural model:

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$

- + assumptions about u: $E[u | x_1, ..., x_n] = 0$
- *forecasting approach*: best fit of the approximate relationship

 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_L x_L$

estimation using - the idea of sample analogue

best fit using OLS

- \square as in simple regression, the resulting estimates are identical
- □ similarly as before, we can define:
 - **population regression model**:

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$$

sample regression model:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_k x_{ik} + \hat{u}_i$$

fitted values of *y*:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_k x_{ik}$$

residuals:

$$\hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}$$

Jan Zouhar

9

sample analogue:

• from the population model (+ assumptions about u), we know

```
E u = 0E[x_1 u] = 0\vdotsE[x_k u] = 0
```

• the sample analogue of this is

$$\frac{\frac{1}{n}\sum \hat{u}_{i} = 0}{\frac{1}{n}\sum x_{i1}\hat{u}_{i} = 0}$$

$$\vdots$$

$$\frac{1}{n}\sum x_{ik}\hat{u}_{i} = 0$$

$$hormal equations$$

u substituting $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \ldots - \hat{\beta}_k x_{ik}$ gives you a system of k + 1 linear equations with k + 1 unknowns $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$.

10

\Box OLS:

- with OLS, we minimize the residual sum of squares, SSR
- **a** as with a single variable, we have to set all partial derivatives to zero:

$$\begin{split} \frac{\partial SSR}{\partial \hat{\beta}_0} &= -2\sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}) = 0\\ \frac{\partial SSR}{\partial \hat{\beta}_1} &= -2\sum x_{i1}(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}) = 0\\ &\vdots\\ \frac{\partial SSR}{\partial \hat{\beta}_k} &= -2\sum x_{ik}(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}) = 0\\ && \hat{u}_i \end{split}$$

- we're back at the same system of equations
- we won't solve this explicitly here (this can only be done in matrix notation)
- instead, we'll let *Gretl* do the job

Introductory Econometrics

- 11
- 1. The sample average of the residuals is zero (see the first of *normal equations*). Consequently, sample average of the fitted values equals the sample average of *y*.

$$\overline{\hat{y}} = \frac{1}{n} \sum \hat{y}_i = \frac{1}{n} \sum (y_i - \hat{u}_i) = \underbrace{\frac{1}{n} \sum y_i}_{\overline{y}} - \underbrace{\frac{1}{n} \sum \hat{u}_i}_{0} = \overline{y}$$

2. The sample covariance between each independent variable and the residuals is zero (see *normal equations* again). Consequently, the sample covariance between the fitted values and the residuals is zero.

$$\frac{1}{n-1}\sum \hat{y}_{i}\hat{u}_{i} = \frac{1}{n-1}\sum (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i1} + \dots + \hat{\beta}_{k}x_{ik})\hat{u}_{i} =$$
$$= \frac{1}{n-1} \left(\hat{\beta}_{0}\sum \hat{u}_{i} + \hat{\beta}_{1}\sum x_{i1}\hat{u}_{i} + \dots + \hat{\beta}_{k}\sum x_{ik}\hat{u}_{i} \\ 0 \qquad 0 \qquad 0 \right) = 0$$

3. The point $(\bar{y}, \bar{x}_1, \bar{x}_2, ..., \bar{x}_k)$ always lies on the regression "line", i.e. $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + ... + \hat{\beta}_k \bar{x}_k$ (this follows immediately from 1).

- recall that before we defined:
 - total sum of squares (SST): $SST = \sum_{i=1}^{n} (y_i \overline{y})^2$
 - explained sum of squares (SSE): $SSE = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$
 - residual sum of squares (SSR):

$$SSE = \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}$$
$$SSR = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} \hat{u}_{i}^{2}$$

- $\hfill\square$ we define them exactly the same way for the multiple regression model
- □ it is straightforward to show that once again

$$SST = SSE + SSR$$

 \Box therefore, we can still use

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- □ however, there is an interesting property here:
 - what happens to the R^2 when we add a regressor to the model?

(cont'd)

The effect of an additional regressor on R^2

- □ intuitively, R^2 should go up; we'll show this is mathematically true
- imagine we estimate two regression models:

$$y = \beta_0 + \beta_1 x_1 \qquad + u \tag{1}$$

$$y = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + u$$
 (2)

- $\hfill\square$ as we know, OLS tries to minimize SSRs in both models (we'll denote them SSR_1 and SSR_2)
- □ let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the OLS estimates of parameters in model (1)
- □ if in model (2) I take

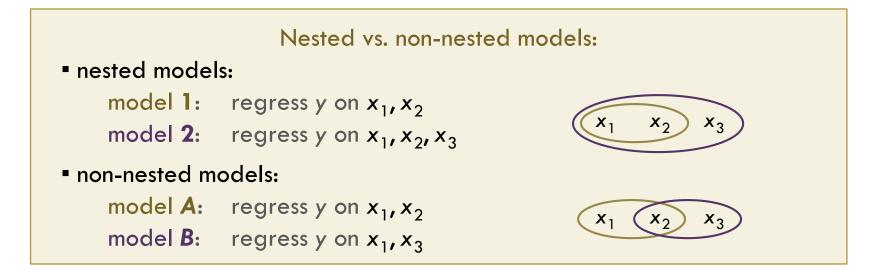
$$\hat{\gamma}_0 = \hat{\beta}_0, \quad \hat{\gamma}_1 = \hat{\beta}_1, \quad \hat{\gamma}_2 = 0,$$

I'll have $SSR_1 = SSR_2$, and the R^2 's will be equal

□ unless x_2 is completely useless in explaining y, OLS will come up with something better than me, resulting in a higher R^2

(cont'd)

- economists sometimes like to choose models based on R^2 (we'll talk about this in more detail later on)
- this means that you'll always end up adding more variables when comparing **nested models**



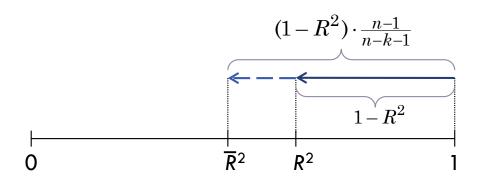
 because of this, econometricians came up with adjusted R-squared, which enables a comparison of nested models (even though this should be done with care)

14

Adjusted R-squared (\overline{R}^2)

- \Box the basic idea is to take R^2 and penalize for additional regressors
- □ as I'll be telling you, additional regressors can cause trouble especially when we have few observations \rightarrow the correction has to account for this
- \Box the resulting formula is

$$\overline{R}^2 = 1 - (1 - R^2) \cdot \frac{n - 1}{n - k - 1}$$
 this is greater than 1
and grows with k



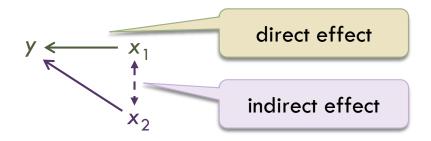
□ as you can see, $\overline{R}^2 < R^2$ unless $R^2 = 1$ (this is *very* unlikely) or k = 0 (no regressors) or $n \le k + 1$ (too few obs., but OLS doesn't work then)

Introductory Econometrics

Jan Zouhar

A "Partialling Out" Interpretation

- 16
- consider a regression of y on x_1 , x_2
 - when we talked about the omitted variable bias, we saw that the bias in the estimate of β_1 (when regressing *y* on x_1 only) was due to the indirect effect $x_1 \rightarrow x_2 \rightarrow y$

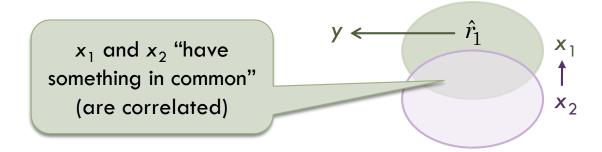


- we would somehow like to show that this problem has been fixed here, that the path $x_1 \to x_2 \to y$ has been "blocked" in $\hat{\beta}_1$ by adding x_2 explicitly in the model, and that $\hat{\beta}_1$ contains only the direct effect $x_1 \to y$
- □ in other words, we want to show that $\hat{\beta}_1$ captures the partial effect of x_1 on *y*, after the effect of the other variables has been accounted for

A "Partialling Out" Interpretation

(cont'd)

- □ if I need to know the "net" effect of x_1 with x_2 being "partialled out", I can proceed as follows:
 - 1. first, I run the regression of x_1 on x_2 , and save the residuals (I'll denote these as \hat{r}_1)
 - the residuals represent whatever is left in x₁ after we subtract all that x₁ has in common with x₂
 - 2. next, I run the regression of *y* on \hat{r}_1
- □ fortunately, the $\hat{\beta}_1$ from $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \hat{r}_1$ is numerically identical to $\hat{\beta}_1$ from $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$ (see Wooldridge, page 77), so that the latter is already "partialled out"



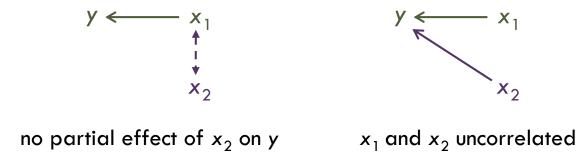
Simple Vs. Multiple Regression Estimates

18

imagine we estimate two regression models:

$$y = \beta_0 + \beta_1 x_1 + u$$
$$y = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + u$$

- \Box is it possible that $\hat{\beta}_1$ and $\hat{\gamma}_1$ are identical?
 - theoretically, yes, but one of the two situations would have to arise:
 - 1. the partial effect of x_2 on y is zero in the sample, i.e., $\hat{\gamma}_2 = 0$
 - 2. x_1 and x_2 are uncorrelated in the sample
 - in both cases, there's no indirect effect (no $x_1 \rightarrow x_2 \rightarrow y$ path)



The Expected Value of OLS Estimators

- 19
- now we'll talk about some statistical properties of the OLS estimators (i.e., expected values, variances, sampling distributions)
- remember that statistical properties have nothing to do with a particular sample, but rather with the property of estimators when random sampling is done
- □ again, we'll need a set of assumptions about the model

Assumption MLR.1 (linear in parameters) :

The population model can be written as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u,$$

where $\beta_0, \beta_1, \dots, \beta_k$ are are the unknown parameters (constants) of interest, and u is an unobservable random error or random disturbance term.

20

Assumption MLR.2 (random sampling):

We have a random sample of size n, $(x_{i1}, x_{i2}, ..., x_{ik}, y_i)$, i = 1, ..., n following the population model defined in MLR.1.

Assumption **MLR.3** (no perfect collinearity):

In the sample (and therefore in the population), none of the independent variables is constant, and there are no exact linear relationships among the independent variables.

- \Box note that SLR.3 was telling us that there is sample variation in *x*
- now, not only do we need variation in all explanatory variables, but we need them to vary *separately*

21

• estimating this equation clearly is a problem:

$$y = \beta_0 + \beta_1 x + \beta_2 x + u$$

□ this is the same as estimating

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

where $x_1 = x_2$

□ it doesn't help if x_1 and x_2 are scaled differently: if $x_2 = cx_1$, we have

$$y = \beta_0 + \beta_1 x_1 + (c\beta_2) x_1 + u,$$

which is no better than before

□ it doesn't even help if $x_2 = cx_1 + d$, we're back at the same problem:

$$y = (\beta_0 + d\beta_2) + \beta_1 x_1 + (c\beta_2) x_1 + u,$$

mostly, if you encounter a relationship like this in your data, you've done something wrong, such as estimating

$$\log(cons) = \beta_0 + \beta_1 \log(inc) + \beta_2 \log(inc^2) + u$$

 \Box Quizz: what's the problem with this equation?

Assumption **MLR.4** (zero conditional mean of u):

The error *u* has an expected value of zero, given any value of the independent variables. In other words, $E[u | x_1, ..., x_k] = 0$.

- □ note that this implies $E[u | x_j] = 0$ for any *j*, i.e., all the explanatory variables are uncorrelated with *u*
 - **•** remember all the implications of this on causality issues
- again, we can't test this assumption with statistical means
- possible violations
 - correlation of x_i and u (can be sometimes argued from outside)
 - misspecification of the model form:
 - omitting an important variable
 - using the wrong functional form (using the level-level form instead of log-log or log-level etc.)

Theorem: Unbiasedness of OLS

Under the assumptions MLR.1 through MLR.4, the OLS estimators are unbiased. In other words, $E[\hat{\beta}_i] = \beta_i, \quad j = 0, 1, ..., k$

for any values of the population parameter β_i .

- □ for a proof, would need an explicit formula for $\hat{\beta}_j$, which we haven't derived here; then, the proof is similar as in the simple regression case
- \square note:
 - we cannot use the unbiasedness property to say things like: "my estimate of β₁, namely 3.5, is unbiased"
 - unbiasedness = a property of the *estimator*, not the *estimate*!
 - it tells us that if we collected multiple random samples, OLS doesn't systematically overestimate or underestimate the real values

- 24
- suppose we regress y on x_1 and x_2 , even though x_2 has no partial effect on y in our population, i.e., $\beta_2 = 0$ in the population model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

- obviously, it's not a clever thing to include x_2 in the regression model, but sometimes we just don't know x_2 is irrelevant
- □ the question is, did we cause any harm to the estimate of β_1 ?
 - □ in terms of *unbiasedness*, the answer is *no*
 - we know that all OLS estimates are unbiased for *any values of* β_2 , including zero
 - note that we know that *not including* an important variable may cause a bias (*omitted variable bias*)
 - however, including irrelevant variables (or *overspecifying the model*) reduces the *accuracy* of the estimated coefficients
 - more precisely, including x_2 in the equation above typically increases the sampling variance of $\hat{\beta}_1$

- 25
- suppose we regress y on x_1 and x_2 , even though x_2 has no partial effect on y in our population, i.e., $\beta_2 = 0$ in the population model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

- obviously, it's not a clever thing to include x_2 in the regression model, but sometimes we just don't know x_2 is irrelevant
- □ the question is, did we cause any harm to the estimate of β_1 ?
 - □ in terms of *unbiasedness*, the answer is *no*
 - we know that all OLS estimates are unbiased for *any values of* β_2 , including zero
 - note that we know that *not including* an important variable may cause a bias (*omitted variable bias*)
 - however, including irrelevant variables (or *overspecifying the model*) reduces the *accuracy* of the estimated coefficients
 - more precisely, including x_2 in the equation above typically increases the sampling variance of $\hat{\beta}_1$

The Variance of the OLS Estimators

- 26
- in order to describe the variance nicely, we need another assumption (note that MLR.1 through MLR.5 are collectively known as the Gauss-Markov assumptions for cross-sectional regression)

Assumption **MLR.5** (homoskedascticity):

 $\operatorname{Var}[\boldsymbol{u} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_k] = \sigma^2.$

Theorem: Sampling variances of the OLS estimators

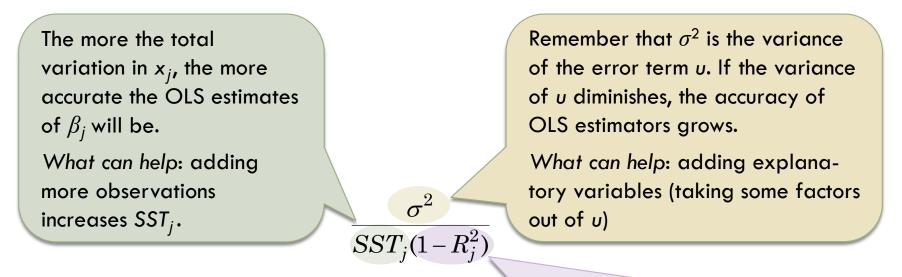
Under assumptions MLR.1 through MLR.5,

$$\operatorname{var}[\hat{\beta}_{j} | x_{1},...,x_{k}] = \frac{\sigma^{2}}{SST_{j}(1-R_{j}^{2})}, \quad j = 1,...,k$$

where $SST_j = \Sigma (x_{ij} - \overline{x}_j)^2$ is the total sample variation in x_j and R_j^2 is the R-squared from regressing x_j on all other independent variables (and including an intercept).

The Variance of the OLS Estimators

□ *note*: for j = 1, the denominator in the formula for conditional variance contains *SST* and *R*² from the regression of x_1 on $x_2,...,x_k$ (rather than from the "original" regression of y on the x's; y plays no role here)



If x_j is uncorrelated with other independent variables, this R-squared is zero. With increasing correlation between the x's, the accuracy of OLS estimators diminishes. The possible linear relationship between the x's is called **multicollinearity**.

27

Multicollinearity

- 28
- □ it is obvious from the formula that for given σ^2 and SST_j , the smallest variance of the OLS estimator is obtained when R_j^2 is zero
 - this happens if, and only if, x_j has zero sample correlation between and *every other* explanatory variable
- □ remember that R_j^2 tells us the fraction of x_j 's sample variance that can be explained with a linear combination of the remaining *x*'s
- let's make clear that we are not talking about *exact* linear relationship between the *x*'s (i.e., *perfect multicollinearity*), which is ruled out by MLR.3
 - exact linear relationship means that e.g. x_j can be expressed as a linear combination of the remaining x's
 - then, $R_i^2 = 1$, and the denominator in the variance formula is zero
 - in practice, violating MLR.3 is either due to an *extremely* bad luck in collecting the data, or (more likely) due to a mistake in putting up the model (see Exercise 4.2 in the tutorials)

Multicollinearity

- \square an R_j^2 close to 1 does not violate MLR.3, but reduces the accuracy of $\hat{\beta}_j$
- □ if the linear relationship between the x_j and the remaining x's gets stronger, R_j^2 approaches 1 and the resulting $var[\hat{\beta}_j]$ grows above all limits
- □ sometimes the expression $\frac{1}{1-R_j^2}$ is called the **variance inflation** factor (*VIF_j*)
 - this is the terminology that *Gretl* uses; the variance formula becomes:

$$\operatorname{var}[\hat{\beta}_j \mid x_1, \dots, x_k] = \frac{\sigma^2}{SST_j} \cdot VIF_j$$

- $\square \text{ we can see that: } R_j^2 \to 1 \implies VIF_j \to \infty \implies \operatorname{var}[\hat{\beta}_1] \to \infty$
- \Box questions:
 - in my sample, $R_j^2 = 0.83$. Is it too much?
 - what values of R_i^2 indicate a problem with multicollinearity?
- □ there's no clear answer (for instance, σ^2 and SST_j matter as well)

Multicollinearity: Is There a Way Out?

- 30
- the simple answer is: *not quite*
- □ remember that we can try to reduce the $\hat{\beta}_j$ variance by:
 - *adding more variables* (reduces σ²): this can only make the collinearity problem even worse
 - *adding more observations* (increases SST_j): this typically doesn't change R_j^2 (but, on the other hand, it cannot do any harm either)
- example: imagine we are interested in estimating the effect of various school expenditure categories (teacher salaries, instructional materials, athletics,...) on student performance
 - it is likely that expenditures on the individual categories are highly correlated (wealthier schools spend more on everything)
 - therefore, it will be difficult to separate the effect of a single category
 - perhaps we are asking a question that may be too subtle for the available data to answer with any precision
 - on the other hand, assessing the effect of total expenditures might be relatively simple (i.e., changing the scope of the analysis might help)

Multicollinearity: Is There a Way Out?

(cont'd)

- on the other hand, sometimes we don't really care about multicollinearity among the **control variables**
 - **example**: in our wages vs. education exercise, we (more-or-less) developed the equation to estimate the returns to schooling

 \longrightarrow this is the key variable

- we decided to regress *wages* on:
 - education
 - work experience
 - age
 - industry

control variables, needed for the model to be "correct"

- • • •
- we're only really interested in $\beta_{education}$; therefore, we don't mind if the coefficients on the control variables are not quite precise
- the only thing that really matters is $R^2_{education}$, multicollinearity among the control variables doesn't spoil this

31

Estimating Standard Errors of the OLS Estimators

32

- as in the simple regression case, we want to estimate $var[\hat{\beta}_j]$ or its square root, $sd(\hat{\beta}_j)$, but the formula we know contains the variance of the random error, σ^2
- \rightarrow first, we need to estimate σ^2 :

Theorem: Unbiased estimation of σ^2

Under the Gauss-Markov assumptions MLR.1 through MLR.5,

$$\hat{\sigma}^2 = \frac{SSR}{n-k-1}$$

is an unbiased estimator of σ^2 .

the logic behind this estimate is the same as with simple regression
 the term n - k - 1 is the **degrees of freedom** (*df*) of the regression:
 df = no. of observations - no. of estimated parameters

- 33
- the square root of $\hat{\sigma}^2$ is called the **standard error of the regression**
- it's important to distinguish between the standard deviation and the standard error of $\hat{\beta}_1$
 - the standard deviation of $\hat{\beta}_1$ is the square root of the conditional variance of $\hat{\beta}_1$ (for brevity, we typically omit the conditioning in the formulas)

$$\operatorname{sd}(\hat{\beta}_1) = \sqrt{\frac{\sigma^2}{SST_j(1 - R_j^2)}}$$

• the standard error of $\hat{\beta}_1$ is the thing we can calculate in practice

$$\operatorname{se}(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}}$$

- **•** this is the standard error reported by *Gretl* and other stat. packages
- note: se relies on $\hat{\sigma}^2$; therefore, se is a valid estimator of sd only if the homoskedasticity assumption is fulfilled

Gauss-Markov Theorem

- 34
- Gauss-Markov theorem justifies the use of OLS for multiple regression; it states that OLS is, in certain sense, the best among possible competing estimators
 - we already know one justification of OLS: under MLR.1 through MLR.2, OLS is *unbiased*
 - however, many different unbiased estimators can be developed
 - so what is it that makes OLS so good? intuitively, we would like the use the most *accurate* estimator; i.e., the estimator with the smallest variance
 - the Gauss-Markov theorem shows that, within a certain class of unbiased estimators, OLS is the one that exhibits the smallest variance among all competing estimators

Theorem: Gauss Markov theorem.

Under the assumptions MLR.1 through MLR.5, OLS estimator is the **best linear unbiased estimator** (BLUE) of the regression coefficients.

- $\hfill\square$ on the meaning of BLUE:
 - **B**est:
 - "best" actually means "the one with the lowest variance" (or, more generally, the one with the lowest mean squared error)
 - **L**inear:
 - an estimator of multiple regression coefficients is linear, if the estimate of each of the regression coefficients can be calculated as a *linear combination of the values of the dependent variable* (y), i.e. there exist values w_{ii}, such that the estimate of β_i equals

$$\sum_{i=1}^{n} w_{ij} y_i$$

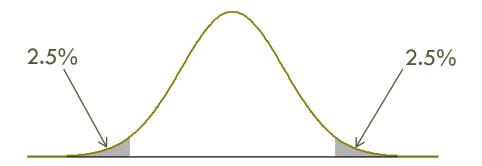
- OLS can be shown to be a linear estimator
- **U**nbiased
 - i.e., the expected value of the estimate of β_i is the real value β_i

Estimator

35

Sampling Distribution of the OLS Estimator

- 36
 - the discussion of the OLS sampling distribution in multiple regression will be almost identical to the simple regression case
 - recall we need to know the sampling distribution of the estimates in order to carry out hypothesis testing (next lecture)



- we'll start with the model satisfying the MLR.1 through MLR.5 assumptions only; this will only allow for *asymptotical* (or *large-sample*) results
- for small samples, asymptotic analysis is useless; we'll have to add the normality assumption as with simple regression

Sampling Distribution of the OLS Estimator (cont'd)

37

once again, we'll work with the standardized estimators:

Theorem: Asymptotic normality of the OLS estimators

Under the assumptions MLR.1 through MLR.5, as the sample size increases, the distributions of standardized estimators converge towards the standard normal distribution *Normal*(0,1).

□ for small samples, we need an additional assumption:

```
Assumption MLR.6 (normality):
```

The population error *u* is *independent* of the explanatory variables and is normally distributed with zero mean and variance σ^2 :

 $u \sim Normal(0, \sigma^2).$

Sampling Distribution of the OLS Estimator (cont'd)

- 38
- □ MLR.6 implies both MLR.4 and MLR.5 (why?)
- $\hfill\square$ a succinct way to put the population assumptions (all but MLR.2) is:

$$y \mid x \sim \text{Normal}(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k, \sigma^2)$$



Sampling Distribution of the OLS Estimator (cont'd)

- 39
- with MLR.6, we can derive *exact* (as opposed to *asymptotical*) sampling distribution of OLS:

Theorem: Sampling distributions under normality.

Under the assumptions MLR.1 through MLR.6, conditional on the sample values of the explanatory variables,

 $\hat{\beta}_j \sim \operatorname{Normal}(\beta_j, \operatorname{var} \hat{\beta}_j)$

which implies that $(\hat{\beta}_j - \beta_j)/\operatorname{sd}(\hat{\beta}_j) \sim \operatorname{Normal}(0,1)$.

Moreover, it holds $(\hat{\beta}_j - \beta_j)/se(\hat{\beta}_j) \sim t_{n-k-1}$ (Student's *t* distribution).

□ *note*: the last formula is especially important, as the standardized estimates can easily be computed, given a *hypothesized value* of β_i

Lecture 4: Multiple Regression

Jan Zouhar Introductory Econometrics