LECTURE 10: MORE ON RANDOM PROCESSES AND SERIAL CORRELATION

Jan Zouhar Introductory Econometrics

Classification of random processes

- 2
- stationary vs. non-stationary processes
 - stationary = distribution does not change over time
 - more precisely, the joint distribution of $(x_{t_1}, x_{t_2}, ..., x_{t_m})$ is the same as that of $(x_{t_1+h}, x_{t_2+h}, ..., x_{t_m+h})$
 - if distribution is stable around a (linear) time trend, we have a trendstationary process
- weakly vs. strongly dependent processes:
 - in a weakly dependent process, the dependence between x_t and x_{t+h} vanishes if h grows without bound
 - □ for instance, weak dependence implies that $corr(x_t, x_{t+h})$ tends to zero if $h \rightarrow \infty$, and does so rapidly enough
 - we need weak dependence for the law of large number and the central limit theorem to work
 - this means that with strongly dependent time series, all our theory collapses (std. errors, hypothesis tests, p-values)
 - moreover, spurious regression will likely occur

Introductory Econometrics

Příklady náhodných procesů s diskrétním časem

Šum

Řada stejně rozdělených nezávislých (iid) náhodných veličin, např. z $N(0, \sigma^2)$

Náhodná procházka

 $\Box \quad y_t = y_{t-1} + \check{s}um$

Autoregresní proces prvního řádu – AR(1)

 $\neg y_t = c + \rho y_{t-1} + \check{s}um$, kde $c \in \mathbf{R}$, $\rho \in (-1, 1)$. Platí

$$E(y_t) = \frac{c}{1-\rho}, \quad cov(y_s, y_t) = \frac{\sigma_{\tilde{s}um}^2}{1-\rho^2} \rho^{|t-s|}$$

Proces klouzavých průměrů prvního řádu – MA(1)

 $y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$, kde ε_t představuje hodnoty šumu s rozptylem σ^2 . Platí:

$$\mathsf{E}(y_t) = \mu, \quad \mathsf{var}(y_t) = (1 + \theta^2)\sigma^2, \quad \mathsf{cov}(y_t, y_s) = \begin{cases} \theta\sigma^2, & \mathsf{pokud} \ s = t - 1, \\ 0 & \mathsf{jinak.} \end{cases}$$

Noise

- serial independence, same distribution
- stationary, weakly dependent

Random walk

- aggregated noise: $y_t = \rho y_{t-1} + noise$
- non-stationary, strongly dependent (*unit-root process*)

Random walk

- aggregated noise: $y_t = \rho y_{t-1} + noise$
- non-stationary, strongly dependent (*unit-root process*)

Autoregressive process of order one - AR(1)

- definition: $y_t = \rho y_{t-1} + noise$
- stationary, weakly dependent only if **stable**: $|\rho| < 1$

8 -4 -0 --4 -50 100 150 200 250 0 time

 $\rho = 0.9$

Simulation of AR(1) with varying ρ (all using the same noise)

AR(1) process, $\rho = -0.9$

Dirac impulse

- non-stochastic time series
- used instead of noise as input to e.g. the AR(1) formula to study its properties

AR(1) impulse response

Moving average process of order one - MA(1)

- "mild" serial dependence, observations two or more periods apart are independent
- stationary, weakly dependent
- $y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$, where ε_t is noise

MA(1) process, $\mu = 0$, $\theta = 1$:

MA(1) impulse response

This is surely non-stationary, ...

time

...but also trend-stationary.

More on random walks

compare the dependence in AR(1) and random walk:

AR(1):
$$E(y_{t+h} | y_t) = \rho^h y_t \quad corr(y_{t+h}, y_t) = \rho^h$$

random walk: $E(y_{t+h} | y_t) = y_t \quad corr(y_{t+h}, y_t) = \sqrt{\frac{t}{t+h}}$

- $\hfill\square$ spurious regression with random walks:
 - 2 independent RWs
 - in a regression of *y* on *x*, the effect of *x* will be significant (p = 0.0108)
- \square RWs can have a drift:
 - $y_t = a_0 + y_{t-1} + e_t$, i.e. $y_t = a_0 t + \text{accumula-}$ ted noise

Random walk with a drift

Drift and "random walk minus drift"

Assumption **TS.1** (linear in parameters)

The random process $\{(y_t, x_{t1}, x_{t2}, ..., x_{tk})\}_{t=1,...,n}$ follows the linear model

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + u_t,$$

where β_0 , β_1 , ..., β_k are constant parameters and $\{u_t\}_{t=1,...,n}$ is a series of random errors (disturbances).

Assumption **TS.2** (no perfect collinearity)

In the sample (and therefore in the underlying process), no independent variable is constant nor a perfect linear combination of the others..

Assumption **TS.3** (strict exogeneity)

For each *t*, the expected value of the error u_t , given the explanatory variables for *all* time periods, is zero: $E(u_t | \mathbf{X}) = 0, t = 1, ..., n$.

Assumption **TS.1'** (linear in parameters)

TS.1 + the assumption that $\{(y_t, x_{t1}, x_{t2}, ..., x_{tk})\}_{t=1,...,n}$ is stationary and weakly dependent. In particular, the law of large numbers and the central limit theorem can be applied to sample averages.

Assumption **TS.2'** (no perfect collinearity)

Same as TS.2.

Assumption **TS.3'** (contemporaneous exogeneity)

The explanatory variables $\mathbf{x}_t = (y_t, x_{t1}, x_{t2}, ..., x_{tk})$ are **contemporaneously** exogenous: $E(u_t | \mathbf{x}_t) = 0, t = 1, ..., n.$

Assumption **TS.4'** (homoskedasticity)

Conditional on **X**, the variance of u_t is the same for all t: var $(u_t | \mathbf{X}) = var(u_t) = 0$ pro t = 1, ..., n.

Assumption **TS.5'** (no serial correlation)

Conditional on **X**, the errors in two different time periods are uncorrelated $\operatorname{corr}(u_s, u_t | \mathbf{X}) = \operatorname{corr}(u_s, u_t) = 0$ for any $s \neq t$.

Statistical properties of OLS with time series

- 25
- as with cross-sectional data, we can show that the OLS estimator has some favourable properties in time-series regressions
- \square again, we need some assumptions to show this
- □ Wooldridge gives 2 alternative sets of assumptions, useful in different settings: TS.1, TS2, ... vs. TS.1', TS2', ...
 - the first set ("no prime" version), requires strictly exogenous regressors (a rather limiting assumption, but needed for smallsample inference)
 - rules out (i)"feedback loops from y_t to x_{t+1} and (ii) an inclusion of the lagged dependent variable among regressors
 - the second set ("prime") instead requires weak dependence of the (multivariate) random process (y_t, x_{t1}, x_{t2},..., x_{tk})
 - only asymptotic inference, but much more flexible

Serial correlation of random errors

- a violation of this assumption has similar consequences as heteroskedasticity:
 - **•** the OLS estimator (of $\beta_0, ..., \beta_k$) is still *unbiased* and *consistent*
 - however, it is not BLUE; there are other estimators that are, on average, more accurate (asymptotically)
 - the usual statistical inference is not valid (std. errors, *t*-statistics, *p*-values are not usable)
- with heteroskedasticity, we mostly just used OLS with robust standard errors
- this is also an option here, however the accuracy of OLS is very limited if random errors exhibit substantial persistence
- in other words, the consequences are typically more severe than under heteroskedasticity
- □ therefore, we will discuss a method that is tailored for autocorrelation

Durbin-Watson test for autocorrelation

- 27
- □ printed in most regression packages after a time-series regression
- □ tests for a presence of AR(1) process in the random errors; in fact, as usual, residuals are used for the test instead of the unknown u
- the test requires strictly exogenous regressors; e.g. it rules out equations with a lagged dependent variable among the regressors, such as

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 x_t + u_t$$

- moreover, it requires homoskedasticity and normality of random errors
- □ the test statistic of the test (denoted either *d* or *DW*) is closely related to the OLS estimate of ρ in the equation $\hat{u}_t = \rho \hat{u}_{t-1} + error$

• the exact formula is
$$d = DW = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2}$$

and $d \approx 2(1 - \hat{\rho})$

Introductory Econometrics

Jan Zouhar

- 28
 - \Box possible values for *d* are between 0 and 4
 - values of d close to 0 indicate positive autocorrelation,
 values of d close to 4 indicate negative autocorrelation
 - \Box statistical tables contain critical values for given *n* and *k*
 - □ two critical values given, d_L and d_U , as the D-W test has a region of inconclusiveness (see below)

Breusch-Godfrey test for autocorrelation

- 29
- \Box fewer assumptions \rightarrow should generally preferred to D-W
- \Box procedure to test for the presence of AR(1) in random errors:
 - 1. After your original OLS regression, save residuals.
 - 2. Regress \hat{u}_t on \hat{u}_{t-1} and all regressors from your original regression.
 - 3. Test the null hypothesis that the coefficient on \hat{u}_{t-1} equals zero. (Use the usual t-test.) A rejection means significant evidence of autocorrelation.
- can easily be made robust to heteroskedasticity (just use robust std. errors in step 3)
- □ can also be modified to higher lags AR(2), AR(3) etc. just add more lags of the residuals in step 2 and test for joint significance of all lags
- $\hfill \label{eq:constraint}$ built in Gretl: Tests \rightarrow Autocorrelation after OLS regression

Cochrane-Orcutt method

- $\hfill\square$ with serial correlation, OLS is no longer BLUE
- asymptotically more efficient (= accurate) methods exist
- □ C-O is a simple, widely used alternative

... to be continued ...

LECTURE 10: MORE ON RANDOM PROCESSES AND SERIAL CORRELATION

Jan Zouhar Introductory Econometrics