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Population vs. sample regression function.

Residuals and their properties.

Goodness of fit.

Algebraic Properties of OLS Statistics
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Population Vs. Sample Regression Function
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 population regression function (PRF):
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Population Vs. Sample Regression Function (cont’d)
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 sample regression function (SRF):
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Goodness of Fit
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 we want to say something about how well the model fits our data

(the goal is to end up with a single number, ideally expressed as a 

percentage)

 we will make use of the following three things:

 total sum of squares (SST)

 explained sum of squares (SSE)

 residual sum of squares (SSR)
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Goodness of Fit (cont’d)
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 important algebraic identity:   SST = SSR + SSE  (we’ll prove this later)

 this gives us a really nice way of describing the goodness of fit of the 

model

 R-squared of the regression (or the coefficient of determination):

 properties of R2 :

 0 ≤ R2 ≤ 1

 R2 = 1 only if SSR = 0, which means that all residuals are zero, and 

all observations lie exactly on the regression line

 R2 = 0 only if SSE = 0, which implies that
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Interpretation of R-squared:

R2 is the fraction of the sample variation in y that is explained by x.



Goodness of Fit (cont’d)
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Proof of the identity  SST = SSR + SSE

 first remember that we know something about the residuals (see 

previous lecture):

 it follows from these properties that                   and 

 e.g., 

 now we’ll use this to show SST = SSR + SSE
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Changing units of measurement.

Functional form of regression models.

Units and Functional Form
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Changing the Units of Measurement
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 in the CEO example, we ended up with the following equation: 

salary = 963.191 + 18.501 roe

 it’s crucial to know the units of measurement in order to interpret the 

equation

 it’s good to know that if we change the units of measurement, the 

estimated coefficients change in a completely natural way

 if we regress salardol = 1,000salary on  roe (which means we express 

CEOs’ salary in dollars), we obtain

salardol = 963,191 + 18,501 roe

 if we now express roe in decimals rather than percentage points, 

defining roedec = 0.01 roe, we get

salardol = 963,191 + 1,850,100 roedec,

because 18,501 roe = 1,850,100 roedec

 note that the interpretation of both slope and intercept remains the 

same in all cases



Linear in parameters                       Non-linear in parameters

Functional Form

Jan ZouharIntroductory Econometrics

10

 so far, we have only dealt with a linear relationship between x and y

 this is really not as strong an assumption as you might think because we 

can pick x and y to be whatever we want

 as we’ve seen, changing the units doesn’t change anything; however, we 

can pick a non-linear unit transform

 example:     E[ log(wage) | educ ] = β0 + β1 educ

E[    y    |    x    ] = β0 + β1    x  1

→ this is still considered to be a linear regression model; the word linear

actually means linear in parameters
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Functional Form (cont’d)
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 which one of the following types of relationships seems more plausible:

 with each additional year of education, a person’s monthly wage 

increases by €50

 with each additional year of education, a person’s monthly wage 

increases by 5%

 “5% each year” means:

 if we denote  E[wage|educ = 0] as w, then

E[wage|educ = 1] = w×1.05

E[wage|educ = 2] = w×1.052

E[wage|educ = 3] = w×1.053

……

E[wage|educ] = w×1.05educ

 let’s generalize this type of relationship with parameters β0 and β1

1e
0e





 this brings us to the relationship E[wage|educ] = exp(β0 + β1 educ)

 let’s focus on the meaning of  β1 now

 in the five-percent-a-year example, we had  exp(β1) = 1.05

 for β1 , this gives us                                  ,                       thus 

 this can be generalized:  for a small β1, it holds

 therefore, β1 tells us the (expected) percentage change in wage with 

an additional year of education

0.049 0.051.05 e e 

Functional Form (cont’d)
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Functional Form (cont’d)
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 note that wage = exp(β0 + β1 educ)     ↔     log(wage) = β0 + β1 educ

 logarithm transform is one of the basic econometric tools 

 the rule to remember: taking the log of one of the variables means we 

shift from absolute changes to relative changes:

 constant elasticity model:  log y = β0 + β1 log x + u

 x-elasticity of y:

regression function interpretation of β1

y = β0 + β1x Δy = β1Δx

log y = β0 + β1x %Δy = (100 β1) Δx

y = β0 + β1log x Δy = (0.01 β1) %Δx

log y = β0 + β1log x %Δy = β1%Δx

log %
1 , log %

y y yx
y x x x y x

E   

  
    



Model 1: OLS, using observations 1-209

Dependent variable: salary

coefficient std. error   t-ratio   p-value 

--------------------------------------------------------

const 963.191 213.240      4.517    1.05e-05 ***

roe 18.5012 11.1233     1.663    0.0978   *

Mean dependent var 1281.120 S.D. dependent var 1372.345

Sum squared resid 3.87e+08 S.E. of regression   1366.555

R-squared            0.013189 Adjusted R-squared   0.008421

F(1, 207)            2.766532   P-value(F)           0.097768

Log-likelihood      -1804.543   Akaike criterion     3613.087

Schwarz criterion    3619.771   Hannan-Quinn         3615.789

SSR

Gretl Output: An Overview
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OLS estimates as realizations of random 

variables.

Mean and variance of the OLS estimator.

Classical Linear Regression

Jan Zouhar

15

Introductory Econometrics



A Note on Where We’re Heading…
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 as you’ve seen, we’ve only covered a small part of the Gretl output yet

 gradually, we’ll build up the theory behind the following parts:

 all of this tells us something about hypotheses tests about the β ’s

(this is important for empirical verification of economic theories) 

Model 1: OLS, using observations 1-209

Dependent variable: salary

coefficient   std. error   t-ratio   p-value

--------------------------------------------------------

const       963.191       213.240      4.517    1.05e-05 ***

roe          18.5012       11.1233     1.663    0.0978   *

Mean dependent var 1281.120   S.D. dependent var 1372.345

Sum squared resid 3.87e+08   S.E. of regression   1366.555

R-squared            0.013189   Adjusted R-squared   0.008421

F(1, 207)            2.766532   P-value(F)           0.097768

Log-likelihood      -1804.543   Akaike criterion     3613.087

Schwarz criterion    3619.771   Hannan-Quinn         3615.789



OLS Estimator as a Random Variable
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 in our previous discussion, we always tried to estimate a population 

regression function based on a (random) sample of the population

 we believe there are real (population) values of β0 and β1 out there

 however, we always end up with only their estimates β0 and β1

 the value of these estimates depends on the specific sample we get the 

data for → if we go and collect another sample, we’ll have different 

estimates

→ because of random sampling, β0 and β1 can be treated as random 

variables; the eventual values that we obtain are their realizations

 note the difference between estimators (the RVs) and estimates

(eventual values)

 it’s quite natural to ask questions like:

 are my estimates accurate enough? What level of imprecision should I 

count with?

 is the OLS estimator unbiased? Or is it possible that, on average, the 

estimates tend to overrate/underrate the intercept/slope?

ˆiy ˆiy

ˆiy ˆiy
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Wages vs. height in a (fictitious) population – complete data
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Population regression function
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Typically, we only know one sample
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SRF vs PRF
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. . .sample 1 sample 2 sample 106

. . .

1
ˆ 3.53β  1

ˆ 5.76β 
1
ˆ 4.71β 

Sample

1 3.53

2 5.76

106 4.71

Mean 5.040

SD 1.438

1
β̂

... ...

Sampling distribution of 1
β̂
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OLS Estimator as a Random Variable (cont’d)

Jan ZouharIntroductory Econometrics

26

 if we translate these questions into the RV framework, we’ll be asking 

about the variance and mean of β0 and β1

 so far, it hasn’t really made a difference whether we took the descriptive, 

causal or predictive approach

 the estimates were the same, and so were their algebraic properties

 the discussion about units and functional form were not related to all 

of this

 the goodness of fit wasn’t either

 in order to say something about the properties of RVs β0 and β1, we need 

to make some assumptions about the population and the sample

 these will be mostly in line with the causal model

(note that the causal model was the one with the most assumptions)

 e.g., the simple descriptive approach doesn’t really work with the 

respective part of the Gretl output (!)

 the set of assumptions (SLR.1 through SLR.6) we’ll introduce is often 

referred to as the classical linear regression model (CLRM)

ˆiy ˆiy

ˆiy ˆiy



Assumptions of CLRM
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 we’ll introduce assumptions SLR.1 to SLR.4

(“SLR” stands for simple linear regression) 

 notice that in making this assumption we have really moved to the 

“structural world” 

 we are really saying that this is the actual data-generating process 

and our goal is to uncover the true parameters

Assumption SLR.1 (linear population model) :

In the population model, the dependent variable y is related to the 

independent variable x and the error (or disturbance) u as

y = β0 + β1x + u

where β0 and β1 are the population intercept and slope

parameters, respectively.



Assumptions of CLRM (cont’d)
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 not all cross-sectional samples can be viewed as outcomes of random 

samples, but many can be

 with time series, we’ll have to put things differently

 the next assumption effectively allows us to estimate the model

Assumption SLR.2 (random sampling):

We have a random sample of size n, (xi , yi ), i = 1,…, n

following the population model defined in SLR.1.

Assumption SLR.3 (sample variation in the explanatory variable):

The sample outcomes on x, namely {xi , i = 1,…, n}, are not all

the same value.



Assumptions of CLRM (cont’d)
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 technically, the denominator for β1 is                      , which would be zero 

if SLR.3 didn’t hold

 in other words, how would you estimate the slope here:

 note: in practical applications, SLR.3 always holds

educ

wage

13

2
1( )n

ii x x ˆiy



Assumptions of CLRM (cont’d)
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 as you know, this assumption is the crucial one for causal interpretation; 

at the same time, we need it in order to derive the theoretical properties 

of the OLS estimator

 as I’ve already noted, we make this assumption without being able to 

check it by statistical means

 therefore, in applications, its validity has to be argued from outside

(economic theories, common sense)

 in practice, this means we have to rule out the y → x and y ← z → x

causation schemes (see lecture 2 for more details)

 note that for our random sample, SLR.4 implies  E[ui|x1,…,xn] = 0

 we’ll use the shorthand notation x for x1,…,xn (e.g., E[ui|x] = 0)

Assumption SLR.4 (zero conditional mean of u):

The error u has an expected value of zero given any value of

the explanatory variable. In other words,  E[u|x] = 0.



Mean of the OLS Estimator

Jan ZouharIntroductory Econometrics

31

 you already know that under the assumption of random sampling 

(SLR.2), β0 and β1 can be treated as RVs

 our goal now is to find         and    

 a short preview:

 somehow, we want to use the assumption that E[u|x] = 0

 this, however, can apply only when speaking about conditional 

expectations of the estimates

 therefore, we’ll first learn something about                and    

 then we’ll use the law of iterated expectations (see our Exercise 1.13b

or Wooldridge, page 687) which tells us

 we’ll start with 

 in order to use the assumption above, we need to express       using u
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A Note on the Law of Iterated Expectations
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 an analogy to the following population problem

 for simplicity, education classified into three categories

 the average wage in the population:

500 × .20  +  700 × .50  +  800 × .30

 or, in words, the weighted average, E(⋅), of the average wage in 

individual categories, E[wage|educ]

 E E E( ) [ | ]wage wage educ

education low medium high

average wage 500 700 800

% of the population 20 50 30



 I won’t show all the algebra behind it here (see Wooldridge, pages 49–50 

for details, or try to derive it yourselves), but the idea is:

 now we’re ready to take the conditional expectation of      and use SLR.4
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Mean of the OLS Estimator (cont’d)
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We substitute SLR.1 into the OLS formula…         …to finish with this:

OLS:

SLR.1:

1̂

0

0

given x, all of this is constant



Mean of the OLS Estimator (cont’d)
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 we have                      , and the law of iterated expectations tells us

 this tells us that the OLS estimator is unbiased = it doesn’t 

systematically overestimate/underestimate the true parameters

 obviously, unbiasedness is a nice property

 however, it is only a feature of the sampling distributions of β0 and β1  

which says nothing about the estimate that we obtain for a given 

sample

 we hope that, if the sample we obtain is somehow “typical,” then our 

estimate should be “near” the population value

 from here, it’s easy to show the unbiasedness of      :

 first, note that                              (just averaging across the sample)

 therefore, 

 and finally
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Mean of the OLS Estimator (cont’d)
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 revision: what did we need to show unbiasedness?

 we started with SLR.1 and the OLS formula to get

 note that in here, SLR.3 was implicitly used (no SLR.3, no slope)

 then we needed SLR.2 and SLR.4:

 …and finally we used the law of iterated expectations

→ to sum up, we needed all four SLR assumptions

 even though one can sometimes doubt the validity of SLR.1 (linear

population relationship) or SLR.2 (true random sampling), SLR.4 is 

typically the most the problematic one
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Example: Math Performance Vs. Lunch Program
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 suppose we wish to estimate the effect of the federally funded school 

lunch program on student performance. If anything, we expect the lunch 

program to have a positive ceteris paribus effect on performance: all 

other factors being equal, if a student who is too poor to eat regular 

meals becomes eligible for the school lunch program, his or her 

performance should improve.

 math10 the percentage of tenth graders at a high school receiving

a passing score on a standardized mathematics exam

 lnchprg the percentage of students who are eligible for the lunch

program

1. Open the lunch.gdt data file and regress math10 on lnchprg.

2. Do you think the estimated effect if lunch program is causal?

3. Or, do you think that the estimate is biased? Why? Explain why one of 

the SLR assumptions is violated.

4. Suppose an estimator exhibits a downward bias. Is it possible that our 

eventual estimate will be higher than the population parameter?



Accuracy of OLS Estimates, Efficiency
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 so far, we have only dealt with the mean value of our estimates

 we know that with OLS there’s no bias, which means that on average, 

OLS doesn’t overestimate/underestimate the true parameters

 it’s good to know what happens on average, but normally we’re only 

given one shot

 unbiasedness actually tells us nothing about the accuracy of the 

estimates

 a good measure of accuracy (actually, the most widely-used one) is the 

variance of the estimates

 if two estimates (A and B) are both unbiased, and var A < var B, then A

is taken as the better of the two (more accurate)

 we can also say that A is more efficient (we’ll have a more detailed 

discussion on the efficiency of estimates later on)

 in order to be able to derive a nice formula for the variance of the OLS

estimator, we need to adopt one more assumption about the variance

of u



Homoskedasticity
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 as with the conditional expectation of u (SLR.4), SLR.5 implies two 

things:

1. var[u|x] is constant (not varying with x)

2. var u = σ2, i.e. the unconditional variance of u is σ2

 note that once we know x, the only thing that can make y change is u

(our model is  y = β0 + β1x + u, so u is the only non-constant term on the 

right-hand side once x is known)

 therefore, we can also re-write SLR.5 as  var[y|x] = σ2

 this is typically easier to interpret

Assumption SLR.5 (homoskedasticity):

Variance of u does not vary with x. More precisely, var[u|x] = σ2.



Homoskedasticity (cont’d)
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 a model satisfying our assumptions might look as follows

 the conditional distributions of y have the same “width” (SLR.5) and 

are centered about the PRF (SLR.4), which is linear (SLR.1)

y

x1
x2

x3
x

PRF: E 0 1[ | ]y x x  p
ro

b
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|
x
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Homoskedasticity (cont’d)
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 here, SLR.5 is violated:  var[y|x]  changes with x

 we call this heteroskedasticity

 note: the remaining assumptions are still fulfilled here

y

x1
x2

x3
x

PRF: E 0 1[ | ]y x x  p
ro

b
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Homoskedasticity (cont’d)
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 sometimes, we can easily argue that SLR.5 doesn’t hold, as in the 

example with typing errors vs. hours of practice:

 with more practice, people cut down on mistakes, and their natural 

prerequisites gradually cease to play an important role (thus reducing 

the variance of results)

typing errors

hours of practice

p
ro

b
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 revision of the rules for variance calculations:

 var(3u + 4) = 32 var u

 var[Σui] = Σ var ui if ui are independent (for us, this is true

because of random sampling – SLR.2)

 these rules apply to conditional variance as well

 when we derived the mean of the OLS estimator, we used the following:

 in order to simplify notation, we define                              , thus

 note that SLR.5 and random sampling give us var[ui|x] = σ2

 we can also write var[(xi – x )ui|x] = (xi – x )2σ2, because conditional on x, 

(xi – x ) can be treated as a constant
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 put together, we have:

→ as far as the accuracy of      is concerned…

 …the less variance in the disturbances, the better

 …the more variance in the explanatory variable, the better

 on the meaning of conditional on x:

 it’s the same as treating the xi as fixed in repeated samples

 this is easily done in a computer simulation study

 imagine we keep the x-values constant instead of generating them 

at random each time, and for new samples, we generate u only

 running the trials this way tells us something about the conditional 

distribution of 

var
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the variance of u
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 first note that as Eu = 0, it holds  var u = Eu2

 therefore, in our sample,                 is an unbiased estimator of var u = σ2

 unfortunately, in practical applications this is useless, as we don’t know 

the ui’s

 instead of random errors, we’ll use the residuals (which we do know)

 however,                                is not an unbiased estimator of  σ2

 the reason is that the residuals are not independent: we know that

 therefore, if I tell you the first n – 2 residuals, you can tell me the 

values of the remaining two (by solving the equations above)

 it can be shown (see the Wooldridge book) that an unbiased estimator is
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 in the formula for                  , we needed σ2 in order to calculate the 

conditional variance

 once we have estimated the error variance, we can use it to estimate the 

variance of the OLS estimator based on our sample

 we’ll work with standard deviations rather than variances

 the standard deviation of      is the square root of its variance:

 if we replace σ2 with estimate     , we’ll obtain an estimate of            , 

which is called the standard error of
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 so far, we’ve discussed the basic characteristics of the OLS estimator

 if we need to test hypotheses about the parameter values, we need to 

know more than this: we need to know the sample distribution of the 

OLS estimator

 recall that in hypothesis testing, we use pictures like this

 as you’ve seen in the simulation exercises, the OLS estimates have a 

distribution that “looks somewhat like the normal distribution”

Sampling Distribution of the OLS Estimator
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 the frequency plot for the „wage vs. height“ example was:
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 there is a clear tendency towards normality: this obviously has 

something to do with the central limit theorem (CLT)

 the word “tendency” is related to the size of our sample here

 for the CLT to take effect, we need many observations; the more 

observations, the closer we are to normality

 unfortunately, econometricians do not agree on a “safe” number of 

observations (recommendations vary from 30 to hundreds)

 in our exercise, 15 was already pretty good, but this depends on many 

things

 we’ll state a theorem about asymptotic normality of the OLS estimator

 this theorem can put in many different versions (see Wooldridge, page 

168)

 the version I’ll show you is the easiest one to write down, and the most 

useful in calculations

 it works with standardized (or “Studentized”) estimates:  
se
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j j
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 we can use this theorem to carry out hypothesis tests about β’s in case 

our sample is large enough (but, what does “large enough” mean, eh?)

 with a small sample, the theorem is rather useless; however, we can give 

precise results here if we introduce another assumption:

Theorem: Asymptotic normality of the OLS estimator

Under the assumptions SLR.1 through SLR.5, as the sample size 

increases, the distributions of standardized estimates converge towards 

the standard normal distribution Normal(0,1).

Assumption SLR.6 (normality):

The population error u is independent of the explanatory variable and 

is normally distributed with zero mean and variance σ2 :

u ~ Normal(0, σ2).
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 SLR.6 is much stronger than any of our previous assumptions

 it actually implies both SLR.4 and SLR.5 (why?)

 a succinct way to put the population assumptions (all but SLR.2) is: 

y|x ~ Normal(β0 + β1 x, σ2)

y

x1
x2

x3
x

PRF: E 0 1[ | ]y x x  p
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identical normal distributions
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 even though some arguments can be given that justify this assumption 

in real applications, many examples where SLR.6 cannot hold can be 

found; we’ll talk about this later on in more detail

 the same holds for β0 estimates, but we haven’t talked about the 

formulas for standard errors in this case

Theorem: Sampling distributions under normality.

Under the assumptions SLR.1 to SLR.6, conditional on the sample values 

of the explanatory variable,

which implies that                                                .

Moreover, it holds                                       (Student’s t distribution).

  sd1 1 1
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  se1 1 1 2
ˆ ˆ( ) nt    
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 imagine we’re regressing y on x, even though there’s a substantial role of 

the y ← z → x relationship

 in ignoring z, we basically omitted an important variable from our 

considerations

 for the reasons we discussed earlier, SLR assumptions of model

y = β0 + β1x + u  result in the following causal picture:

 however, if there’s the  y ← z → x influence, then necessarily u contains 

z, and is therefore correlated with x

 therefore, in the picture above

u

xy no correlation 

between x and u

(SLR.4)



 therefore, the correct version of our picture is

which already is a problem

 a more precise picture should contain z

 here, the connection between x and y leads through two paths: x → y

(direct influence) and x ← z → y (indirect influence)

Omitted Variable Bias (cont’d)
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z

xy

u’

u

xy
x and u

are correlated

u’ represents whatever is left in u

after we pull z out of it. We 

assume here that u’ is correlated 

with neither x nor z.

all of this was

u before
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 if we estimate the CLRM model y = β0 + β1x + u (despite knowing that the 

SLR assumptions are not satisfied), the estimate of β1 captures both the 

direct and indirect influence

 therefore,      is not unbiased anymore!

 in fact, one can show that…

 fortunately, there’s an easy way out of this problem: multiple regression

 it suffices to estimate  y = β0 + β1x + β2z + u instead (next lecture)
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x z z y
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corr(x,z) corr(z,y) OVB

+ + +

+ – –

– + –

– – +
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