Lecture 3: Simple Regression II

Jan Zouhar Introductory Econometrics

2 Algebraic Properties of OLS Statistics

Population vs. sample regression function. Residuals and their properties. Goodness of fit.

Population Vs. Sample Regression Function

- 3
- □ population regression function (PRF):

Population Vs. Sample Regression Function (cont'd)

- 4
- \square sample regression function (SRF):

Goodness of Fit

- 5
- we want to say something about how well the model fits our data (the goal is to end up with a single number, ideally expressed as a percentage)
- \square we will make use of the following three things:
 - **total sum of squares** (*SST*)

 $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$

explained sum of squares (SSE)

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

• residual sum of squares (SSR) $SSR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \hat{u}_i^2$

Goodness of Fit

- 6
- important algebraic identity: SST = SSR + SSE (we'll prove this later)
- this gives us a really nice way of describing the goodness of fit of the model
 - **R-squared** of the regression (or the **coefficient of determination**):

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- \Box properties of R^2 :
 - $\bullet \quad 0 \leq R^2 \leq 1$
 - $R^2 = 1$ only if SSR = 0, which means that all residuals are zero, and all observations lie *exactly* on the regression line
 - $R^2 = 0$ only if SSE = 0, which implies that $\hat{\beta}_1 = 0$, $\hat{\beta}_0 = \overline{y}$

Interpretation of R-squared:

 R^2 is the fraction of the sample variation in y that is explained by x.

Goodness of Fit

Proof of the identity SST = SSR + SSE

□ first remember that we know something about the residuals (see previous lecture): $\sum_{i=1}^{n} \hat{u}_i = 0$

$$\sum_{i=1}^n x_i \hat{u}_i = 0$$

□ it follows from these properties that $\sum \hat{u}_i \hat{y}_i = 0$ and $\sum \hat{u}_i (\hat{y}_i - \overline{y}) = 0$

• e.g.,
$$\sum \hat{u}_i \hat{y}_i = \sum \hat{u}_i (\hat{\beta}_0 + \hat{\beta}_1 x_i) = \hat{\beta}_0 \sum \hat{u}_i + \hat{\beta}_1 \sum x_i \hat{u}_i = 0$$

 \Box now we'll use this to show SST = SSR + SSE

$$\sum (y_i - \overline{y})^2 = \sum (\overbrace{y_i - \hat{y}_i}^{\hat{u}_i} + \hat{y}_i - \overline{y})^2 =$$

$$= \sum [\hat{u}_i + (\hat{y}_i - \overline{y})]^2 =$$

$$= \sum \hat{u}_i^2 + 2 \underbrace{\sum \hat{u}_i (\hat{y}_i - \overline{y})}_{0} + \underbrace{\sum (\hat{y}_i - \overline{y})^2}_{SSE} =$$

$$= SSR + SSE$$

8 Units and Functional Form

Changing units of measurement. Functional form of regression models.

Changing the Units of Measurement

- 9
- □ in the CEO example, we ended up with the following equation:

 $\widehat{salary} = 963.191 + 18.501$ roe

- it's crucial to know the units of measurement in order to interpret the equation
- it's good to know that if we change the units of measurement, the estimated coefficients change in a completely natural way
- \Box if we regress *salardol* = 1,000*salary* on *roe* (which means we express CEOs' salary in dollars), we obtain

 $\widehat{salardol} = 963,191 + 18,501$ roe

□ if we now express roe in decimals rather than percentage points, defining *roedec* = 0.01 *roe*, we get

 $salardol = 963,191 + 1,850,100 \ roedec,$

because 18,501 *roe* = 1,850,100 *roedec*

 note that the interpretation of both slope and intercept remains the same in all cases

Introductory Econometrics

- so far, we have only dealt with a linear relationship between x and y
- this is really not as strong an assumption as you might think because we can pick *x* and *y* to be whatever we want
- as we've seen, changing the units doesn't change anything; however, we can pick a non-linear unit transform
 - **example**: $E[\log(wage) \mid educ] = \beta_0 + \beta_1 educ$ $E[y \mid x] = \beta_0 + \beta_1 x$
 - \rightarrow this is still considered to be a linear regression model; the word *linear* actually means *linear in parameters*

- which one of the following types of relationships seems more plausible:
 - with each additional year of education, a person's monthly wage increases by €50
 - with each additional year of education, a person's monthly wage increases by 5%
- □ "5% each year" means:
 - if we denote E[wage | educ = 0] as *w*, then

$$\begin{split} & \mathsf{E}[wage \,|\, educ = 1] = w \times 1.05 \\ & \mathsf{E}[wage \,|\, educ = 2] = w \times 1.05^2 \\ & \mathsf{E}[wage \,|\, educ = 3] = w \times 1.05^3 \end{split}$$

 $\mathsf{E}[wage | educ] = w \times 1.05^{educ}$

□ let's generalize this type of relationship with parameters β_0 and β_1

- □ this brings us to the relationship $E[wage | educ] = \exp(\beta_0 + \beta_1 educ)$
 - □ let's focus on the meaning of β_1 now
 - □ in the five-percent-a-year example, we had $\exp(\beta_1) = 1.05$
 - □ for β_1 , this gives us $1.05 = e^{0.049} \approx e^{0.05}$, thus $\beta_1 \approx 0.05$
 - □ this can be generalized: for a small β_1 , it holds $1 + \beta_1 \approx e^{\beta_1}$
 - □ therefore, β_1 tells us the (expected) percentage change in *wage* with an additional year of *educ*ation

β	exp(β ₁)	%∆wage
0.02	1.020	2.0%
0.05	1.051	5.1%
0.20	1.221	22.1%
0.50	1.648	64.8%

- □ note that $wage = \exp(\beta_0 + \beta_1 educ) \quad \leftrightarrow \quad \log(wage) = \beta_0 + \beta_1 educ$
- logarithm transform is one of the basic econometric tools
- the rule to remember: taking the log of one of the variables means we shift from absolute changes to relative changes:

regression function	interpretation of β_1
$y = \beta_0 + \beta_1 x$	$\Delta \mathbf{y} = \mathbf{\beta}_1 \Delta \mathbf{x}$
$\log y = \beta_0 + \beta_1 x$	% $\Delta y = (100 \beta_1) \Delta x$
$y = \beta_0 + \beta_1 \log x$	$\Delta y = (0.01 \beta_1) \% \Delta x$
$\log y = \beta_0 + \beta_1 \log x$	$\Delta y = \beta_1 \Delta x$

□ **constant elasticity model**: $\log y = \beta_0 + \beta_1 \log x + u$

• *x*-elasticity of *y*:
$$\beta_1 = E_{y,x} = \frac{\partial \log y}{\partial \log x} = \frac{\partial y}{\partial x} \cdot \frac{x}{y} = \frac{\% \Delta y}{\% \Delta x}$$

Introductory Econometrics

Gretl Output: An Overview

15 Classical Linear Regression

OLS estimates as realizations of random variables.

Mean and variance of the OLS estimator.

A Note on Where We're Heading...

- 16
- □ as you've seen, we've only covered a small part of the *Gretl* output yet
- gradually, we'll build up the theory behind the following parts:

Model 1: OLS, using observations 1-209 Dependent variable: salary									
	coeffic	ient	std.	erro	r 	t-ratio	p-	-value	
const	963.193	1	213	.240		4.517	1	.05e-05	***
roe	18.503	12	11	.1233		1.663	0	.0978	*
Mean depender	nt var	1281.1	20	S.D.	dep	endent v	ar	1372.3	345
Sum squared a	resid	3.87e+	-08	S.E.	of	regressi	on	1366.5	555
R-squared		0.0131	89	Adjus	sted	R-squar	ed	0.0084	421
F(1, 207)		2.7665	532	P-val	lue (F)		0.097	768
Log-likelihoo	od ·	-1804.5	543	Akail	ke c	riterion		3613.0	087
Schwarz crite	erion	3619.7	71	Hanna	an-Q	uinn		3615.7	789

□ all of this tells us something about *hypotheses tests* about the β 's (this is important for empirical verification of *economic* theories)

OLS Estimator as a Random Variable

- 17
- in our previous discussion, we always tried to estimate a population regression function based on a (random) sample of the population
 - we believe there are real (population) values of β_0 and β_1 out there
 - however, we always end up with only their estimates $\hat{\beta}_0$ and $\hat{\beta}_1$
 - the value of these estimates depends on the specific sample we get the data for → if we go and collect another sample, we'll have different estimates
- \rightarrow because of random sampling, $\hat{\beta}_0$ and $\hat{\beta}_1$ can be treated as random variables; the eventual values that we obtain are their realizations
 - note the difference between *estimators* (the RVs) and *estimates* (eventual values)
- □ it's quite natural to ask questions like:
 - are my estimates accurate enough? What level of imprecision should I count with?
 - is the OLS estimator *unbiased*? Or is it possible that, *on average*, the estimates tend to overrate/underrate the intercept/slope?

Wages vs. height in a (fictitious) population – complete data

Population regression function

Typically, we only know one sample

SRF vs PRF

Sampling distribution of $\hat{\beta}_1$

 $\hat{\beta}_1$

3.53

5.76

:

4.71

5.040

1.438

OLS Estimator as a Random Variable

(cont'd)

- □ if we translate these questions into the RV framework, we'll be asking about the *variance* and *mean* of $\hat{\beta}_0$ and $\hat{\beta}_1$
- so far, it hasn't really made a difference whether we took the descriptive, causal or predictive approach
 - **•** the estimates were the same, and so were their algebraic properties
 - the discussion about units and functional form were not related to all of this
 - the goodness of fit wasn't either
- □ in order to say something about the properties of RVs $\hat{\beta}_0$ and $\hat{\beta}_1$, we need to make some assumptions about the population and the sample
 - these will be mostly in line with the causal model (note that the causal model was the one with the most assumptions)
 - e.g., the simple descriptive approach doesn't really work with the respective part of the *Gretl* output (!)
- the set of assumptions (SLR.1 through SLR.6) we'll introduce is often referred to as the classical linear regression model (CLRM)

Assumptions of CLRM

27

 we'll introduce assumptions SLR.1 to SLR.4 ("SLR" stands for *simple linear regression*)

Assumption **SLR.1** (linear population model) :

In the population model, the dependent variable y is related to the independent variable x and the error (or disturbance) u as

 $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \mathbf{u}$

where β_0 and β_1 are the population intercept and slope parameters, respectively.

- notice that in making this assumption we have really moved to the "structural world"
- we are really saying that this is the actual data-generating process and our goal is to uncover the true parameters

Introductory Econometrics

Assumption **SLR.2** (random sampling):

We have a random sample of size n, (x_i, y_i) , i = 1, ..., n following the population model defined in SLR.1.

 not all cross-sectional samples can be viewed as outcomes of random samples, but many can be

• with time series, we'll have to put things differently

□ the next assumption effectively allows us to estimate the model

Assumption **SLR.3** (sample variation in the explanatory variable):

The sample outcomes on x, namely $\{x_i, i = 1,...,n\}$, are not all the same value.

Assumptions of CLRM

(cont'd)

- □ technically, the denominator for $\hat{\beta}_1$ is $\sum_{i=1}^n (x_i \bar{x})^2$, which would be zero if SLR.3 didn't hold
- \Box in other words, how would you estimate the slope here:

\Box note: in practical applications, SLR.3 always holds

Introductory Econometrics

Assumption **SLR.4** (zero conditional mean of u):

The error u has an expected value of zero given any value of the explanatory variable. In other words, E[u | x] = 0.

- as you know, this assumption is the crucial one for causal interpretation; at the same time, we need it in order to derive the theoretical properties of the OLS estimator
- as I've already noted, we make this assumption without being able to check it by statistical means
- therefore, in applications, its validity has to be argued from outside (economic theories, common sense)
 - □ in practice, this means we have to rule out the $y \rightarrow x$ and $y \leftarrow z \rightarrow x$ causation schemes (see lecture 2 for more details)
- □ note that for our random sample, SLR.4 implies $E[u_i | x_1, ..., x_n] = 0$
 - we'll use the shorthand notation **x** for x_1, \dots, x_n (e.g., $E[u_i | \mathbf{x}] = 0$)

Introductory Econometrics

Mean of the OLS Estimator

- 31
- you already know that under the assumption of random sampling (SLR.2), $\hat{\beta}_0$ and $\hat{\beta}_1$ can be treated as RVs
- our goal now is to find $\mathsf{E}\hat{\beta}_0$ and $\mathsf{E}\hat{\beta}_1$
- □ a short preview:
 - somehow, we want to use the assumption that E[u | x] = 0
 - this, however, can apply only when speaking about *conditional expectations* of the estimates
 - therefore, we'll first learn something about $E[\hat{\beta}_0 | \mathbf{x}]$ and $E[\hat{\beta}_1 | \mathbf{x}]$
 - then we'll use the *law of iterated expectations* (see our Exercise 1.13b or Wooldridge, page 687) which tells us

$$\begin{aligned} \mathbf{E}\hat{\boldsymbol{\beta}}_{0} &= \mathbf{E}\left(\mathbf{E}[\hat{\boldsymbol{\beta}}_{0} \mid \mathbf{x}]\right) \\ \mathbf{E}\hat{\boldsymbol{\beta}}_{1} &= \mathbf{E}\left(\mathbf{E}[\hat{\boldsymbol{\beta}}_{1} \mid \mathbf{x}]\right) \end{aligned}$$

- \square we'll start with \hat{eta}_1
- $\ \square$ in order to use the assumption above, we need to express \hat{eta}_1 using u

 $\mathsf{E}(wage) = \mathsf{E}\big(\mathsf{E}[wage \mid educ]\big)$

- an analogy to the following population problem
- □ for simplicity, education classified into three categories

education	low	medium	high
average wage	500	700	800
% of the population	20	50	30

□ the average wage in the population:

 $500 \times .20 + 700 \times .50 + 800 \times .30$

□ or, in words, the weighted average, $E(\cdot)$, of the average wage in individual categories, E[wage | educ]

32

I won't show all the algebra behind it here (see Wooldridge, pages 49–50 for details, or try to derive it yourselves), but the idea is:

now we're ready to take the conditional expectation of $\hat{\beta}_1$ and use SLR.4 given **x**, all of this is constant $\sqrt{2}$

$$\mathsf{E}[\hat{\beta}_{1} \mid \mathbf{x}] = \mathsf{E}\left(\beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})u_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \mid \mathbf{x}\right) = \beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})\mathsf{E}[u_{i} \mid \mathbf{x}]}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \beta_{1}$$

Introductory Econometrics

33

34

• we have $E[\hat{\beta}_1 | \mathbf{x}] = \beta_1$, and the law of iterated expectations tells us $E[\hat{\beta}_1] = E(E[\hat{\beta}_1 | \mathbf{x}]) = E(\beta_1) = \beta_1$

- this tells us that the OLS estimator is unbiased = it doesn't systematically overestimate/underestimate the true parameters
 - obviously, unbiasedness is a nice property
 - however, it is only a feature of the *sampling distributions* of $\hat{\beta}_0$ and $\hat{\beta}_1$ which says nothing about the *estimate* that we obtain for a given sample
 - we hope that, if the sample we obtain is somehow "typical," then our estimate should be "near" the population value
- from here, it's easy to show the unbiasedness of $\hat{\beta}_0$:
 - first, note that $\overline{y} = \beta_0 + \beta_1 \overline{x} + \overline{u}$ (just averaging across the sample)
 - therefore, $\hat{\beta}_0 \stackrel{\text{OLS}}{=} \overline{y} \hat{\beta}_1 \overline{x} = \beta_0 + (\beta_1 \hat{\beta}_1)\overline{x} + \overline{u}$
 - and finally $\mathsf{E}\hat{\beta}_0 = \mathsf{E}[\beta_0 + (\beta_1 \hat{\beta}_1)\overline{x} + \overline{u}] = \mathsf{E}\beta_0 + \underbrace{\mathsf{E}(\beta_1 \hat{\beta}_1)\overline{x}}_{\alpha} + \mathsf{E}\overline{u} = \beta_0$

Introductory Econometrics

(cont'd)

- revision: what did we need to show unbiasedness?
 - we started with SLR.1 and the OLS formula to get

OLS + SLR.1
$$\widehat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (x_i - \overline{x})u_i}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

note that in here, SLR.3 was implicitly used (no SLR.3, no slope)

• then we needed SLR.2 and SLR.4:

SLR.4 + SLR.2 \models $E[u_i | \mathbf{x}] = 0$ \models $E[\hat{\beta}_1 | \mathbf{x}] = \beta_1$ E[u | x] = 0 random sampling

- ...and finally we used the law of iterated expectations
- \rightarrow to sum up, we needed *all four SLR assumptions*
- even though one can sometimes doubt the validity of SLR.1 (*linear* population relationship) or SLR.2 (true *random sampling*), SLR.4 is typically the most the problematic one

Introductory Econometrics

Example: Math Performance Vs. Lunch Program

- suppose we wish to estimate the effect of the federally funded school lunch program on student performance. If anything, we expect the lunch program to have a positive ceteris paribus effect on performance: all other factors being equal, if a student who is too poor to eat regular meals becomes eligible for the school lunch program, his or her performance should improve.
- □ *math10* the percentage of tenth graders at a high school receiving a passing score on a standardized mathematics exam
- *lnchprg* the percentage of students who are eligible for the lunch program
- 1. Open the lunch.gdt data file and regress *math10* on *lnchprg*.
- 2. Do you think the estimated effect if *lunch program* is causal?
- 3. Or, do you think that the estimate is *biased*? Why? Explain why one of the SLR assumptions is violated.
- 4. Suppose an estimator exhibits a downward bias. Is it possible that our eventual estimate will be higher than the population parameter?

Accuracy of OLS Estimates, Efficiency

- 38
- □ so far, we have only dealt with the mean value of our estimates
- we know that with OLS there's no bias, which means that on average,
 OLS doesn't overestimate/underestimate the true parameters
- it's good to know what happens on average, but normally we're only given one shot
- unbiasedness actually tells us nothing about the accuracy of the estimates
- a good measure of accuracy (actually, the most widely-used one) is the *variance* of the estimates
 - if two estimates (A and B) are both unbiased, and var A < var B, then A is taken as the better of the two (more accurate)</p>
 - we can also say that *A* is *more efficient* (we'll have a more detailed discussion on the efficiency of estimates later on)
- in order to be able to derive a nice formula for the variance of the OLS estimator, we need to adopt one more assumption about the variance of u

Assumption **SLR.5** (homoskedasticity):

Variance of u does not vary with x. More precisely, $var[u | x] = \sigma^2$.

- $\hfill\square$ as with the conditional expectation of u (SLR.4), SLR.5 implies two things:
 - 1. var[u | x] is constant (not varying with x)
 - **2.** var $u = \sigma^2$, i.e. the *unconditional* variance of u is σ^2
- □ note that once we know *x*, the only thing that can make *y* change is *u* (our model is $y = \beta_0 + \beta_1 x + u$, so *u* is the only non-constant term on the right-hand side once *x* is known)
- □ therefore, we can also re-write SLR.5 as $var[y | x] = \sigma^2$
 - this is typically easier to interpret

Homoskedasticity

40

(cont'd)

- $\hfill\square$ a model satisfying our assumptions might look as follows
 - the conditional distributions of *y* have the same "width" (SLR.5) and are centered about the PRF (SLR.4), which is linear (SLR.1)

Homoskedasticity

(cont'd)

- \Box here, SLR.5 is violated: vor[y | x] changes with x
 - we call this **heteroskedasticity**
- $\hfill \square$ note: the remaining assumptions are still fulfilled here

Homoskedasticity

- □ sometimes, we can easily argue that SLR.5 doesn't hold, as in the example with *typing errors* vs. *hours of practice*:
 - with more practice, people cut down on mistakes, and their natural prerequisites gradually cease to play an important role (thus reducing the variance of results)

Variance of the OLS Estimator

- 43
- revision of the rules for variance calculations:
 - $var(3u + 4) = 3^2 var u$
 - □ $var[\Sigma u_i] = \Sigma var u_i$ if u_i are independent (for us, this is true because of random sampling SLR.2)
 - these rules apply to *conditional variance* as well
- □ when we derived the mean of the OLS estimator, we used the following:

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})u_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

□ in order to simplify notation, we define $s_x^2 = \sum_{i=1}^n (x_i - \overline{x})^2$, thus

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (x_i - \overline{x})u_i}{s_x^2}$$

- □ note that SLR.5 and random sampling give us $var[u_i | \mathbf{x}] = o^2$
- □ we can also write $\operatorname{var}[(x_i \overline{x})u_i | \mathbf{x}] = (x_i \overline{x})^2 \sigma^2$, because conditional on \mathbf{x} , $(x_i \overline{x})$ can be treated as a constant

Variance of the OLS Estimator

(cont'd)

44

$$\begin{aligned} \operatorname{var}[\hat{\beta}_{1} \mid \mathbf{x}] &= \operatorname{var}\left(\beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) u_{i}}{s_{x}^{2}} \mid \mathbf{x}\right) = \\ &= \frac{\operatorname{var}\left[\sum_{i=1}^{n} (x_{i} - \overline{x}) u_{i} \mid \mathbf{x}\right]}{(s_{x}^{2})^{2}} = \\ &= \frac{\sum_{i=1}^{n} \operatorname{var}[(x_{i} - \overline{x}) u_{i} \mid \mathbf{x}]}{(s_{x}^{2})^{2}} = \\ &= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sigma^{2}}{(s_{x}^{2})^{2}} = \\ &= \frac{\sigma^{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{(s_{x}^{2})^{2}} = \\ &= \frac{\sigma^{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{(s_{x}^{2})^{2}} = \end{aligned}$$

Introductory Econometrics

Variance of the OLS Estimator

(cont'd)

 $\operatorname{var}[\hat{\beta}_{1} | \mathbf{x}] = \operatorname{var}\left[\begin{array}{c} \mathbf{x}_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) u_{i}}{- - s_{r}^{2}} \\ \end{array} \right| \mathbf{x} \right] =$ $= \frac{\operatorname{var}\left[\sum_{i=1}^{n} (x_i - \overline{x}) u_i \middle| \mathbf{x}\right]}{(c^2)^2} =$ $= \frac{\sum_{i=1}^{n} \operatorname{var}[(x_i - \overline{x}) u_i | \mathbf{x}]}{(s_x^2)^2} =$ $= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sigma^{2}}{(s_{x}^{2})^{2}} =$ $= \frac{\sigma^{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{(s_{x}^{2})^{2}} =$ $=\frac{\sigma^2}{s^2}$

45

Introductory Econometrics

46

put together, we have:

 \rightarrow as far as the accuracy of $\hat{\beta}_1$ is concerned...

- ... the *less* variance in the disturbances, the better
- ... the *more* variance in the explanatory variable, the better
- □ on the meaning of *conditional* on **x**:
 - it's the same as treating the x_i as fixed in repeated samples
 - this is easily done in a computer simulation study
 - imagine we keep the *x*-values constant instead of generating them at random each time, and for new samples, we generate *u* only
 - running the trials this way tells us something about the conditional distribution of $\hat{\beta}_1$

Estimating the Error Variance (σ^2)

- \Box first note that as Eu = 0, it holds var $u = Eu^2$
- □ therefore, in our sample, $\frac{1}{n}\sum_{i=1}^{n}u_i^2$ is an unbiased estimator of var $u = \sigma^2$
- unfortunately, in practical applications this is useless, as we don't know the u_i 's
- instead of random errors, we'll use the residuals (which we do know)
- □ however, $\frac{1}{n}\sum_{i=1}^{n}\hat{u}_{i}^{2} = \frac{1}{n}SSR$ is not an unbiased estimator of σ^{2}
 - the reason is that the residuals are not independent: we know that

$$\sum_{i=1}^{n} \hat{u}_i = 0$$
$$\sum_{i=1}^{n} x_i \hat{u}_i = 0$$

- therefore, if I tell you the first n-2 residuals, you can tell me the values of the remaining two (by solving the equations above)
- □ it can be shown (see the Wooldridge book) that an unbiased estimator is

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{u}_i^2 = \frac{SSR}{n-2}$$

Standard Errors of OLS Estimates

- **48**
- in the formula for $var[\hat{\beta}_1 | \mathbf{x}]$, we needed σ^2 in order to calculate the conditional variance
- once we have estimated the error variance, we can use it to estimate the variance of the OLS estimator based on our sample
- we'll work with standard deviations rather than variances
- the standard deviation of $\hat{\beta}_1$ is the square root of its variance:

$$\mathsf{sd}(\hat{\beta}_1) = \sqrt{\frac{\sigma^2}{\sum (x_i - \overline{x})^2}}$$

□ if we replace σ^2 with estimate $\hat{\beta}_1$, we'll obtain an estimate of sd($\hat{\beta}_1$), which is called the *standard error of* $\hat{\beta}_1$

$$\operatorname{se}(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{\sum (x_i - \overline{x})^2}}$$

Sampling Distribution of the OLS Estimator

- **49**
- □ so far, we've discussed the basic characteristics of the OLS estimator
- if we need to test hypotheses about the parameter values, we need to know more than this: we need to know the *sample distribution* of the OLS estimator
- □ recall that in hypothesis testing, we use pictures like this

 as you've seen in the simulation exercises, the OLS estimates have a distribution that "looks somewhat like the normal distribution"

Sampling Distribution of the OLS Estimator (cont'd)

50

□ the frequency plot for the "wage vs. height" example was:

Sampling Distribution of the OLS Estimator (cont'd)

- 51
- there is a clear tendency towards normality: this obviously has something to do with the *central limit theorem* (CLT)
- the word "tendency" is related to the size of our sample here
 - for the CLT to take effect, we need many observations; the more observations, the closer we are to normality
 - unfortunately, econometricians do not agree on a "safe" number of observations (recommendations vary from 30 to hundreds)
 - in our exercise, 15 was already pretty good, but this depends on many things
- we'll state a theorem about *asymptotic normality* of the OLS estimator
- this theorem can put in many different versions (see Wooldridge, page 168)
- the version I'll show you is the easiest one to write down, and the most useful in calculations
- it works with standardized (or "Studentized") estimates: $\frac{\beta_j \beta_j}{\operatorname{se}(\hat{\beta}_i)}$

Theorem: Asymptotic normality of the OLS estimator

Under the assumptions SLR.1 through SLR.5, as the sample size increases, the distributions of standardized estimates converge towards the standard normal distribution *Normal*(0,1).

- we can use this theorem to carry out hypothesis tests about β 's in case our sample is large enough (but, what does "large enough" mean, eh?)
- with a small sample, the theorem is rather useless; however, we can give precise results here if we introduce another assumption:

Assumption **SLR.6** (normality):

The population error u is *independent* of the explanatory variable and is normally distributed with zero mean and variance σ^2 :

 $u \sim Normal(0, \sigma^2).$

Sampling Distribution of the OLS Estimator (cont'd)

- 53
- □ SLR.6 is much stronger than any of our previous assumptions
 - □ it actually implies both SLR.4 and SLR.5 (why?)
- \square a succinct way to put the population assumptions (all but SLR.2) is:

 $y \,|\, x \sim \operatorname{Normal}(\beta_0 + \beta_1 x, \, \sigma^2)$

Sampling Distribution of the OLS Estimator (cont'd)

 even though some arguments can be given that justify this assumption in real applications, many examples where SLR.6 cannot hold can be found; we'll talk about this later on in more detail

Theorem: Sampling distributions under normality.

Under the assumptions SLR.1 to SLR.6, conditional on the sample values of the explanatory variable,

 $\hat{\boldsymbol{\beta}}_1 \sim \operatorname{Normal}(\boldsymbol{\beta}_1, \operatorname{var} \hat{\boldsymbol{\beta}}_1),$

which implies that $(\hat{\beta}_1 - \beta_1)/\operatorname{sd}(\hat{\beta}_1) \sim \operatorname{Normal}(0,1)$.

Moreover, it holds $(\hat{\beta}_1 - \beta_1)/se(\hat{\beta}_1) \sim t_{n-2}$ (Student's *t* distribution).

□ the same holds for β_0 estimates, but we haven't talked about the formulas for standard errors in this case

Introductory Econometrics

54

Omitted Variable Bias: A Case for Multiple Regression

- 55
- □ imagine we're regressing *y* on *x*, even though there's a substantial role of the $y \leftarrow z \rightarrow x$ relationship
- in ignoring *z*, we basically omitted an important variable from our considerations
- □ for the reasons we discussed earlier, SLR assumptions of model $y = \beta_0 + \beta_1 x + u$ result in the following causal picture:

- □ however, if there's the $y \leftarrow z \rightarrow x$ influence, then necessarily *u* contains *z*, and is therefore correlated with *x*
- \Box therefore, in the picture above

Omitted Variable Bias

- 56
- □ therefore, the correct version of our picture is

which already is a problem

 \Box a more precise picture should contain z

□ here, the connection between *x* and *y* leads through two paths: $x \rightarrow y$ (direct influence) and $x \leftarrow z \rightarrow y$ (indirect influence)

(cont'd)

- 57
- □ if we estimate the CLRM model $y = \beta_0 + \beta_1 x + u$ (despite knowing that the SLR assumptions are not satisfied), the estimate of β_1 captures both the direct and indirect influence
- therefore, $\hat{\beta}_1$ is *not unbiased* anymore!
- □ in fact, one can show that...

fortunately, there's an easy way out of this problem: multiple regression
 it suffices to estimate y = β₀ + β₁x + β₂z + u instead (next lecture)

Omitted Variable Bias

58

corr(x,z)	corr(z,y)	OVB
+	+	+
+	-	-
-	+	-
-	_	+

Introductory Econometrics

Lecture 3: Simple Regression II

Jan Zouhar Introductory Econometrics