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Preface

This thesis is the main result of research carried out during 1991-1996, at the Department
of Information and Knowledge Engineering, Prague University of Economics.

The aim of the work was twofold. First, I wanted to analyze the general idea of learning
(or, knowledge base construction) using two sources of information - prior knowledge (of
various types) and data, and to outline a (necessarily subjective) framework for describing
different approaches to solving this task, which have rarely been examined together before.
Second, I wanted to apply some of the outcomes of this methodological work in the design
of new learning algorithms. At my current workplace, there is a long tradition of research
on learning from observational data, from the first, theoretical, outlines of the ESOD
method, up to the newest variations of the Kex knowledge engineering toolbox. So far,
however, these methods have been oriented to processing categorial data without recourse
to other sources of knowledge. It seemed therefore to be an attractive task, to couple
the existing learning paradigm of ESOD with the state-of-the-art of learning with prior
knowledge, including some new ingredients proposed by the author of the thesis himself.

My background is that of machine learning and knowledge engineering, which naturally
influenced the way how the thesis was written, in the sense of topic selection, preferred
terminology and stylistic form. I soon realized that the topic of the work intersects with
a wider range of disciplines and research areas than a single person can be expert at. Many
specialists will certainly argue that my treatment of problems belonging to e.g. uncertainty
processing, statistical hypothesis testing or formal logic is rather superficial and biased;
I had to take this risk, due to limited time.

I have been aided in my work by several colleagues from the department, to whom
I owe my thanks. Among them, I would like to mention my supervisor Jǐŕı Ivánek, Petr
Jirk̊u, Radim Jiroušek and Petr Berka, with whom I discussed most research problems
and who also were careful readers of my papers which later formed the backbone of the
thesis. I am also indebted to Miroslav Kubát for offering me a visit to the Graz Technical
University in 1993; during this visit, I had the opportunity to study the newest machine
learning literature, which I urgently needed for my work to progress. Another person
who greatly influenced my project was Pavel Brazdil from the Porto University; he gave
me useful advice (especially in the context of the International Diploma Course on AI, in
1993 in Brno) and sent me several relevant research papers. I have also benefited from
literature from and discussions with Claire Nédellec, Jerôme Thomas, Stefan Wrobel,
Foster Provost, Hussein Almuallim and many others. A further impetus for my work was
my participation at European Conferences on Machine Learning in 1994, 1995 and 1997,
where I could discuss the topics of interest with a large number of renowned European
researchers. These and some other research activities of mine were partially sponsored by
grants:

• Building intelligent systems - grant no.201/93/0781 of the Grant agency of the Czech
Republic;
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• Using modern mathematical methods for analysis of economic information - grant
no.201/94/1327 of the Grant agency of the Czech Republic;

• Integrated knowledge-based systems on workstations - grant no.94/1097 of the Higher
Education Development Fund;

• Laboratory of intelligent systems - grant no.VS96008 of the Czech Ministry of Edu-
cation.

I am also indebted to Ivan Bruha from the McMaster University, Canada, for a large
number of inspiring comments and suggestions concerning, in particular, the formal struc-
ture of the thesis, and to Vilém Sklenák, the present Head of my department, for general
comprehension and also for his help with typographic matters.

Finally, my thanks belong to my parents and to my fiancee, who did their best (in
a difficult situation for the family, due to my mother’s serious illness) to create an envi-
ronment in which I could concentrate on work, especially in the last months of completing
the thesis.

The thesis consists of six sections, which differ both in size and in form.

Section 1 maps the broader context of the work, at a general level; among other, all
terms from the title of the thesis are thereby introduced. Subsection 1.1 attempts to
grasp the meaning of the terms knowledge (1.1.1) and data (1.1.3), as they are used in
the discipline of knowledge engineering, and in particular in this thesis; also, the basic
problems of knowledge acquisition and modelling (1.1.2), and the categorization of forms
of data (1.1.4) are presented. Subsection 1.2 introduces the notion of machine learning
(1.2.1) and outlines the relation between learning and problem solving (1.2.2); a modest
contribution of the author himself (in this “descriptive” section) is the informal distinction
of various problem-solving tasks falling under the common notion of classification (1.2.3).
Finally, subsection 1.3 declares the possibility to use prior knowledge as input to the
learning process, and thus serves as a bridge to the next section.

Section 2 maps existing research in the area of learning with prior knowledge. Subsec-
tion 2.1 is devoted to learning with prior problem-solving knowledge. First, we mention
incremental learning (2.1.1), which starts with an empty body of problem-solving knowl-
edge and updates it gradually; input knowledge thus always corresponds to target knowl-
edge from the previous learning step. Then, we proceed with the closely related task of
knowledge revision (2.1.2); there, input knowledge usually has different origin than data.
Finally, we briefly mention the task of knowledge integration (2.1.3), which, by itself, does
not have the character of learning from data, but (as we show in section 4) can be viewed
as a part of a “bypass” of knowledge revision. Subsection 2.2, in contrast, concentrates
on the task of learning with prior static domain knowledge. First, we categorize the ways
how such knowledge (sometimes also called “background knowledge”) can provide bias
(i.e. additional information) to the process of empirical learning (2.2.1). Then we describe
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two possibilities in more detail: constrained learning (2.2.2) and constructive induction
(2.2.3), including examples of learning systems. Finally, we treat separately the use of
two types of static domain knowledge - value hierarchies and integrity constraints (2.2.4)
- which is the specific subject of original work in section 5.

Section 3 “interleaves”, in the thesis, the descriptive part from the research part. It
describes the ESOD method for learning and classification, as formulated by Ivánek, and
mentions also its newer implementations made by Berka. The reason for devoting a whole
section to ESOD is that it is a “background” project which motivated a large part of the
original research described in sections 4 and 5; furthermore, as basic ESOD does not take
prior knowledge into account, we could not include it satisfactorily into section 2.

Sections 4 and 5 are both devoted to original research, namely to exploitation of prior
problem-solving knowledge and static domain knowledge, respectively. Each starts with
an “objectives” subsection (4.1, 5.1). However, as the topics have been approached differ-
ently, the internal structure of the sections is dissimilar; the former is mostly theoretical,
including proofs of given assertions, while the latter describes implemented algorithms
and their empirical testing.

Section 4 presents mainly theoretical work in the field of learning with prior problem-
solving knowledge in the form of rules. It consists of three main subsections, with the
following topics:

1. The “bypass” model of learning from expert knowledge and data, which replaces
knowledge revision with empirical induction and knowledge integration (section 4.2).
The model has been conceived only as an informal scheme, and a few hypotheses
have been formulated; it serves merely as a starting point for the next two topics.

2. The algebraic knowledge integration method for rules without weight (section 4.3).
First, some formal notions are introduced (4.3.1); then the method for selection of
an integrated ruleset is presented (4.3.2) and some properties proven (4.3.3); finally,
open problems and future perspectives are outlined (4.3.4).

3. The technique for integration of weighted categorial rules from expert with rules
discovered in observational data, based on (heuristic use of) confidence intervals
(section 4.4). First, the task is presented from the viewpoint of knowledge revision
(4.4.1); then, properties to be satisfied by an interpolation function are suggested
(4.4.2) and an instance of such function constructed (4.4.3); finally, open problems
and future perspectives are again outlined (4.4.4).

Section 5 presents methodologies as well as implementation and experiments in the
field of learning with prior static domain knowledge in the form of abstraction (value)
hierarchies and integrity constraints. It consists of four main subsections, of which the
first two are devoted each to one form of prior knowledge:
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1. Abstraction hierarchies on attribute domains. First, the notion of abstraction hi-
erarchy is introduced (5.2.1). Then, the generic forms of exploitation of such hier-
archies, both on input attributes (5.2.2) and class attributes (5.2.3) in learning are
presented, with the following motivations:

• hierarchies on input attribute values enable to extend the language of induced
rules with abstract terms, making them more readable and meaningful.

• class hierarchies enable to proceed from one-shot classification to systematic
refinement of the conclusion, and to generate explanations of the reasoning of
the classifier.

Finally, a possibility to construct hierarchies automatically (by means of hierarchical
clustering) is investigated (5.2.4).

2. Integrity constraints, which limit the state space of hypotheses (5.3).

The next three subsections describe details of implementation (5.4), testing on multiple
datasets (5.5) and open problems and perspectives (5.6).

Finally, section 6 summarizes the (somewhat heterogeneous) outcomes of the work.
The whole thesis is accompanied with a bibliography, a glossary of abbreviations and an
index. A brief reference guide and the source code of (some of) the implemented programs
has been included in one of the handouts, as a separate clip-on appendix.

æ
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1 Introduction

1.1 Knowledge and data in knowledge-based systems

1.1.1 The notion of knowledge

Knowledge is one of the most general and ambiguous terms of the natural language;
innumerable disciplines such as psychology, philosophy or pedagogy use it each in its own
context. What is common to all of them is that knowledge is ascribed to human beings:
it is an asset, which they can (somehow) acquire, hold and exploit. The fundamental
difference of the particular meaning of knowledge used by the artificial intelligence (AI)
community is the assumption that not only humans but also “artificial beings”, namely
computer systems, can operate with knowledge, be it in a particular way. Both humans
and such “intelligent” computer systems are sometimes (especially in cognitive science)
referred to as intelligent agents.

Intuitively, we feel that knowledge is a “deeper” or “richer” form of information; let us
mention the definition introduced in a handbook for knowledge-based systems developers:
“Knowledge is a rich form of information, such as that stored by humans as expertise
in some restricted domain (e.g. problem-solving skills like medical diagnosis or resource
scheduling). It is often expressed as facts, rules, concepts, relationships, assumptions,
tasks etc.” [TanHay93] A little more “intensional” definition, attempting to discriminate
knowledge from “ordinary” information, may read: “Knowledge is what enables us to ex-
tract new, previously non-existent information from existing information sources”. Under
this vision, the most characteristic feature of knowledge-based systems (KBS)1 would be
their capability to apply limited information physically stored in the knowledge base on
an unlimited, and often imprecisely defined, state space. This is the case of diagnostic
consultation systems (e.g. Mycin, see [Shortl76]), which can typically evaluate multiple
diagnoses and choose the most plausible one for an unforeseen combination of symptoms;
similarly, automated design systems can make up a new product by combining features
according to given constraints and user’s preferences, and so forth.

Beside the functional aspect of knowledge, we can assume some more formal features.
First: in the context of knowledge-based systems, the term “knowledge” usually denotes

1At this point, we should probably make clear about the distinction between expert systems and
knowledge-based systems, which is however not easy. Ethymologically, we would suggest the term expert
system for a computer system miming the (mental rather than motorical) behaviour of an expert, i.e.
a highly-skilled professional, and that of knowledge-based system for a computer system, whose behaviour
is determined by a substance identifiable as ”knowledge” (see later in this section for an approximate
definition). From this point of view, we could imagine expert systems lacking explicit knowledge, e.g. those
based on artificial neural nets, but also knowledge-based systems, which do not have a human counterpart
and acquire their knowledge structures inductively from data. The latter case is important to this work,
since it explicitely assumes symbolic machine learning. Historically, the notion of “expert system” is
older; for a certain period, both terms were considered more or less equivalent. Recently, we can observe,
at least within the “academic” AI community, a sort of reluctancy towards the term “expert system”;
it is sometimes considered as a “dummy commercial label”. In this work, we will mainly use the term
“knowledge-based system”, except when dealing with commercial applications.
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a body of information kept in a separate module beyond the algorithmic part of the system,
in a declarative rather than procedural form. It is this characteristics what justifies a for-
mal distinction between knowledge-based systems and “intelligent-behaviour-exhibiting”
programs with their ingredients of “intelligence” scattered around the program code. The
architecture of a simple KBS serving for consultation with the user then may look as
follows (Fig. 1).
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Inference
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Figure 1: Architecture of a consultation KBS

Due to this modularity, different KBS can be made using the same (or, slightly mod-
ified) inference and explanation mechanisms, equipped with different knowledge bases
(and, probably, user interfaces).

Another, although related feature of knowledge is its intelligibility. That means, com-
puter knowledge, whatever its origin, should have a form compatible with human knowl-
edge and be comprehensible to a human expert. This imposes restrictions on acceptable
knowledge representations. Production rules, decision trees, semantic nets or frames are
intelligible and can be for instance, with more or less effort, transcribed into a natural-
language form. On the other hand, a setting of weights and thresholds in a neural net
is opaque to a human expert, be the functionality of the system as a whole in perfect
accordance with the expert’s requirements. For the purpose of this work, we will further
assume high-level, symbolic representation to be inherent to knowledge.
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To summarize, we have restricted the intuitive notion of computerized knowledge into
“knowledge expressed symbolically, with declarative semantics, which is kept separately
from other elements of a computer system”. We could further refine and elaborate this
vague definition, and introduce various knowledge representations used throughout the
AI discipline; this would however broaden the scope and extent of the whole work beyond
an acceptable limit. Moreover, as recent discussions within the AI community suggest,2

a generally acceptable, rigorous definition of knowledge (and even of its computerized
incarnation) represents an unsolvable problem.

1.1.2 Knowledge acquisition and modelling

The central issue for knowledge-based systems is the acquisition of knowledge. The tra-
ditional approach to knowledge acquisition focused on informal interviews with domain
experts. This approach has, however, brought up many difficulties, the most important
of which is usually denoted as so-called Feigenbaum’s bottleneck: Experts can use their
knowledge in practice, but they are rarely up to formulate it on the paper”. Many non-
verbal techniques, such as card sort or repertory grid (see e.g.[ScoClG91], [TanHay93]) have
been developed to ease the process of transfer of knowledge from experts to knowledge-
based systems; the main goal however remained the same: to encode all knowledge nec-
essary for solving the given task, in the particular representational formalism used by the
system.

In the 1980s, it became obvious that this approach was deemed to thorough revision.
The following is usually viewed as the main features of this so-called paradigm-shift in
knowledge acquisition3:

• View of knowledge acquisition as of modelling rather than as of transfer. The models
built in the process of knowledge acquisition are neither reprints of the expert’s
mental processes, nor operational knowledge structures ready to be put into an
expert system shell. They should be as reusable and comprehensible as possible.

• The distinction between knowledge-level and symbol-level modelling, which has first
been pointed out by A. Newell [Newel82]. A knowledge-level model is considered
as independent of the particular knowledge representation; it is a unifying abstrac-
tion of what different problem-solving agents (humans and/or computers) may view
somewhat differently due to their lower-level constraints. Among the knowledge-
level ingredients, Newell enumerates agents, goals, and actions. More pragmatical
knowledge engineering approaches concentrate on components of knowledge-level
models built during the knowledge acquisition process: tasks, problem-solving meth-
ods and “ontologies” of the given problem domains [Schr95]. Symbol-level models,

2One of such discussions took place in spring 1994 at the KAW (Knowledge Acquisition Workshop)
electronic mailing list. The archive of KAW list can be, in present, obtained via the FTP network
service, see [KAW95]. Similar issues are however raised, from time to time, at many other conferences
and workshops (both “physical” and electronic ones).

3In section 1.2.3, we make some notes on the consequences of this paradigm shift on the discipline of
machine learning.
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on the other hand, involve detailed problem-solving rules and inference mechanisms.
Both symbol-level and knowledge-level models are forms of knowledge; the former
are more operational (they can be more-or-less straightforwardly implemented) while
the latter are more durable, flexible and transmissible4.

• More-or-less clear separation of domain knowledge and control knowledge at the
knowledge level. The former involves all terminology, descriptions of main domain
concepts, relations among them etc. The latter captures the dynamics of problem-
solving: steps to be performed so as to attain a goal. Several different problems
can be, in principle, solved with the same body of domain knowledge, completed
with appropriate problem-solving methods (control knowledge); the generic part of
a problem-solving method can be, on the other hand, used in different domains.

One of conspicuous products of the paradigm shift was the creation of structured KBS
development methodologies. The KADS methodology [WieScB92] represents a de facto
standard for KBS development in Europe and covers the bulk of the KBS lifecycle. Both
analysis and design are viewed as processes of modelling. As we are, for the purpose of this
work, not interested in the practical aspects of system development, we will describe the
only “truly-AI” part of the methodology5 - the technique for development of the model
of expertise. The model of expertise serves for capturing the required expertise (both
domain knowledge and control knowledge) at the knowledge level, i.e. with little or no
concern of how this expertise will be implemented in the finished KBS. It consists of four
layers: domain layer, inference layer, task layer and strategy layer.

• The domain layer covers domain knowledge: basic facts, concepts and relations used
within the domain. It can also comprise more complex structures such as qualitative
models; it should not however involve any kind of control knowledge.

• The inference layer describes abstract inferences, which can be possibly applied on
domain-layer knowledge, and the connections among them, thus forming a web -
the inference structure. The remaining components of the inference structure are
domain roles, which serve as input/output of inferences and are directly mapped
onto domain-layer terms.

4Most recently, attempts have appeared to formalize and operationalize knowledge-level models so that
they can verified for consistency, and even executed, as mock-ups of prospective implemented systems.
Several formal specification languages have been suggested for this purpose (see [FenHar94] for an overview
and comparison). As these languages express knowledge-level concepts by means of symbols, they can
be viewed as a kind of “bridge” between knowledge level and symbol level [Fensel93].

5We actually refer to the version of KADS from the beginning of 1990s (KADS-I). In 1994, the
completion of a new standardized version has been announced, under the name of KADS-II or Common
KADS [KADS95], [DeHMaW94]. Some differences can be observed between the two, nevertheless, the
main ideas persist. The acronym KADS originally stood for “Knowledge Acquisition and Design System”,
now it is rather felt as a genuine term.
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• The task layer specifies which inferences, and in what order, are actually applied.
Each inference from the inference layer is understood as a primitive task in the task
layer. Primitive tasks are then regrouped into hierarchies, and connected by means
of procedural operations, such as sequence, selection or iteration.

• The strategy layer corresponds to strategic decision-making of the expert, such as
choosing among multiple task hierarchies, their dynamic scheduling etc. It is worth
elaborating for large and complex projects only.

�

Abstraction

Domain layer

Inference layer

Task layer

Strategy layer

Figure 2: Degree of abstraction - theoretical view

When comparing the layers according to degree of abstraction, the above ordering
suggests the idea of Fig. 2. However, the design of the strategy layer is, in practice,
tightly bound with the problem domain, and can be viewed as more specific than the
inference and task layers. Fig. 3 is thus more realistic. The inference and task layers have,
on the other hand, many generic features which do not differ very much across problem
domains; with a certain simplification, we can assume that they do not model the current,
specific, task, but a generally defined, generic one. The reusability of inference and task
layers, in the form of so-called generic task models, can save a notable amount of work
compared to developing KBSs from scratch. In this respect, several versions of Generic
Task Model (GTM) Library have been put into exploitation in the KBS development
circles [TanHay93]. The set of GTMs contained in the library6 has been organized into
a hierarchical structure, the top nodes of which being the notions of system analysis,

6Some of the GTMs are derived from generic parts of actual KBSs, others have been contrived “arti-
ficially”, by means of thorough analysis of human problem solving.
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�

Abstraction

Domain layer

Inference layer Task layer

Strategy layer

Generic task model

Figure 3: Degree of abstraction - realistic view

system modification and system synthesis, see Fig. 47. To clarify the notion of generic
task models, and of KADS descriptions in general, we have taken the example of heuristic
classification - a generic task outlined by W. J. Clancey as early as in 1985.

The traditional outlook of inference structure of heuristic classification is in Fig. 5.
Primitive inferences are in ellipses and domain roles in rectangles. In KADS, inferences
are denoted by verbs; here, we have three of them: abstract, match and specialize. The
abstract inference transforms specific observable values - observables - onto abstract values
- variables. The match inference finds an abstract class of solutions - solution abstractions
- relevant to the input variables. Finally, the specialize inference transforms the abstract
class onto a real class - solutions.

The task structure of heuristic classification may vary. As the most obvious alterna-
tives, we can view forward reasoning and backward reasoning. Both are displayed, in
a pseudocode notation8, in Fig. 6. In forward (or, data-driven) reasoning, the acquisition
of observables leads to abstraction, match and specialization, and in the end, the solution
is obtained. In backward (goal-driven) reasoning the overall inference process is triggered
by the need of a solution; the inferences are called in the inverse order, with uninstantiated
arguments, and the instantiation takes place only in the subsequent forward propagation.

In order to develop a real KBS, one or more GTMs are typically selected from the
library, and modified according to the needs of the current task. In parallel, domain

7The diagram covers only a part of the library. Arrows indicate where further GTMs exist; the dashed
boxes correspond to abstract, high-level categories of tasks, for which no actual GTM exists in the library.

8The “+” and “–” signs indicate input/output mode of arguments.
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Figure 4: Fragment of the hierarchy of generic task models in the library
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�abstract
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Variables �
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�match � Solution

abstractions

��
�

�
�specialize

�

Solutions

Figure 5: Inference structure of heuristic classification

/* Forward reasoning */

Heuristic classification (+Observables,-Solutions) by

obtain data for Observables

abstract (+Observables, -Variables)

match (+Variables, -Solution abstractions)

specialize (+Solution abstractions, -Solutions)

/* Backward reasoning */

Heuristic classification (+Observables,-Solutions) by

specialize (-Solutions, -Solution abstractions)

match (-Solution abstractions, -Variables)

abstract (-Variables, -Observables)

obtain data for Observables

Figure 6: Alternative task structures of heuristic classification
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knowledge is collected, associated with domain roles of the existing inference structure/s,
and coupled with the pre-fabricate generic model/s to form the entire model of expertise.

In the design stage, which follows after analysis (but largely overlaps with it), the
model of expertise is operationalized to become the knowledge base of the prospective
KBS. It is important that design, in the KADS approach, is structure-preserving: objects
from the detailed design models map onto objects from the global design model, and
further to the analysis models (especially the model of expertise). This is favourable when
errors occur within the development process, as they can be traced back to their origin;
preservation of structure also extends the capabilities of the explanation mechanism, as
the results of problem-solving can be justified not only by shallow operational knowledge
but also by knowledge-level models.

Throughout this thesis, we will refer to KADS (namely, to its idea of expertise model)
several times, both when describing the state-of-the-art of machine learning and the orig-
inal work of the author.

1.1.3 Data vs. knowledge

Beside knowledge, any realistic knowledge-based system needs a certain amount of con-
crete data to operate on. For a medical consultation system, a unit of data may be
the record of a particular patient; for an intelligent process control system it could be
a set of measurements on process variables taken at a given time; for a knowledge-based
bankruptcy analyser a set of economic indicators of a particular company. Often, we
speak about the database of a knowledge-based system, which probably requires a certain
analysis.

The role of data in early, rule-based KBS significantly differed from their role in con-
ventional database systems (DBS). In a DBS, data are stored for a long period of time; in
a typical rule-based KBS, data were the short-term operational component, while knowl-
edge took over the role of the long-term one. A “classical” diagnostic KBS keeps an
input database, often amounting to a single record of input features (symptoms), which
is initially or gradually supplied by the user or by the environment. Besides, it maintains
and updates its internal, dynamic database using the intermediate outcomes of reasoning,
such as the weights of propositions or lists of diagnoses to be investigated. In the end of
the session, relevant results are output and both the input and dynamic databases are
cleared.

More recently, however, “second generation expert systems” (cf. e.g. [MarVlc92]) have
appeared. They typically have a more complex architecture, and their knowledge com-
ponent is not restricted to simple IF-THEN rules. Among the sources of information
they exploit, we can find deep causal models, behavioural models, as well as static do-
main knowledge (such as structural relationships or taxonomies) and permanent databases.
Also their problem-solving strategy is not reduced to a uniform set of diagnostic inferences
(such as rule matching and firing). They do not consider a single data object (feature
vector) at a time, but often combine information from multiple explicitely declared ob-
jects.
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knows(peter,jane).

knows(X,Y) :- lives_with(X,Y).

knows(X,X).

knows(X,Y) :- X=Y.

man(peter).

man(john).

tall(peter).

short(john).

is_friend_of(peter,john).

Figure 7: Prolog clauses as knowledge vs. data

We can also name some specific approaches to reasoning, which are usually viewed as
“belonging to AI”. Case-based reasoning (CBR) systems (see e.g. [Kolodn93], [AamPla94]),
which is a sort of alternative to rule-based systems, explicitely use previously encountered
data objects to make assumptions about the object (decision situation) currently ex-
amined. Knowledge is thus “dispersed” in a set of selected (and sometimes partially
generalized) data objects. Another discipline where knowledge and data are in particular
relation is the discipline of deductive databases, situated at the borderline between knowl-
edge engineering, relational database engineering and logic programming. In deductive
databases, a body of knowledge (typically expressed as first-order rules) is used, together
with a database of ground facts, to represent an extremely large database intensionally
(for more information, see e.g. [Bry93]). Here (somewhat conversely to CBR), data is
represented by means of knowledge.

As soon as we lift the restriction to propositional IF-THEN-rule (for knowledge) and
feature-vector (for data) representations, we also partially loose the syntactical distinction
between knowledge and data as such. In a logic programming environment, such as the
Prolog9 language, which is frequently used for prototyping KBSs, we enter the input
information in two syntactically distinct forms - as facts and as rules. It is, however,
not guaranteed that the facts have the semantic interpretation of data; finer syntactical
measures have to be applied. Consider e.g. the examples of clauses at Fig. 7 (first part).

The first clause, stating that Peter knows Jane, belongs to the class of so-called ground
facts - facts without variables - which can usually be interpreted as data. The second
clause is a rule stating that if X lives with Y then he/she knows him/her; this can be
viewed as a fragment of knowledge. The third clause is, again, a fact; this time, however,
a non-ground one. It may be read as “everyone knows himself”... which is, however, sort

9The underlying formalism of Prolog is that of Horn clauses, i.e. restricted first-order logic. A larger
part of (especially applied) research on logic programming still exploits Horn clause or derived formalisms.
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of knowledge rather than data. Finally, the fourth clause has the same meaning as the
previous one but it has the form of rule.

In addition, in a relational language, it is difficult not only to distinguish between
knowledge and data, but also to separate individual data objects (which can be done
straightforwardly for feature vectors). A relational description of a real-world object
may consist of several clauses, each of them mapping a particular aspect of the object.
Moreover, a single clause can span over several real-world objects and express a relation
among them. Examples are again at Fig. 7, in the second part. Clauses of unary predicates
man, tall and short describe different properties of objects peter and john; the last
clause indicates a binary relation between these two objects.

From what was said is, again, evident that when speaking about knowledge versus
data, we should take account of semantic meaning rather than of syntactic appearance.
Also, different subdisciplines and co-disciplines of AI have developed their proper inter-
pretation of both terms. Throughout this work, we will come across several of them;
with a certain cautiousness, we can hopefully avoid confusion. As a last resort, we could
perhaps serve ourselves with the pragmatic distinction introduced by Widerhold: what
can be obtained exclusively with the help of an expert is knowledge, while what can be
efficiently collected by a clerk is data (see [Wider86]). If we admit that the expert’s assis-
tance may also have indirect forms, such as provision of examples or selection of relevant
features to observe, Widerhold’s statement preserves its efficiency despite the far-reaching
metamorphoses of the AI discipline.

1.1.4 Observational data vs. examples

At the end of the last section, we have shifted from the syntactic viewpoint to a more
pragmatic one. Here, we will attempt to discern the types of data which differ in their
origin, and also in their properties, especially with respect to their use for empirical
learning: examples, experimental data, and observational data.

At one end of the scope, we can identify carefully selected or even artificially con-
structed examples of the expert’s decisions. This extreme form of data is rather similar
to knowledge, as the collection of representative examples requires a considerable effort of
the expert himself. His expertise should be a guarantee that the description of examples
contains all relevant features and not too many irrelevant ones. The size of example sets
is usually low: partly because experts have their knowledge already arranged in a concise
manner, partly due to the limited time they can allot for this activity. The examples are
typically free of contradictions and redundancy.

The data can be also obtained as a result of experiments. Then it is, sometimes,
possible to generate a representative collection of data; if there is a “gap” in the coverage
of the state space, it can be deliberately filled with a new experiment; also, new descriptors
can be added if the results suggest that they may be relevant. However, both the quantity
and quality of data is limited by the (not only financial but possibly social, ecological
etc., according to the nature of the task) cost of experiments. Experimental data can also
contain some noise, if the feedback from the environment is not fully reliable.
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Raw observational data stand as the other extreme. There, we do not have any pos-
sibility to influence the representativeness of data and to fill in the gaps, as we have to
take the data “as they are”. Again, the data can be burdened with noise. Observa-
tional datasets are typically rather large, and they may have been collected for purposes
substantially different from the current problem-solving task.

For learning in relational domains, especially in inductive logic programming (ILP)
[LavDze94], relatively small sets of examples (up to a few tens) are typically used; these
are either constructed manually or generated automatically from the target predicate
definitions (the latter case however means that what is to be learned is known in advance).
The datasets exploited within inductive data engineering (cf. [Flach93], [KukPop94]), an
interesting discipline laying on the intersection of ILP and deductive databases, are often
much larger (this is related to the fact that the hypothesis space is slightly more restricted
compared to the space of logical programs in “classical” ILP). Recently, there have been
promising attempts to use experimental or observational data described in a sort of first-
order logic; they mostly relate to the area of control of complex systems - e.g. robotic
perception [KliMoR95] or flight simulation [Camac95].

Nevertheless, the most typical format for observational datasets remains the attribute-
value (also known as feature-vector) representation, which corresponds to the proposi-
tional language in terms of expressivity (the slang term “zeroth-order” is thus sometimes
used). The research on attribute-value learning techniques started as early as in the 1970s;
gradually, both the efficiency of algorithms and the increased power of computers enabled
to proceed from small example sets to real-world databases containing many thousands
of objects. This stream of machine learning research is now more and more associated
with the boosting discipline of knowledge discovery in databases (for references, see e.g.
[Nakh95]). Learning from observational data expressed in attribute-value format is also
the main focus of this thesis.

1.2 Learning and problem solving

1.2.1 The position of machine learning

Inductive learning can be characterized as acquisition of general and structured informa-
tion - knowledge - from specific examples or data. This phenomenon is studied within
multiple disciplines, such as logics or statistics; however, it is only in the (predominantly
experimental) discipline of machine learning (ML) that it plays the central role. Machine
learning is actually a vaguely defined notion: it covers a host of dissimilar methods and
approaches. The unifying ideas are perhaps:

• stress on inductive reasoning processes,

• use of symbolic (in contrast to numerical) representation,

• relaxation of some formal criteria of “soundness”, in exchange for more pragmatical
notions of “plausibility” and “performance”, which are easier to verify and/or satisfy,
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• assumption that knowledge learned is not important per se but only when coupled
with a certain problem-solving mechanism.

There are, nevertheless, many methods which are considered as belonging to ML but
lack at least one of the above features.

When the notion of machine learning first appeared (in the end of the 70s), it was in
close connection with knowledge acquisition for expert systems. This was, in fact, one
of its two main distinctions from the by-then well established disciplines of exploratory
data analysis and pattern recognition (the other one was the emphasis on symbolic rather
than numerical descriptions). In exploratory data analysis, the task is to find interesting
relations in data; the subsequent use of these relations is of lesser importance. Pattern
recognition, on the other hand, attempts to find discrimination functions useful for recog-
nizing previously unseen objects; the details of such functions are, however, not necessarily
made explicit.

The vaguely defined area of machine learning, in this respect, spans between the
two. Some of its streams (namely, those related to knowledge discovery in databases
[Nakh95]) stress the explorative character of learning, and thus are similar to classical
data analysis. Other approaches aim at maximizing performance even at the expense
of comprehensibility especially those methods which are fitted to numerical or mixed
domains, such as multivariate decision trees [MurKaS93],[BroUtt95] or neural networks.
The mainstream of machine learning can be, however, characterized as learning explicit
knowledge usable for problem solving.

1.2.2 The inseparability of learning and problem solving

In the context of intelligent agents (or, systems), the activity of learning is usually defined
as “the capacity of an agent (system) to improve its behaviour in time”; if the agent has
the character of problem-solving agent (such as a knowledge-based system) this translates
as “to improve the quality of its problem solving”. From this follows that the learning
task strongly depends on the problem-solving task.

The character of the problem-solving task may vary. At the “lower” end of the scope
we can find simple actions which consist in establishing a many-to-one mapping: the
induced knowledge structure serves to suggest one of fixed conclusions based on a larger
set of input information. Generally, this sort of tasks can be viewed as an assignment of
a class to an object described by a set of features; therefore, the notion of classification10

is typically used. At the “upper” end, we can find complex problem-solving tasks such as
planning or configuration, where the output has the character of a newly built structure.
Powerful problem-solving architectures have been suggested, which, in theory, tackle any

10This, somewhat ambiguous, term is commonly used in the machine learning community. In the
context of expert systems, the term “diagnostic” was traditionally preferred. Some researchers suggest
other terms, such as “prediction” (not in the temporal meaning introduced in the next subsection, but
rather as “prediction of class for newly encountered data objects”). We will, according to the practice of
ML, stick to the term “classification”, understanding it as a general concept covering other, more specific
ones - see the following subsection.
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problem requiring state-space search; learning the relevant knowledge usually has the
form of remembering and generalizing sequences of problem-solving steps, such as the
so-called “chunks” in the Soar system [LaiRoN86]. A particular problem-solving task is
theorem-proving; specific learning methods exist which induce knowledge usable for logical
theorem-proving, such as inductive logic programming [LavDze94] or explanation-based
learning [MitKeK86], [DeJMoo86].

Learning and problem solving in intelligent systems may be either tightly or loosely
coupled. In the first case, learning is triggered by a failure of the problem solver (“failure-
driven learning”, cf. [VSom93]). After the learning phase (which has the form of revision
of existing knowledge), the problem solver reassumes control. In the second case, the
bulk of learning precedes problem solving. If difficulties arise during the problem-solving
phase, they are merely recorded, and the information on the failure is used as soon as the
learner is invoked again. This distinction between tightly and loosely coupled learning
and problem solving is closely related (but not identical) to the distinction of batch and
incremental learning systems, presented in section 2.1.1.

The original contribution of this thesis falls under the subgroup of learning techniques
loosely coupled with problem solving; problem solving has the form of classification. There-
fore, the next subsection is restricted to this category of tasks.

1.2.3 Classification as problem solving

A problem-solving task can be characterized as classification if it corresponds to the
following description:

• Input information consists in a set of observations (observable, measurable or oth-
erwise identifiable features) about some real-world entity; we will denote this set as
data object11.

• The observations are matched with problem-solving knowledge and a conclusion
(or, possibly, several alternative or even compatible conclusions) is selected from
a predefined (most often, finite) set.

The semantic of the task, and the nature of the conclusion may vary. The following is
a (probably not exhaustive) list of different semantics of classification tasks. For each of
them, we outline the essence of the task, point out some of its syntactic peculiarities, and
also attempt to grasp the inverse relation, which maps the conclusion to the observables.

Recognition The data objects represent collections of properties of a concept; some
of them may be relevant while some other irrelevant. Available knowledge states
that the given combination of properties is characteristic for one of known concepts
(i.e. conclusions). Hence, the inverse relation is “has properties”. Example: given
a collection of features of an animal observed, determine which of the known animals
it is.

11The data object can be viewed as a particular representation of the real-world entity.
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Recommendation The data objects represent particular situations. The conclusions
are recommendations of actions; each conclusion could be also understood as a class
of situations in which the given action is suitable. The inverse relation would be
something like “can be used for”.

Example: given certain requirements of the customer, determine which of the prod-
ucts on stock should be offered to him/her.

Control Very close to recommendation, but with a dynamic aspect. The data objects
describe states of a single real-world object rather than individual real-world objects;
conclusions correspond to control actions to be applied on the observed object itself
(“closed loop”). Input observables are often numerical, and so can be even the
conclusions (the phenomenon of “continuous classes”).

Example: given a state of measurements inside a nuclear reactor, determine which
of the possible control actions should be performed.

Diagnosis The data objects represent sets of symptoms; conclusions are diagnoses (of
human diseases, machinery faults and the like). Since the diagnosis causes the
presence of symptoms, problem-solving rules are sort-of inversed causal rules, and
the inverse relation typically is “causes”. Example: medical diagnostic - given a set
of symptoms, determine the disease which may have caused them.

Prediction The data objects represent situations or states of an object; so do the
conclusions. Individual observables represent either factors which can cause the
validity of the conclusion in the future, or manifestations which have common
causes with the conclusion. The inverse relations may be “is caused by”, and/or
“has common causes with”. Example: given a certain situation at the capital mar-
kets, determine whether the stock index will grow, drop or remain stable.

Real-world problem solving often combines multiple tasks with different semantic.
For example, a fault in a technical system can be e.g. pursued by means of diagnostic
reasoning, followed by establishing a recommendation of a control action; the future state
of the system may be then predicted based on all relevant information.

It might also be interesting to compare the above suggested typology with the tradi-
tional distinction of concept acquisition and descriptive generalization in machine learning,
introduced by Michalski [Michal83]. He identifies the former with learning from examples
and the latter with learning from observation (giving these terms a somewhat different
flavour than we do in section 1.1.4), and presents a simple example:

• A recognition rule for the concept “philosopher” might be “a person who pursues
wisdom and gains the knowledge of underlying reality by intellectual means and
moral self-discipline”.

• A descriptive generalization gained from the observation that the philosophers Aris-
totle, Plato, and Socrates were Greek while Spencer was British may read “most
philosophers were Greek”.
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Concept acquisition thus can be viewed as learning the properties of the concept itself
while descriptive generalization as learning the properties of objects satisfying the concept.

In this respect, the knowledge necessary for performing recommendation, control and
prediction (in the above outlined meaning) should probably be obtained via descriptive
generalization, while learning the knowledge for recognition would require concept acquisi-
tion. Diagnosis would fall either to the first group (e.g. if the symptoms are considered as
characteristics of patients having a certain disease) or to the second (e.g. if the symptoms
are considered as characteristics of the disease itself).

We can also compare our list with the list of generic task models (GTM) from the
GTM Library of the KADS methodology ([TanHay93], cf. section 1.1.2), namely with
the class of generic tasks falling under the concept of system analysis, in the taxonomy
from Fig. 4, page 15. It should be kept in mind that the KADS library is destinated for
general KBS analysis and design and is not restricted to classification tasks which can be
represented in the many-to-one fashion. Most models are actually too complex for the
knowledge involved to be learned as such using machine learning techniques, except as
“dissolved” in shallow problem-solving rules.

The KADS taxonomy distinguishes two types of analysis tasks, with respect to the
aspect of time: Identification tasks (related to present time) and Prediction tasks (related
to the future). Among the Identification tasks, there is one - in fact, the most trivial task
within the whole GTM Library - which corresponds to direct reasoning (in one primitive
inference) from observables to the class: simple classification. There is no other input
information than the set of observable features (although implicitely, plausible classifica-
tion requires some knowledge); it thus corresponds to our notion of classification. There is
also a set of diagnosis tasks, which are however richer than our many-to-one notion: there
is a distinct element of input information - the complaint, which represents the initial
impetus of the reasoning process. Among the tasks which consist of multiple inferences
and/or require additional input knowledge, we can also mention heuristic classification
(cf. section 1.1.2) and systematic refinement tasks; the research part of this thesis (in par-
ticular, section 5) actually shows an approach how to learn structured problem-solving
knowledge, which is, in a sense, usable for such complex tasks.

In fact, the existing machine learning research often concentrates on details of learning
techniques and looses the ampler, goal-directed perspective; this problem has resounded
during several workshops on the relation between machine learning and knowledge-level
modelling (cf. e.g. [Fensel94],[ScmAit95]). In our work, we refer to knowledge-level models
at different places, taking advantage of the well elaborated descriptions of the KADS
methodology. The marriage of knowledge-level modelling and ML can be, according to
[Nedel96] observed in two variations:

• knowledge-level models of problem solving are used to find such subtasks in the
knowledge acquisition process for complex systems which are suitable for application
of ML algorithms, and to provide these algorithms with learning bias (e.g. in the
Enigme project [ThoLaG93], see section 2.2.2 for more detail);
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• knowledge-level models of ML algorithms themselves are built which make the biases
of the algorithms explicit and thus enable to choose among several algorithms the
suitable ones for a particular application task (e.g. in the Haiku project [NedRou94],
see section 2.2.1).

In the future, an integration of these two streams is expected, which would further increase
the importance of KADS (or similar) method.

1.3 Learning with prior knowledge

Among the sources of information a knowledge engineer disposes when building a model
of expertise, two are of particular importance - domain expert and data. Traditional
approaches to knowledge acquisition relied on interviewing the domain expert, who should
be, ideally, able to communicate the body of knowledge (e.g. in the form of rules) he/she
uses for solving the given problem. Concrete examples (“past cases”) were only used
as starting points for individual elicitation sessions; in the hands of a skillful knowledge
engineer they could however serve for verification and detection of inconsistencies in the
expert’s assertions.

When machine learning (ML) first touched the knowledge engineering ground, it was
with the assumption that experts are rarely up to formulate rules, never mind plausible
ones. The role of experts should be therefore reduced to that of “generators” of exam-
ples. Furthermore, in some areas, they might be outplayed by large databases containing
observational data. From the examples/data, empirical rules can be inductively extracted.

This prominent stream of machine learning, sometimes denoted as empirical learning12

or learning from examples/data, has long been viewed as “learning without prior knowl-
edge”. It was however obvious that efficient use of empirical learning techniques required
a substantial amount of additional information in the form of so-called learning biases (see
section 2.2.1). Recently, there is a growing interest, within the machine learning commu-
nity, in making these biases explicit, declarative, in the form of background knowledge (see
section 2.2.1). These efforts are connected with a reintegration of the machine learning
and knowledge acqusition disciplines (see [Kodrat94]), which have, for a certain period
of time, followed divergent paths due to the “paradigm-shift” in knowledge acquisition
(cf. e.g. [Nedel95], [Fensel94]). Knowledge acquired from an expert (often, in the form
of abstract models) is used for constraining the search space (in constrained induction,
section 2.2.2), or for transforming it by means of language shift (in constructive induction,
section 2.2.3).

Specific streams in machine learning, on the other hand, stressed the role of prior
knowledge from the very beginning:

• In knowledge revision (section 2.1.2), input knowledge is operational but partially
incomplete or incorrect. Incremental learning (section 2.1.1) represents an inter-

12In this overview part of this work, we do not describe traditional empirical learning, as it is sufficiently
covered in textbook-like literature. Most prominent approaches are e.g. top-down induction of decision
trees [Quinl86], [Quinl93], “star”-based approaches [MicCaM83], [ClaNib89], or version spaces [Mitch77].
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mediate notion between “pure” empirical learning and knowledge revision, as it
assumes that target knowledge is learned uniquely from data but by means of suc-
cessive updates of the body of knowledge which is initially empty; examples are
entered one at a time.

• In explanation-based learning [MitKeK86], [DeJMoo86], input knowledge is complete
and correct, but non-operational, i.e. it is not immediately suitable for problem
solving.

• Apprenticeship learning [Wilk90], [TecKod90], [NedCau92], a borderline approach
related to both machine learning and knowledge acquisition, concentrates more
specifically on refinement of knowledge bases by means of tracing the problem-
solving process, especially in complex problem-solving tasks such as medical diag-
nostics or configuration of technical systems; a human expert is usually involved as
an external oracle.

In the following section, we will briefly review the principles and show some exam-
ples of methods belonging to two areas: learning with prior problem-solving knowledge,
with stress on knowledge revision, incremental learning, and knowledge integration, and
learning with prior static domain knowledge, represented by constrained induction and
constructive induction. We will analyze the roles these approaches assign to various forms
of knowledge and data. We must keep in mind that each of the approaches is by itself
fairly complex, and has many instantiations and variations; there are also many learn-
ing methods (e.g. within explanation-based learning or apprenticeship learning mentioned
above) which may fall under several “headings”, as the approaches have partially evolved
from each other and still largely overlap. It would be extremely difficult (or, probably,
impossible) to make out a uniform framework encompassing the approaches with all their
intricacies. We therefore present each approach in its original context and illustrate it
on original examples where needed. Yet, we do not completely abandon the need for
mutual comparison; we limit it, however, to the abstract level, represented by “neat” I/O
(input/output) diagrams.

In all diagrams, we consider one form of output - target problem-solving knowledge
(psk), and at most five different inputs:

1. Problem-solving knowledge (psk): an imperfect (e.g. incomplete, inconsistent or
overly complex) form of target knowledge.

2. Static domain knowledge (sdk): factual knowledge from the problem domain; it
cannot be directly used for problem solving but the learning algorithm exploits it
in the process of forming target problem-solving knowledge.

3. Meta-knowledge (mk): knowledge influencing the way how other forms of input
knowledge (psk and sdk) are treated; it can be domain-dependent but, unlike
static domain knowledge, it is meaningful in the context of the learning task only.
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4. Data or examples (d/e).

5. Oracle: a human user of the system (usually considered as domain expert), who
possesses his/her own knowledge and can provide input information on request.

For each approach described in this overview, the generic names of inputs are instan-
tiated with names which are customary within the approach itself. The instantiation is
only rough, as some knowledge structures are difficult to assign to a single category. The
reader should be aware that the role of this section (and of the diagrams in particular) is
to enable this, somewhat superficial, comparison, rather than to provide a deeper insight
into the principles of each method.

In this overview, the choice was limited to the methods the author of this work is (to
a certain extent) familiar with, namely to methods which can be roughly characterized
as “symbolic”. Other methods, which could also be characterized as learning in presence
of prior knowledge, have been omitted, such as e.g.:

• Purely probabilistic approaches, such as learning in bayesian networks where the
structure is defined by expert and the probability distributions estimated from data.

• “Subsymbolic” approaches to learning, in particular to knowledge refinement, where
prior problem-solving knowledge is refined by means of neural networks or genetic
algorithms.

These methods may have similar goals but they are based upon particular theoretical
backgrounds, the presentation of which would improperly increase the volume of this work
(set aside the limited acquaintance of the author).

æ
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2 Related research - learning with prior knowledge

2.1 Learning with prior problem-solving knowledge

2.1.1 Incremental learning

According to a widely accepted opinion, human learning is incremental in its nature.
New knowledge, whether acquired ”ready-made” from outside or derived by the person
himself, is repeatedly added to previous knowledge and integrated with it into structures
far more complex than any computer system may ever posess. Obviously, nobody starts
to learn by forgetting everything he knew before. This fact being probably in the minds of
ML researchers, several early empirical learning algorithms were also incremental - they
learned from one example at a time and updated successively the concept description
induced. As one example, we can consider the famous Winston’s Arch learning program
[Winst75], [Winst92] for recognizing objects in the block world, devised as early as in 1975.
As another, let us recall Shapiro’s MIS system [Shap83], considered as the first serious
attempt at an inductive logic programming system. For this first generation of incremental
learners, a high-level description language (restricted first-order logic) was characteristic.
They were conceived as academic research experiments rather than as starting points for
real-world applications; in this context, also input data were understood as collections of
selected examples rather than masses of observational data, and the presence of noise was
not taken into consideration.

Later on, batch mode systems, processing the whole source data set at the same time,
started to proliferate in the field of empirical learning. AQ and TDIDT13 families of
algorithms entered the scene in the period of “ML revival” spurred by progresses in the
area of expert systems. Despite the habitual label of “learning from examples”, clones
of these mainstream algorithms have been implemented in a form suggesting the term
of ”symbolic data analysis”. A flagrant example is the commercial version of the ACLS
(descendant of ID3) procedure, destinated for ”discovering rules in database files”.

During the 80s, batch-mode, attribute-based learning systems were preferred for most
application domains. Another “incremental wave”, however, swelled up in the second
half of the decade. First “incremental learners of the second generation” were mostly
incremental versions of existing batch algorithms: ID5 [Utgoff88] added capabilities for
decision tree update to the original ID3; the AQ15 incremental rule learning system
[MicCaM86] was an extended version of AQ, etc.

Recently, more sophisticated algorithms have been proposed. Some were designed to
operate in dynamically changing environment with so-called concept drift, like the Flora

system by Widmer and Kubat [WidKub93] or the Stagger system by Schlimmer and
Granger [SchGra84]; some other paid specific attention to domains with noisy data -
e.g. Yails system by Torgo [Torgo93], which preserves redundancy in concept descriptions
to achieve robustness. This family of powerful incremental systems is still based on the

13This stands for “top-down induction of decision trees”; the most famous member of this family was
Quinlan’s ID3 [Quinl86].
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attribute-based description language; their extension into first-order logic was, though,
envisaged by their authors.

Last, we will see that incrementality is, somewhat implicitely, present in knowledge
revision systems making part of knowledge modelling environments, such as Mobal (sec-
tions 2.2.2 and 2.1.2). This can be probably justified by the above mentioned incremental
character of human learning, as the primary role of knowledge modelling tools is to model
human expertise.

Let us enumerate the most frequently stated strengths and weaknesses of incremental
(versus batch) algorithms and define conditions under which they are most significant.

Time economy Incremental algorithms are “more economical in time since they do not
always start from scratch” [Utgoff88]. In other words, with an incremental learner
the user need not recreate the whole amount of output knowledge (which he has to
do with a batch learner) when he wants to take a new example (or, quite typically,
an observation or measurement) into account. This was, as it seems, historically the
first (often implicit) argument for incrementality. The time economy phenomenon,
however, has a practical impact only if the source of examples or observations is
incremental by nature and supplies them in real time. Given an extensive protocol
of collected examples or observations, batch learners usually outperform incremental
learners even in terms of speed.

Space economy Incremental algorithms are more economical in space as they operate
with a single example rather than with large amounts of data. This “advantage” is,
however, rather arguable. Many (especially older) incremental learners utilize “full
memory”, i.e. store all input examples into an internal database to ensure that the
theory is constantly in accordance with them. On the other hand, “partial memory”
algorithms are “extremely difficult to design” [Bruha91] and their accuracy is usually
lower (unless we consider the case of dynamic environment, discussed right below).

Adaptability Incremental algorithms can continuously adapt the induced theory in a dy-
namic environment, where target concepts change over time. This is an urgent,
application-driven (cf. e.g. [Kubat89]) incentive for the development of incremental
systems. In a dynamic environment, the full-memory model is useless, since old
items of input data get outdated. As a memory model appropriate for this group
of algorithms, so-called windowing14 was suggested: a limited set of (most recent)
data objects is kept in the database and compared with the theory. Sophisticated
programs, such as Flora3 [WidKub93], use heuristics for dynamically expanding
and contracting the window according to “concept drift indicators” - simply speak-
ing, when the target concept is suspected to change, the tendency to “forget” old
examples is reinforced compared to a period of relative target concept stability.

14Windowing was tested also on batch learning systems, e.g. by Quinlan [Quinl86]; in the course of
time, the advantages of windowing in batch mode however showed spurious.
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Familiarity As was already stated at the beginning of this subsection, incremental learn-
ing is close to human reasoning. This ressemblance can be beneficial for implement-
ing heuristics borrowed from human learning into computer systems. Conversely,
incremental learning steps are easier to interpret in a “human fashion” than opera-
tions on large data sets. In this respect, e.g. the Stagger system [SchGra84] may
feature “psychologically plausible” conservativeness when it is “unwilling” to aban-
don a concept that it repeatedly and successfully recognized for a certain period of
time.

As the preceding paragraphs suggest, incremental learning is particularly useful for
applications where data objects arrive on input subsequently, in real time (in addition,
incrementality is almost inevitable in the case of dynamic environment). Batch learning,
on the other hand, manifests its superiority (or, at least, equality) when the whole dataset
is available at the same time - intuitively, “global” learning is more likely to lead to
a globally optimal, or near-optimal, solution.

The two cases above are, however, somewhat extreme examples of situations in which
empirical learning is applied. Consider a quite realistic situation of input data presented
to the learning system in ”repeated batches”. Every repetition will then stand for a kind
of “macro-incremental” learning step. As we can see, the application of either batch
or incremental learning mode is not obvious here. The model of “repeated batch” is,
moreover, only a specific case of a more general situation: a coincidence of a body of
knowledge (formulated either by a learning system or by a human expert) and a dataset,
within a particular problem-solving task. This brings us close to another area of learning,
namely to knowledge revision.

The difference of the two tasks can be, in a simple form, visualized by means of I/O
diagrams. In Fig. 8, we can see the diagrams of incremental learning and of knowledge
revision; the former differs from the latter in the presence of loop - output problem solving
knowledge enters the learning process immediately as input, as the overall learning task
consists of multiple micro-learning tasks, one per example.

2.1.2 Knowledge revision

Among the terms at our disposal, we have chosen that of knowledge revision, as we view it
as the most neutral one. The name of theory revision is typically used in ILP circles and
somewhat implies that the input knowledge has the form of a (first-order) theory consist-
ing of formulae. The name of knowledge refinement is sometimes put as its counterpart in
the context of (production-) rule-based systems [CraSle90], [CraSlB94], [Sleem95]. The
term refinement might be however a little restricting as it might be understood as cover-
ing only the process of specialization; comprehensive revision techniques however involve
generalization as well.

A unifying idea of all approaches falling under this heading is the starting situation: we
have a body of problem-solving knowledge and a set of examples or data. As the knowledge
does not perform well enough, we adapt it to data. In this respect, the knowledge revision
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process ressembles the process of empirical validation and subsequent modification of any
knowledge-based (or even conventional software) system; the difference lays in the fact
that the process is not conducted by a human (knowledge engineer) but by an autonomous
learning system. The degree of autonomy may be various.

Knowledge revision systems can be categorized across several, rather interdependent,
axes. Let us mention here at least the following:

• The degree of interaction with the user (possibly domain expert).

• The way how examples/data are used to control the revision.

• The robustness with respect to noise in data.

• The language of the knowledge base.

The first criterion discerns between interactive and autonomous revision systems. In-
teractive systems propose (often several alternatives of) revisions to the user who decides;
autonomous systems rely on embedded heuristics. Many systems belong to one or to the
other group, depending on parameter settings, e.g. the knowledge revision tool (KRT)
of the Mobal system [Wrob94a]. Interactive revision is often used in connection with
first-order representation15, to limit the huge search space, i.e. in the ILP system Clint

(see e.g. [LavDze94]) or in the APT learning apprentice system [NedCau92].
The second criterion discerns between data-driven and generate-and-test systems16.

Data-driven (or, sequential) systems ressemble incremental learning systems as they usu-
ally process one example at a time and adapt the knowledge to it; some precaution must
be kept so as not to disturb the consistency with examples seen previously. Generate-and-
test systems first generate several alternatives to the current knowledge base (or to a part
of it) and then evaluate them on all (or, at least, large portion of) data, in a “statistical”
manner; the generate-and-test cycle may be repeated several times, but the number of
cycles is usually much lower than for sequential systems.

Traditionally, research concentrated on the task of revising an approximate theory
using presumably correct data. Some recent methods can, however, cope with noisy
data in a way similar to pruning in standard machine learning systems (e.g. decision
tree learners [Quinl87]). An advanced version of the Either system, by Mooney and
Ourston [MooOu91a], thus fights noise by avoiding making changes to the theory that

15Craw [CraSlB94] claims that “external” sources of knowledge are typically exploited in refinement
of “real” expert systems’ knowledge-bases (which are mostly expressed in propositional-level languages),
and views the (more academic?) ILP systems as autonomous (at the cost of needing more training
examples). In fact, (at least optional) interactivity of learning systems seems to become necessity for
advanced systems, be it for the reasons of language complexity or for pragmatical demands of safety-
critical real-world applications.

16The distinction was first mentioned by Mitchell [Mitch82], as a dichotomy of empirical learning
systems in general. Actually, the class of knowledge revision systems can be viewed as subsuming the
class of systems learning without prior problem-solving knowledge, as it is possible to “revise” even an
empty body of knowledge.

33



account for a small amount of data; only if the respective part of a rule is in conflict with
multiple examples, it may be revised. The Latex system by Tangkitvanich and Shimura
[TanShi93] uses a sophisticated credit-balancing criterion based on coding length - the
minimal description length (MDL) principle.

The language of the knowledge base varies from purely propositional, e.g. in Duc-

tor [Cain91] or Either [MooOur93], through attribute-value representation (which
still has the propositional power only) in knowledge-base refinement systems like Seek

[GinWeP88] or Krust [CraSle90], [CraSle91], to restricted-first-order systems like Forte

[RicMoo95], Mobal [MorWrK93], Clint, and other ILP systems.
Knowledge revision is also related to explanation-based learning, which reformulates

a body of knowledge, expressed as a set of logical clauses (which can be viewed as rules)
so as to make it operational and cover a certain goal concept. As this reformulation
is guided by examples, it can be viewed as generalization of these examples - therefore,
most of existing research falls under the concept of explanation-based generalization (EBG)
[MitKeK86], [DeJMoo86]. Unlike knowledge revision, EBG is deductive, truth-preserving,
and requires input knowledge to be complete and consistent. Another related approach
is that of apprenticeship learning, which consists “refining and debugging the knowledge
base of an expert system during the course of problem solving” ([ShaDie90], p.627).

Among the high number of existing knowledge refinement systems, we have chosen
two examples: the Krust system, which refines a production-rule knowledge base, and
the revision component of the Mobal system, which refines a Horn clause theory in
interaction with the user.

Refinement of a production-rule knowledge base in Krust

Krust [CraSle90], [CraSle91] refines a knowledge base consisting of IF-THEN production
rules ordered according to priority. Each rule has a conjunction of attribute-value pairs
in its condition. Only one rule can fire for a given example, namely that with highest
priority among all enabled rules (rules whose condition is satisfied by the example).

The refinement process starts when a rule fires for an example and suggests a conclu-
sion CR while the expert suggests a different conclusion, CE. Krust then generates a large
number of refinements. Each refinement consists in a minimal change, i.e. a minimal step
needed for the example to be classified correctly, and is one of the following:

1. modify (usually generalize) the condition of some rule with conclusion CE so that
it can fire for the example,

2. change the conclusion of the error-causing rule to CE ,

3. modify (usually specialize) the condition of the error-causing rule so that it can no
longer fire for the example,

4. lower the priority of the error-causing rule,

5. increase the priority of some rule with conclusion CE,
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6. perform both 1 and 3, or 1 and 4,

7. insert an entirely new rule, which specifically covers the example.

This large set of examples is then passed through two subsequent filtering phases.
During refinement filtering, all refinements which e.g. contain contradictory combinations
of changes, change good rules or contain unlikely changes are removed. The remaining
refinements are implemented, which may still result in a high number of alternative knowl-
edge bases. Then, knowledge-base filtering is applied, which removes all knowledge bases
which do not correctly classify the example (this may occur due to rules’ interaction), and
also knowledge bases which do not correctly classify some of the small set of “chestnut”
cases defined by the expert. After these two phases of filtering, only a relatively small
number of knowledge bases remains, which is eventually tested on a larger example set,
and the knowledge base with best accuracy is selected.

As the main advantage of Krust, its authors view the possibility to exploit multi-
ple alternative refinements while keeping the complexity reasonably bounded (thanks to
heuristics and “chestnut” cases). In [CraSle91] it is shown that this approach, among
other, enables to reconstruct a knowledge base which has been corrupted, as the original
form is (almost) sure to be generated as “refinement” and is very likely to survive the
filterings.

Interactive knowledge revision in Mobal

Mobal [MorWrK93], [Sommer94] is a complex tool for incremental and interactive knowl-
edge modelling based on first-order logic17. Modelling can have the forms of manual input
from the user, consistency checking, as well as autonomous derivation of new knowledge.
The system has an inherently modular structure; however, individual modules interact on
the same items of knowledge, their impact thus being conflued from the user’s point of
view. In this work, we will focus on two modules: the knowledge revision tool KRT and
the concept learning tool CLT (both in this section), and the rule discovery tool RDT (in
section 2.2.2).

Later, in section 2.2.2, we will describe the empirical learning component of the Mobal

system (RDT), in more detail. However, learning in Mobal may also have the form of
revision, which is performed by means of KRT - the knowledge revision tool. When
the user indicates that a (ground) fact that has previously been derived by Mobal’s
inference mechanism is not valid, the revision process starts. First, the user is shown
the derivation graph of the spurious fact, i.e. the set of all facts and rules participating
on the derivation; each rule has an associated confidence value computed as the ratio of
known applications and known exceptions. Based on the graph, the system builds a list
of the so-called minimal removal sets ([Wrob93], [Wrob94a]); each of them may consist of

17It is actually Horn-clause logic, with some restrictions (absence of function symbols) and some ex-
tensions (disjunctive clauses as integrity constraints, higher-order structures...).
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a number of facts and rule applications (i.e. rules with terms substituted for variables).18

The user selects one of these sets, the elements of which are then removed. The removal
of facts is straightforward; to remove rule application/s, the respective rule/s have to be
reformulated.

For each overly general rule, KRT attempts to apply, in turn, four reformulation
operators. From the simplest to the most complicated, these are the following [Wrob94c]:

Minimal specialization Adding the forbidden applications to the list of global rule’s
exceptions (this is always the first, though often insufficient, step).

Localization Making the global exceptions local, i.e. constraining a single variable of
the rule.

Addition of an existing predicate An existing predicate is added to the rule as a new
premise, sharing some variable/s with existing premises.

Concept formation An entirely new (usually unary) predicate is formed to be, after
the user’s approval, added to the rule.

The first two operations are performed by KRT itself, the third requires inductive
learning performed by means of a learning module (RDT, see section 2.2.2), and the
fourth requires both RDT and the concept formation module CLT (concept learning
tool).

As an example, consider the following rule19, which states that the owner of a vehicle
involved in a traffic violation is always responsible:

r1: involved_vehicle(X,Y) & owner(Z,Y) --> responsible(Z,X)

As the rule has no exceptions, its support set - the set of allowed instantiations of left-hand
side variables - is unrestricted, i.e. all * all * all (one all symbol for each of X, Y,
Z). Using this rule and the facts

involved_vehicle(event1,abc_45-56).

involved_vehicle(event2,abc_45-56).

involved_vehicle(event3,gr_12-34).

involved_vehicle(event4,ble_85-35).

involved_vehicle(event5,ai_64-65).

involved_vehicle(event6,ai_64-65).

owner(john,abc_45-56).

owner(peter,gr_12-34).

owner(david,ble_85-35).

owner(martin,ai_64-65).

18The list is ordered from removals which affect the knowledge base “the least” to those which affect it
“the most”, according to a so-called two-tiered confidence model; this model consists of discrete confidence
classes as well as of a continuous confidence measure [Wrob94b].

19This example is taken from [Wrob94c] and slightly modified.
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Mobal derives

responsible(john,event1).

responsible(john,event2).

responsible(peter,event3).

responsible(david,event4).

responsible(martin,event5).

responsible(martin,event6).

Let us assume that the user rejects the last three of the conclusions (i.e. claims that
David and Martin are not responsible for the respective violations), and indicates that
rule r1 is to blame for all of the improper derivations. Then, KRT first adds three global
exceptions to the rule:

r1: involved_vehicle(X,Y) & owner(Z,Y) --> responsible(Z,X)

all * all * all \ {(event4,ble_85-35,david),

(event5,ai_64-65,martin),

(event6,ai_64-65,martin)}

In this form, the rule has only three positive applications, and three exceptions; for
standard parameter setting, reformulation of such rule will be required.

The first attempt of reformulation consists in localization. We will assume that the
inapplicability of the rule is, for each of the three instantiations, due to a single variable.
There are thus three possible reformulations of the rule (we list only the support sets as
the rule itself remains the same):

(all \ {event4,event5,event6}) * all * all

all * (all \ {ble_85-35,ai_64-65}) * all

all * all * (all \ {david,martin})

In the next reformulation attempt, Mobal will try to find an existing predicate to be
added to the rule as additional premise. The inductive learning module RDT (cf. sec-
tion 2.2.2) is invoked with a set of partially instantiated rule models (metapredicates),
such as:

P(X) & involved_vehicle(X,Y) & owner(Z,Y) --> responsible(Z,X)

Let us assume that, in the knowledge base, there are also predicates determining the
sort of violation, with facts

parking_viol(event1).

speed_limit_viol(event2).

speed_limit_viol(event3).

driving_drunk(event4).

driving_drunk(event5).

collision(event6).
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Then RDT proposes to replace the predicate variable P in the above rule model with
speed limit viol, yielding the rule

speed_limit_viol(X) & involved_vehicle(X,Y) & owner(Z,Y)

--> responsible(Z,X)

Such a rule would have two positive applications and no exceptions, but the valid conclu-
sion responsible(john,event1) would no longer be derived. In addition, the reformu-
lated rule is more complex (i.e. longer) than the original rule.

As a final resort, Mobal can apply concept formation using the concept learning tool
(CLT)20. Let us assume that a new concept (i.e. unary predicate) c1 is invented by CLT,
which regroups three of the instantiations of X in the rule, event1, event2 and event3.
The facts

c1(event1).

c1(event2).

c1(event3).

are added to the knowledge base, and the rule is reformulated into

c1(X) & involved_vehicle(X,Y) & owner(Z,Y) --> responsible(Z,X)

which provides all required derivations and none of the incorrect ones.
Furthemore, concept c1 is characterized: rules having it on the right-hand side are

sought by means of RDT21. The following rules could possibly be found:

parking_viol(X) --> c1(X).

speed_limit_viol(X) --> c1(X).

The instances of the concept, together with the characteristic rules above, are finally
presented to the user, who may e.g. replace the default name of the concept (c1) by a more
informative one, such as minor violation. The ultimate form of the reformulated rule,
obtained thanks to the united forces of system and user (Morik [MorWrK93] uses the
term balanced cooperative modelling) is

minor_violation(X) & involved_vehicle(X,Y) & owner(Z,Y)

--> responsible(Z,X)

i.e. “the owner of a vehicle involved is responsible for minor traffic violations”.

20As the concept formation method of Mobal is fairly complex, we describe it here in an extremely
simplified way; details can be found in [Wrob94a] or [Wrob94c].

21Actually, the characterization involves also search for rules having the concept predicate in the left-
hand side; this subsequently enables to restructure the whole knowledge base, see [Wrob94c].
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2.1.3 Knowledge integration

The notion of knowledge integration has been traditionally used in the context of dis-
tributed AI, namely in multi-agent learning, when the knowledge collected by separate
agents is to be put together in a consistent and efficient manner. The approach suggested
by Brazdil and Torgo (see [BraTor90], [TorKub91]) orders rules learned on different sub-
sets of data according to their quality wrt. the whole dataset. The quality is computed
from the consistency (number of objects satisfying both sides of the rule, divided by
the number of objects satisfying the left-hand side) and completeness (number of objects
satisfying both sides, divided by the number of objects satisfying the right-hand side).
A scheme of knowledge integration as it is understood in distributed AI is on Fig. 9.
The input to the integration task, in this simple form, thus consists in multiple bodies
of knowledge and possibly the source dataset, which however serves only for rating the
pieces of knowledge to be integrated.

Empirical studies (e.g. [SikSha92]) have shown that distributed learning may lead to
better results than single-agent learning, since different agents can use their different biases
with greater chance of fitting the target patterns hidden in data. Some authors claim that
combining (integrating) knowledge learned on partitions of data may be efficient even if
an identical learning algorithm is applied in all learning subtasks. If the different batches
of data provide some variation of data representation in the description space, individual
theories induced become “specialists” in different parts of the space [TinLow97]; the so-
called model combination (which is more or less identifiable with knowledge integration)
then allows cooperation between these specialists. In the above paper, a hypothesis has
been raised (and partially verified) that for small amounts of data, data combination (prior
to learning) is the better choice, while for large amounts of data, model combination is
worth trying.

2.2 Learning with prior static domain knowledge

2.2.1 Bias and background knowledge in empirical learning

As the name suggests, empirical learning is a reasoning process, in which specific obser-
vations (examples, instances, data...) are transformed into more general knowledge. This
phenomenon has been studied by many disciplines; however, it has acquired particular
attention as the key topic in machine learning. There, it has been also called (more-
or-less interchangeably) inductive learning (in contrast to deductive approaches such as
explanation-based generalization) or learning from examples/data. For a long period, ex-
amples or data were considered as the only input to the empirical learning task. Yet, it
became obvious that “pure empirical learning” as such would not give valuable results:
as induction is not truth-preserving, an extremely high number of examples would be
needed to confirm the validity of knowledge acquired.22 As a matter of fact, empirical
learning systems have, from the beginning, taken advantage of some implicit information

22This is (informally presented) one of important outcomes of research on the so-called PAC (probably-
approximately-correct) learnability theory, cf. e.g. [Vali84].

39



Global Data

� � �

Partial
Data

Partial
Data

Partial
Data

� � �

I N D U C T I V E L E A R N I N G

� � �

Partial

Rule Base

Partial

Rule Base

Partial

Rule Base

	
	
 �

�
��

KNOWLEDGE INTEGRATION

�

Integrated

Rule Base

� 	


�

Evaluation

Figure 9: Knowledge integration in distributed AI

40



that helped them to focus on relevant types of knowledge only. This information, denoted
as learning bias23, has later been subject to thorough study.

Attempts have recently been made to convert implicit biases of existing and new learn-
ing algorithms into explicit, declarative biases. Several (especially European) ML research
projects have provided existing families of ML algorithms with abstract, knowledge-level
models (cf. section 1.1.2), in order to facilitate their integration into complex problem-
solving architectures. This “knowledge-level analysis” has been already performed e.g. for
explanation-based learning [VVelde94] and for certain types of empirical learning systems,
such as TDIDT (top-down induction of decision-trees) systems [Slodz94] or generate-and-
test learning systems [RouAlb94], [NedRou94].

Most authors (e.g. [GorDeJ95]) suggest the following typology of biases:

1. Representational biases defining the states in the search space. They consist of two
parts: set of primitive terms (allowable features, their types and range of values),
and language of hypotheses (e.g. first-order predicate calculus or DNF expressions).

2. Procedural (or algorithmic) biases determining the order of traversal of the states in
the space defined by a representational bias.

3. Instance (or sample) biases determining the selection of instances (examples, data
objects...) which enter the learning process.

In the context of the MLNet Familiarization Workshop on Declarative Bias, in 1994
[DecBia94]), a similar typology has been formulated:

1. Language biases restricting the hypothesis space.

2. Biases which guide the search in the hypothesis space.

3. Biases which evaluate hypotheses.

Obviously, the notion of language bias is closely related to that of representational
bias from the previous list. We can assume that a certain initial representational lan-
guage (e.g. attribute-value formalism) exists; what is called language bias here is actually
a restriction of the set of primitive terms and/or of constructors of expressions (e.g. de-
cision trees). On the other hand, the constructors of expressions can be viewed as a bias
extending the basic hypothesis space, as it is in constructive induction (cf. section 2.2.3).
It is a matter of discussion whether we should view the initial language as bias, or whether
this notion should be reserved for specific restrictions and extensions.

The remaining two categories (search and evaluation biases) can be viewed as refine-
ments of the notion of procedural bias.

23As the perhaps most universal definition, we can introduce that given by Gordon & desJardins
[GorDeJ95]: learning bias is “any factor (including consistency with the instances) that influences the
definition or selection of inductive hypotheses.” Even this definition does not cover some particular types
of bias, especially the bias influencing the selection of instances (sample bias).
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Language (representational) biases and search (procedural) biases are closely interre-
lated. Particularly, a rich (i.e. weakly biased) representational language enforces the use
of strong search biases to keep the complexity of learning reasonably bounded. It is the
reason why nearly all inductive logic programming systems rely either on large amounts
of background knowledge, or on user-given hints (i.e. work interactively), cf. [LavDze94].

We can imagine several possible sources of the bias. First, it can be (in particular,
for representational bias) the inherent principles of the learning algorithm, incurred by
the representational language. A classical restrictive bias of symbolic, attribute-value
learning algorithms is thus the assumption of orthogonal concept boundaries, i.e., in the
geometric interpretation, concept descriptions are understood as axis-parallel hyperplanes
in a space where each coordinate maps to an attribute24. This bias is, on the other hand,
relaxed25 by most statistical, neural-net and case-based methods (see [DecMer94]) as well
as by certain decision tree methods which learn the so-called multivariate (also called
“oblique”) decision trees ([MurKaS93], [BroUtt95]). Even further, concept boundaries
may be not only non-orthogonal but even non-linear, especially in neural network repre-
sentation. In this way, even a simple backpropagation neural network can recognize so-
called m-of-n concepts, which are beyond the scope of most symbolic learning algorithms
(cf. e.g. [Thrun91] for empirical comparison). Disposing the orthogonality assumption
may improve the “fitness” of a concept description, but usually reduces comprehensi-
bility and incurs computational overhead. The implicit bias for comprehensibility may,
on the other hand, requisite the use of close-to-natural-language representations, such as
predicate logic, if the character of the domain favourizes it.

A second source of bias is the already mentioned domain-independent principles of
reasoning, such as the Occam’s razor or entropy minimization, which can be “grafted”
on different learning techniques and knowledge representations; these mostly generate
search and evaluation biases. Quite often, they rely on the achievements of statistics
and information theory, including e.g. statistical significance testing, average error min-
imization, or entropy and information gain criteria (as examples, see e.g. [IvaSte88],
[Quinl86], [Quinl93]). A closely related field is that of description minimality, involving
the use of the Occam’s Razor [BluEhH87], minimal description length (MDL) [TanShi93],
[Quinl94], [Pfahr94] and minimal message length (MML) [OliBaW96] principles. Some
methods combine both approaches. Last, we should not omit heuristic “rules-of-thumb”26,
which many practitioners prefer for their simplicity and immediate applicability.

Yet another, third, source of bias, may be the user himself, who can tune the parame-
ters of the algorithm so as to adapt it to the task at hand. What is most important in the
context of this work, is however the fourth source: explicit, domain-dependent background
knowledge.

24Matheus [Math91] denotes this type of bias as logical-representation bias.
25This is obviously only possible if the domains of attributes are numerical.
26An example of such rule without theoretical justification is given in [Pfahr94]; it is however not

universal but pertaining to the domain of medicine - the so-called 3-σ heuristic which suggests a test
result to be pathological if its value differs from the mean value of the healthy population by more than
three standard deviations...
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As implicit background knowledge we can understand even such indispensable inputs
to empirical learning as attributes by means of which the data are described; the success
of simple learning algorithms on many “benchmark” datasets was actually due to the
“friendly nature” of datasets, in which most attributes were relevant with respect to class
discernment.

Explicit background knowledge, on the other hand, is truly separated from data; it
is an extra input to the learning process. If we consider the types of input knowledge
we want to distinguish in I/O diagrams (cf. section 1.3), we can more-or-less identify
background knowledge with static domain knowledge and meta-knowledge. The remain-
ing type, problem-solving knowledge, can be hardly labelled as “background”, as it is
syntactically akin to target, “foreground” knowledge27.

Background knowledge often does not satisfy the characteristic property of “expert
knowledge”, i.e. scarcity. Instead, it can fall upon the heading of either the following
types:

• Specific but rudimentary knowledge, which is possessed by anyone who has worked
in the domain even for a short period of time.

• General common-sense knowledge, for which no in-depth acquaintance with details
of the domain is necessary.

Background knowledge can enter the learning process:

1. Before learning actually starts

• to verify the consistency of data and possibly remove inconsistent, redundant,
or irrelevant data objects ([VSom89] denotes this type of background knowledge
as “factual knowledge”);

• to extend given data with newly constructed attributes or predicates.

2. During learning (i.e. search for concept descriptions)

• to constrain the search and to guide it by means of preference criteria;

• to define a stop-condition which suggests when to terminate the search.

3. After the tentative concept descriptions are found - to validate them against an
external global criterion.

27Input problem solving knowledge can be nevertheless viewed as a source of search bias. In knowledge-
revision and incremental learning systems, the search usually starts in the neighbourhood of input (im-
perfect) knowledge - this corresponds to the general principle of minimal change, incarnated e.g. in the
minimal base revision operation of the Mobal system (section 2.1.2). The situation is still different in in-
ductive logic programming, where the distinction between problem-solving and static domain knowledge
(and even data) dissolves in the uniform Horn-clause formalism.
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We can thus see that all types of bias (cf. the list on page 40) can be provided to the
learning algorithm via explicit background knowledge.

In our overview, we will make a distinction between restrictive and constructive ways of
use of background knowledge, and thus between constrained and constructive induction.
The first is treated in section 2.2.2 and the second in section 2.2.3.

2.2.2 Constraining learning with explicit knowledge

Assuming that output knowledge has the form of rules, background knowledge deter-
mines/suggests which description elements (attributes, predicates...) should occur in the
left-hand sides and right-hand sides of the rules, and which examples/cases are to be used
to guide and evaluate the search; this form of inductive learning can be called constrained
induction.28 As examples of use of background knowledge for constraining the search,
we will present two approaches which have lately received particular attention, especially
due to their effort to put together the viewpoints of machine learning and knowledge
acquisition - Mobal and Enigme. Other approaches will be mentioned only very briefly.

Mobal - learning as one of interactions among knowledge items

Mobal [MorWrK93], [Sommer94] is a complex tool for incremental and interactive knowl-
edge modelling based on first-order logic29. Modelling can have the forms of manual input
from the user, consistency checking, as well as autonomous derivation of new knowledge.
The system has an inherently modular structure; however, individual modules interact
on the same items of knowledge, their impact thus being conflued from the user’s point
of view. The rule discovery tool RDT serves for derivation of rules from facts30. This is
the main problem in inductive logic programming, which is known to be computationally
intractable in its pure form. In Mobal, the state space of potential rules is limited by
means of two types of “background knowledge”: abstract rule models and predicate topolo-
gies. These two types of knowledge are written in full rectangles31 in the I/O diagram, in
Fig. 10. However, the use of RDT is not restricted to learning rules “from scratch”; it has
an important role in concept formation and thus in knowledge revision (cf. section 2.1.2),
which is interactive. The impact of the user and of the imperfect input rule is mediated
by the knowledge revision tool (KRT - see section 2.1.2) - it is thus marked as dashed in
the diagram.

Abstract rule models - metapredicates - can be derived from existing rules by replacing
predicates with predicate variables (and possibly constants with constant variables). As

28This constraining process can be possibly viewed as a sequence of selection and projection operations
on a relational database, i.e. on the input dataset.

29It is actually Horn-clause logic, with some restrictions (absence of function symbols) and some ex-
tensions (disjunctive clauses as integrity constraints, higher-order structures...).

30
Mobal is also able to cooperate with learning tools other than RDT, e.g. FOIL [QuiCam93] or

Golem [MugFen90].
31The remaining input marked by full rectangles (i.e. as “direct” input) is the (ground) facts.
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Figure 10: I/O diagram of Mobal’s rule discovery tool

45



an example, we can take a rule:

works_for(X,Y) --> company(Y).

expressing that if someone works for Y then Y is a company. The corresponding metapred-
icate, which can be generated automatically in Mobal, is:

m1(P1,P2):P1(X,Y) --> P2(Y).

In addition to the metapredicate, a metafact is also derived, corresponding to the partic-
ular instantiation of the metapredicate m1:

m1(works_for,company).

Metapredicates can be generated or input by the user. When the RDT is invoked for
a particular target predicate (namely, to find rules with this predicate on the right-hand
side), it examines all metapredicates present in the knowledge base, and selects those
with right-hand side of the same arity and argument types as the target predicate. The
left-hand sides of these, compatible, rule models are then instantiated with existing pred-
icates. For every tentative rule thus formed, validity is computed with respect to facts in
the knowledge base. Rules which satisfy a certain, user-specifiable, plausibility criterion
(based on the number of examples and counter-examples of the rule) are inserted into the
knowledge base.

Predicate topologies are directed graphs, expressing semantic relations (namely the
relation of “derivability”) among groups of predicates. They can be used to constrain
the rule induction in the following way: a rule is admissible wrt. a topology if all predi-
cates from its premises belong either to the same topology node as the predicate of the
conclusion, or to the predecessors of this node.

Unlike most machine learning systems described in this work, Mobal is not designed
to perform a single, however complex, transformation of one form of information into an-
other (such as “data” into “knowledge”). The derivation relation among different types of
its knowledge items is multiway, and automatically derived items are kept in the knowl-
edge base at the same level with items input by the user. For example, the user can provide
rules and some facts compatible with the rules’ premises; the system then deduces new
facts through modus ponens. On the other hand, new rules can be induced from both
input and deduced facts with the help of metapredicates (as described above), and im-
mediately used for further deduction; this feature is denoted as closed-loop-learning. The
rules can be also generalized into abstract rule models; in addition, rules can be composed
into a rule graph, from which a predicate topology can be automatically extracted. All
this gives Mobal a remarkable flexibility, suitable for incremental modelling of not-well
understood, complex domains.32

32There is, presently, a discussion whether Mobal suits for actual development of KBS, as its com-
plexity together with close-loop-learning and a host of other “spontaneously-triggered” actions may lead
to loss of control over the modelling process. Authors of the system however claim that Mobal can be
used e.g. for building the domain layer of the expertise model in the KADS methodology, cf. section 1.1.2.
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Enigme - learning constrained with models of problem solving

The approach taken by Thomas et al. in the Enigme project [ThoLaG93], [GanThL93],
embeds empirical learning into the KADS methodology of knowledge modelling (cf. sec-
tion 1.1.2). Learning represents but a support task within the global task of building
a knowledge-based application. On the other hand, knowledge previously acquired from
the expert acts as a bias for the learning task. Enigme uses a partial model of expertise,
i.e. knowledge from the inference layer, from the task layer and from the “static” part of
the domain layer (semantic networks) as a bias so as to learn the “dynamic” part of the
domain layer (problem-solving rules), as depicted in Fig. 11.

Enigme has been tested on a non-industrial but fairly complex problem: opening in
the game of bridge. The process of opening selection is performed in several steps. It
can be represented with the inference structure at Fig. 12, where ellipses correspond to
inferences and rectangles to inference roles. Inferences in double ellipses (e.g. “compute”)
are not learnable within Enigme, as they consist in numerical computation rather than in
rule-based reasoning. The learning process thus concentrates on the remaining inferences,
such that each corresponds to one learning step.

The inference structure by itself, however, does not determine the order of inferences.
The control flow in the inference diagram is determined by the task structure, here written
in pseudo-code (Fig. 13)33.

The overall task is to find a solution (suitable opening) based on source data (the
hand). In the application, several hundreds of “hand-opening” pairs were available.
A naive approach to learning (not taking advantage of the model of expertise) would
try to learn classification rules based on the examples. The number of observables that
can be derived from a hand is however extremely high, this leading to barely tractable

33The pseudo-code of the task structure has been transcribed to the format used before in this thesis.
In original work (e.g. [Thomas94]), a different but compatible format is used.
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choose_opening(+Source_Data,-Solution) :-

compute(+Source_Data,-Valuation),

match(+Valuation,-Solution_Classes),

if opening=yes

then decompose_1(+Source_Data,-Observables_1),

abstract(+Observables_1,-Syndrome_1),

select_conv(+Syndrome_1,+Valuation,-Convention),

if conventional-opening = club

or conventional-opening = no-trump

then project(+Convention,-Solution)

else decompose_2(+Source_Data,-Observables_2),

abstract_2(+Syndrome_1,+Observables_2,-Syndrome_2),

classify(+Syndrome_2,+Observables_2,-Solution).

Figure 13: Task structure of the bridge example

search space. In addition, the rules learned will be flat, with overly complex (and thus
incomprehensible) left-hand sides; also the accuracy will be low, as many potential ob-
servables are relevant only in some cases.34

The mechanism of Enigme enables to learn the rules for each inference step separately.
In each learning task, only the input attributes which are relevant wrt. inference structure
are considered.35 Similarly, only the examples which meet all test-conditions in the task
structure, necessary for performing the particular inference, are considered; e.g., for the
project inference, the composite test-condition is:

opening = yes and
(conventional opening = club or conventional opening = no-trump)

As a third possible bias, Enigme can also use semantic networks (e.g. is-a hierarchies);
their use is, in fact, a domain-layer counterpart to constraining by inference structures
described above.

If we wanted to categorize the types of input knowledge in the way introduced in this
work (section 1.3), we will see that the mapping is not obvious. Clearly, semantic networks
from the domain layer describe static relations between concepts, and thus definitely
belong to static domain knowledge. Further, the task structure is procedural and has the

34We can see by the task structure that some parts of the inference structure (and thus some inference
roles) are not used to process every example. The decision to pass, for example, can sometimes be made
based on very few findings, others being irrelevant.

35For example, in the left-hand side of rules realizing the select conv inference, only the attributes
mapping on valuation, syndrome1 and convention inference roles are considered.
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Figure 14: I/O diagram of Enigme

character of problem-solving knowledge - although, due to its knowledge-level nature, it
would not be directly applicable for bridge-playing and could be seen as “static” from
the symbol-level perspective. The remaining type of background knowledge - inference
structure - is the hardest to classify. On the one hand, it is immediately related to the
task to be performed (and thus to problem-solving). On the other hand, it has declarative
nature - the relation of “derivability” among domain roles can, in a sense, be considered
as any other relation which hold in the domain. Among the inputs to Enigme, there does
not seem to be any which would have the character of meta-knowledge; the activity of
user as oracle is not required, either. The whole situation is depicted in the I/O diagram
at Fig. 14.

Constrained learning of Enigme leads to a structured rule base, possibly with better
accuracy (with even a low number of training examples), but certainly with better expla-
nation capabilities.36 Therefore, it seems to be useful in the context of development of
“second-generation” expert systems, where modularity and comprehensibility play the key
role. With this respect, Enigme is currently being integrated into the Vital knowledge
engineering workbench (cf. e.g. [LeRoux94]), which supports a variation of the KADS
methodology.

36Empirical results in terms of accuracy and comparison with “naive learning” approach are presented
in [Thomas94].
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Other approaches to constrained induction

The above methods were representative examples of the “constrained empirical learning”
stream. We will mention other, similar, approaches only very briefly.

The approach taken by van Someren and his colleagues at the University of Amster-
dam [VDoVSo94], [HelSom95] is similar to Enigme in using the inference layer of the
KADS model of expertise for biasing the learning of domain-layer rules; however, the
induction does not have the form of batch learning “from scratch” but of knowledge re-
finement (cf. section 2.1.2). If a correct statement cannot be derived, its dependency
tree is passed top-down, and potential gaps identified in dialogue with the user. Only
the statements relevant wrt. the inference structure are considered. The missing rules
are specified again in dialogue with the user - a sort of version space dialogue, where
the final form is reached after a sequence of moves in the generalization lattice. There
are two variations of the algorithm: the ML-3 system [VDoVSo94] can refine incomplete
knowledge bases automatically, under the single-fault assumption; the system described
in [HelSom95] can also repair incorrect knowledge bases via specialization, and handles
multiple faults, these capabilities being traded off by increased interaction with the user.

The idea of splitting the set of attributes/examples for batch learning, central for
Enigme, has also been raised by Bruha [Bruha95]. There, the split is achieved by means
of attribute hierarchy trees, i.e. decision trees formulated by the expert. Some leaves of
the tree may be final, while other represent a learning task, which is solved using only
examples matching the branch and attributes not present in the branch. Here, prior
knowledge is at the same degree of abstraction as the knowledge to be learned.

Clark & Matwin [ClaMat93], on the other hand, constrain learning with a distinct type
of knowledge: qualitative models. Qualitative models link the concepts (quantities) of the
application domain and indicate the influence relations, such as “the derivative of quantity
Y (dY/dt) varies monotonically with quantity X”37. From the relations in the qualitative
model, rule schemata are extracted, such as (for the above simple example): “if X > k
then Y will increase”; k is a constant to be instantiated when converting the rule schema
into an operational prediction rule. Rule schemata are stored in a look-up table. Then,
a standard inductive tool - the CN2 rule learning system [ClaNib89] - is applied on a set
of training examples; the search is limited to prediction rules consistent with existing rule
schemata. The qualitative-model approach has been successfully applied in engineering
domains (with qualitative models of physical behaviour) [ClaMat93] and in the domain of
economics (macro-economic qualitative model) [ClaMat94]. In the economics application,
even the mapping between qualitative relations and formats of prediction rules (such as
the operational definition of “high” GNP) was not given in advance; instead, two types
of rules - qualitative prediction rules (such as “gnp is high → rates will increase”) and

37Unlike qualitative simulation models, Clark & Matwin’s qualitative models can be used only statically,
for constraining rule learning; they are incompletely specified for use on their own.
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definitions of quantities (such as “GNP > 7% → gnp is high”) are induced38. Qualitative
models, similarly to knowledge-level descriptions, provide for better explainability of rules
found via induction.

Brazdil & Jorge, in their ILP39 system Skil [BraJor93], exploit what they call al-
gorithm sketches - generalized computation graphs of examples of the target predicate,
which suggest some dependencies among predicates and their arguments. This particular
type of knowledge is formulated by the user, who can (for his/her convenience) omit some
details, such as predicate names, values, or links between predicates. Algorithm sketches
are fed as input to the learner, together with examples (which can be fewer than is usual
for ILP systems) and standard background knowledge (i.e. definitions of predicates avail-
able for use). The sketches considerably limit the space of possible literals explored in
the search for the definition of the target predicate. If we compare their role in Skil with
the roles of rule models and predicate topologies in Mobal, it can be viewed as “span-
ning” between both. Similarly to rule models, the sketches enable to keep “free slots”
for unspecified predicates; similarly to topologies, they enable to convey information on
predicate hierarchy. The authors claim that this flexibility is a way to scale up current
ILP methods to the design of non-trivial programs.

As empirical learning constrained with background knowledge is one of hot topics for
today’s machine learning community, the number of methods and applications is already
much higher than we could show in this overview, and is still rapidly growing. Some
more references can be found e.g. in [VDoVSo94], [ClaMat93] or [Thomas94]. Part of the
original research in this thesis (section 5) may also be ranged under this heading.

2.2.3 Shift of bias and constructive induction

Making the bias declarative, in the form of explicit background knowledge, is one step
toward more flexible and comprehensible learning systems. Another achievement of up-
to-date machine learning research was the introduction of bias shift. The bias may not
necessarily be fixed for a given learning task but can change in order to comply with
the peculiarities of the task, which are possibly discovered as late as in the middle of
the learning process. According to [GorDeJ95], bias shift can be viewed as search at the
bias level, similarly as learning can be viewed as search at the level of problem-solving
knowledge.

38This brings up the problem of mutual dependency - learning of one type of rule depends on the other
type.

39In our survey, we otherwise omit the area of inductive logic programming (although e.g. Mobal also
has some aspects of ILP). In “genuine” ILP, background knowledge seems to be indispensable; however,
its position is different from most methods mentioned above. ILP systems, such as Foil [QuiCam93], use
background knowledge in the form of definitions of predicates that act as “building blocks” of the target
predicate definition (which is to be learned). Rather than constraining the search space, background
knowledge in ILP forms it. Clark [ClaMat93] draws the dichotomy between the two types of background
knowledge even further; he claims that in ILP, background knowledge actually expands the hypothesis
language, thus aggravating the search problem. The state-of-the-art of ILP is well described in [LavDze94].
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An important notion, in this context, is that of “hard” vs. “easy” concepts to be
learned [RenRag93]. A concept can be viewed as “easy” if it is “localized in the instance
space”, i.e. if it occupies a contiguous region in the space defined by values of input
attributes (in attribute-value learning); it can be thus represented by a few rules with
simple left-hand sides (possibly containing only conjunctions of attribute values). “Hard”
concepts, on the other hand, are “spread out”, and often unlearnable by standard ML
algorithms.

“Hardness” of the concept however depends not only on the nature of the task itself,
but also on the representation of data (i.e., language bias). As an example, we can take the
game of chess. Let us assume that we want to learn general rules for discernment between
good and bad (or, winning, uncertain and losing) positions, given a set of examples. If
we describe the positions merely by means of coordinates of pieces, the target concept
is extremely “hard”. If we, on the other hand, use some higher-level attributes, such as
pieces advantage or center control, the target concept becomes much better learnable.

Constructive induction is an approach to empirical learning, which attempts to move
the instance space “closer” to such “hard” concepts, by means of construction of new
features (e.g. attributes) from those present in data40. Feature construction is the basic
way of shifting the representational bias, and it is the form of bias shift which is most often
performed by means of explicit prior knowledge.41 According to [Pfahr94], the generic
form of a constructive induction system is that of Fig. 15.

Given raw data, the constructive induction module constructs new attributes and ap-
plies them on the examples. The selective learner works as a usual inductive learner. Fi-
nally, the evaluator decides (according to some measure) whether the hypothesis (learned
knowledge) is of sufficient quality, or another cycle of construction/induction is needed.

First constructive induction systems were “grafted” upon standard inductive learners,
such as those from the AQ family [Michal83]. More recently, generic architectures, such as
the CiPF system by Pfahringer [Pfahr94] have appeared, where each of the agents involved
(constructive induction module, selective learner and evaluator) can be instantiated by
different systems.

As representative examples of feature construction operations we can consider the
spectrum implemented in CiPF [Pfahr94] (here, we simplify the whole list):

• comparison of values of attributes (equal-to, greater-than etc.) 42,

• discretization of numerical attributes,

• conjonction of possible values of nominal attributes into sets,

40Earlier, the notion of constructive induction was used more generally for “inductive processes that
engage significant amount of background knowledge” [MicKod86].

41Some learning systems perform shift of procedural bias [GorDeJ95]; this type of bias however seems
to be harder to formulate by means of declarative prior knowledge.

42Leng and Buchanan [LenBuc91] have developed a set-theoretic approach to this particular form of
constructive induction.

53



Raw Input Data
�

Constructive
Induction
Module

Transformed Data
�

Selective learner

Hypothesis
�

Evaluator

�

� done

Figure 15: Generic architecture of constructive induction

• counting the number of true/false boolean attributes,

• operations on attributes occuring in “good rules” learned in the preceding learning
step (e.g. conjoining or dropping attributes).

The construction operations can be embedded into the program code, but they can
also be represented as prior knowledge. This knowledge has typically the form of meta-
knowledge (in particular, knowledge dedicated for feature construction); some authors
([Math91], or perhaps also section 5 of this thesis) also mention static domain knowledge
(cf. Fig. 16).

Constructive induction systems with a wide scope of operations have already shown
efficient on (artificially contrived) tasks in which the nature of target concepts was ob-
scured. This was the case of the so-called MONK’s problems [Thrun91], which were
distributed in 1991, as a “quizz”, to many developers of ML algorithms. Each of the
three problems consisted in a training and a testing set of examples, such that concept
descriptions were to be induced from the training set and then evaluated on the testing
set. Standard inductive learning systems have usually failed on the MONK2 problem
which involved a m-of-n concept (“exactly three of the attributes have their first value”);
constructive induction systems, on the other hand, have mostly captured the concept and
thus attained reasonable accuracy on the testing set (the accuracy obtained by neural-net-
based methods was even higher; there, however, the concept descriptions induced were
completely opaque...).

In inductive logic programming, constructive induction has the form of invention of
new predicates where existing ones are insufficient for building a definition of the target

54



Examples
d/e

Constr. operators
mk

?Domain knowledge
sdk

	
	
		


�

�
�
���

�

�

�

�
CI � Concept definition

psk

Figure 16: I/O diagram of constructive induction (with explicit knowledge)

predicate. Examples of this approach, sometimes denoted as concept formation can be
found e.g. in [DeRLaD93] or [Wrob94c] (an example of predicate invention in Mobal can
also be found in section 2.1.2 of this thesis).

2.2.4 Value hierarchies and integrity constraints as static domain knowledge

In the previous paragraphs, we have reviewed some common approaches to learning with
prior static domain knowledge. Here, we will narrow our focus to two particular forms
of such knowledge - hierarchies of attribute values and integrity constraints - which have
been subjected to original study in section 5 of this work.

The concept of hierarchical attributes and of “generalization as climbing up in a hi-
erarchy” was notoriously mentioned in the mainstream ML literature - the “climbing-
up-hierarchy” operation was known to be a generalization technique alternative to the
common “drop-literal” one. Nevertheless, it was mainly used for “textbook”, demon-
strative purposes, in connection with small example sets (e.g. the notorious taxonomy
of simple geometric objects). Only recently, attempts appeared to exploit hierarchies to
discover important relations in raw data. This is the case of the RL knowledge discovery
system [ClePro90], which has been used in several domains to discover useful relations; its
more advanced successor KBRL [AroPrB96] uses role links in addition to taxonomies. The
phenomen of tree-structured attributes has also been studied in the context of decision-
tree learning, by Núñez [Nunez91] and Almuallim et al. [AlmAkK95], with the primary
aims of cutting down computation time, increasing accuracy and decreasing the size of
the tree learned (although comprehensibility was also mentioned as a secondary issue). In
KDD, hierarchies (even non-tree dags) are used to aggregate data from large databases,
along the so-called domain generalization paths [HamHiC96].
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Abstraction hierarchies (and is-a relations within semantic nets) have been also ac-
cepted as a rudimentary form of domain knowledge for relational systems, such as the
apprenticeship-learning systems Disciple [TecKod90], APT [NedCau92] and Odysseus

[Wilk90]. Another related approach may be that of Either, a knowledge revision system,
one version of which was adapted to constructive induction [MooOu91b]. Either works
with chained rules on propositional concepts; some of these rules are similar to is-a links
(e.g. “has handle → graspable” in the “cup” concept). If such rules lead from observable
features to intermediate features, the truth-values of the latter can be deduced for data
objects by forward chaining, added to the descriptions of these objects and used as input
features in the subsequent empirical induction process. However, Either’s rules can be
more complex (at least, they mostly involve conjunctive antecedents) and their semantic
may only incidentially become that of concept generalization.

Integrity constraints are commonly used in deductive database systems, in order to
verify the internal consistency of data (see [Bry93]). In machine learning, the term is
not commonly used although various knowledge structures providing bias to the learning
algorithm (cf. section 2.2.1), such as inference/task structures or qualitative models, can
be pragmatically characterized as “constraints”. Among the ML systems mentioned in
this work, it is however only Mobal which uses knowledge structures explicitely named
as integrity constraints, in the form of disjunctive Horn clauses, and includes a mechanism
for their checking. There are three syntactic types of constraints:

• constraints with both right-hand side (RHS) and left-hand side (LHS): if the LHS
can be unified with some facts in the knowledge base then so must the RHS (which
can have the form of disjuction). As an example, consider the constraint

manager(X) --> education(X,university) OR (worked(X,Yrs) AND Yrs>=3)

stating that a manager must have either higher education or a three-year work
experience.

• constraints with right-hand side only (“unconditional requirements”). As an exam-
ple, consider the constraint

--> director(X)

stating that there must be an information about the identity of the director (in
a KB describing the organizational structure of a company).

• constraints with left-hand side only (“bans”). As an example, consider the con-
straint

director(X) AND director(Y) AND X=Y -->

stating that must not be two different persons occupying the post of director.
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If an integrity constraint is violated, a message is inserted into the agenda; messages
are objects which are manipulated by Mobal in a way similar to knowledge items - they
can be, for example, resubmitted to Mobal so that it can suggest a way of handling.
Integrity constraints in Mobal can be, as it seems, used to check formal consistency of
data as well as undesirable states in the world described by the knowledge base. In the
experiments conducted in a mass transit application ([Vitas97]), both cases appeared; this
application being a “toy” one, strong conclusions should however not be drawn from.
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3 Background project - ESOD method of learning

and classification

In this section, we show the main principles of the ESOD43 method for learning a com-
positional rulebase from data. There are good reasons for including the description of
ESOD in this thesis, although it does not, by itself, exploit prior knowledge in a way
similar to techniques described in the main overview section (section 2). Namely, ESOD
became a starting point for a large part of the original research presented here; results of
this research are presented in sections 4.4 and 5 (the theoretical framework for algebraic
knowledge integration, presented in section 4.3, is not immediately related to ESOD).

In section 3.1, the distinction between “logical” and compositional rulebases is out-
lined. The ESOD learning method itself is briefly described in section 3.2.2. The use of
ESOD-generated rulebases for classification in described in section 3.2.1, and some later
extensions to the method (beyond the work of the author of this thesis) are mentioned in
section 3.3.

3.1 “Logical” vs. compositional rulebases

A possible way how to formalize a theory is to write it as a set of rules (and, possibly,
facts) using the apparatus of classical logic. This idea is not too far from current trends
in knowledge acquisition and modelling44. Moreover, most machine learning systems
output knowledge in a logically describable form - in a propositional or restricted first-
order language. The bulk of inference in “logical” rule bases is performed in a classical
deductive manner. In the simplest case: if we know that the decision situation satisfies the
condition of a rule, we can claim that its conclusion also holds. It is however known that
in practice, experts often use uncertain - stochastic or heuristic rules. This is reflected in
the conception of expert systems such as Mycin [Shortl76] or Prospector [DudGas79],
where individual rules are associated with weights. Inference is realized as composition of
weights; therefore, we speak about compositional rule bases. Combination functions are
typically tailored to fit the given interpretation - beliefs in Mycin, subjective probabilities
in Prospector etc.

The majority of empirical learning systems output a “logical” rulebase45. Even if,
in some approaches, induced rules are assigned weights derived from their validity on
data, these mostly serve for selection of a single rule from a candidate set (“select-and-
fire” way of operation). An often mentioned exception is the hybrid (rule-based and

43Stands for “Expert System from Observational Data”.
44There are actually continuous discussions in the Artificial Intelligence community whether the appa-

ratus of classical logics (and its “orthodox” extensions) is a sufficient tool for representing and processing
knowledge, cf. e.g. [Nilss91], [Birnb91]. In this work we, however, reduce the meaning of “logical” knowl-
edge to a set of rules considered as “true”, i.e. not endowed with certainty factors of any sort.

45There are of course many systems outputting other forms of “logical” knowledge, such as decision
trees or lists. Naive Bayesian classifiers are also sometimes considered as empirical learning systems
(cf. [BraCeK95]); these are capable of providing a numerical quantification of the classification decision.
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probabilistic) system ITRule [SmyGoH90]. As another, we can view the ESOD method,
which is capable of learning a compositional (although, single-layered) rulebase directly
from data.

3.2 The ESOD classification and learning algorithms

3.2.1 Classification in ESOD

The task of classification, as it is understood in ESOD, consists in assigning an object
o into a class c, based on values of nominal attributes; a classification pair (o, c) is thus
established. Each attribute-value pair is called category, and a conjunction of them is
called combination. A special kind of combination is the empty combination ∅, which
contains no categories. A description of an object is a full-length combination, i.e. a
conjunction of categories of all attributes. A subcombination of a combination Comb is a
combination which contains only such categories which exist also in Comb. An object o
satisfies a combination Comb if its description is a subcombination of Comb.

A rule r maps a combination Comb onto class c; we will write it in the form Comb ⇒ c,
where Comb is denoted as condition of the rule. A rule with empty combination as
condition is called empty rule. A ruleset R is a set of rules; its classification domain is the
set of all classes which appear in rules from R. We assume that the classification domain
is disjoint with the set of categories used in rules’ conditions (in other words, rules in
ESOD are not supposed to be chained). A weight of a rule is a real number from the
interval [0, 1].

Let us assume that a composition function ⊕ is given, which can be applied on com-
bining the weights of rules leading to the same class. In most implementations of ESOD,
composition operation

x ⊕ y =
x.y

x.y + (1 − x).(1 − y)
(1)

is used, which corresponds to the pseudo-bayesian rule combination function from the
Prospector system, transformed from the interval [−1, 1] to the interval [0, 1]. A global
weight function G is then a function G(R, c, o), which returns the composed (using the
basic composition function ⊕) weight of all rules from R with class c and a condition
Cond which is satisfied by the description of object o. Given a global weight function G,
a ruleset R with classification domain C, and an object o: a class ci ∈ C is the best-weight
class of o wrt. R iff for every cj ∈ C, cj �= ci holds G(R, cj , o) < G(R, ci, o).

Performing classification with a given ruleset corresponds (at the simplest) to finding
the best-weight class.46 For practical purposes, implemented ESOD classifiers output
the composed weight for each class in turn, in a sorted list and possibly including the
conditions of those rules which have been applied - this provides a smooth quantification of
classification decisions. The ESOD classifier with an attached ruleset actually corresponds
to a compositional expert system, which ressembles (assuming the combination function

46If the best-weight class does not exist (there are more classes with the same weight), such simple
classification fails; this is however rare in most real situations, and could easily be handled.
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is (1)) the Prospector system by its inference engine; the ruleset is, however, typically
not contrived in a dialog with expert (as are traditional knowledge bases) but learned
from data, as we will see in the following subsection.

3.2.2 Learning in ESOD

The learning task in ESOD consists in finding a set of weighted rules which describes
a source dataset as closely as possible, but can also be used to perform classification
of previously unseen objects, using the compositional method described in the previous
subsection. Before we describe the learning algorithm itself, some simple notions have
again to be explained47:

• A dataset D is a set of objects described by values of a finite set of attributes A; each
object also has a class from a finite set C. Every attribute has a finite, unordered
domain of values. All values of the same attribute are mutually exclusive; similarly,
all classes are mutually exclusive.

• The coverage48 of a combination Comb in a dataset D, CovD(Comb), is the number
of objects from D whose description satisfies Comb. The coverage of a rule r in a
dataset D, CovD(r), equals the coverage of its condition. The correct-coverage of
a rule r in a dataset D, CCovD(r), is the number of objects which have the same
class as r and whose description satisfies the condition of r.

• The validity of a rule r in a dataset D, V alD(r), is the ratio of the correct-coverage
and coverage:

V alD(r) =
CCovD(r)

CovD(r)

The validity equals to the (empirical) conditional probability P (c/Comb) in data
D.

• Rule p is more general than rule q iff they have the same class, and the condition
of p is a subcombination of the condition of q.

For clarity, we will add a trivial example. Consider the dataset which is written as
a matrix in Fig. 17 (objects corresponding to rows and attributes to columns), and a rule

r : (a1 = a ∧ a3 = p) ⇒ x

The rule has:

47Note that the scope of the terminology involved is limited to the description of the ESOD system
and its various modifications and extensions. The terms are not always consistent with the same terms
used throughout the overview part of the thesis (section 2) or elsewhere.

48In some works on ESOD, the term “coverage” is used for the relative coverage, i.e. the proportion of
covered objects in the whole dataset.
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a1 a2 a3 Class
a i p x
b j p y
a i p x
a j q y
a j p y
b k p x
a k p x
b i q x

Figure 17: Example dataset D

• coverage CovD(r) = 4,

• correct-coverage CCovD(r) = 3,

• validity V alD(r) = 0.75.

We could find three more rules49 more general than r, one of them being an empty
rule:

(a1 = a) ⇒ x (a3 = p) ⇒ x ∅ ⇒ x

The way of constructing a rulebase in ESOD can be viewed as analogical to building
an axiomatic theory. Rules-axioms are inserted only if they cannot be inferred from other
axioms, i.e. if they “bring new information”. The resulting rulebase is thus, in a certain
sense, minimal [Ivanek94].

The algorithm can be written, in a simple form, as in Fig. 18. As statistical test T ,
the standard χ2 goodness-of-fit test has been mainly used, and the composition operation
is (1) (the one used also by the classification mechanism).

The algorithm has a relatively high computational complexity, due to the systematic
search method. The complexity increases exponentially with the number of attribute
values. This leads to the method being applicable to medium-size data: for too small
datasets (up to a few tens of objects), the statistical bias may hinder learning any but
empty rules, for too big datasets (especially in connection with high numbers of attribute
values) the execution time becomes prohibitive.

It should be pointed out that, unlike most ML algorithms, an ESOD rulebase usually
contains rules which are algebraically subsumed by each other. The inference mecha-
nism complies with the correction principle suggested by P. Hájek and thus overcomes
the common drawback of Prospector-like techniques - the assumption of conditional
independence. Nevertheless, the combination scheme remains fixed and need not always

49We will write rules with or without identifiers, as more appropriate.
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Input: Data D, goal combination C∗, composition operation ⊕, statis-
tical test T , coverage threshold t.

Output: KB = set of rules with weight ∈ [0,1];

Computation:
Let KB contain only empty implication ∅ ⇒ C∗ with relative frequency
of C∗ in data D as weight.
Let CAT be a list of categories (nominal attribute-value pairs) jc sorted
in the descending order of coverage; only the categories with coverage at
least t are included.
Let OPEN be a list of implications jc ⇒ C∗ for each jc from CAT, sorted
in the descending order of coverage.
While OPEN is not empty repeat

• delete the first implication Ant ⇒ C∗ from OPEN;

• compute the composed weight wc from the weights of all subrules of
Ant ⇒ C∗ which are already in KB (using operation ⊕);

• if the validity of Ant ⇒ C∗ significantly (by test T ) differs from wc

then add Ant ⇒ C∗ to KB with weight w such that w composed
with wc equals to validity;

• for each jc which precedes in CAT every category from Ant and
attribute j is not included in Ant, compute the coverage of com-
bination jc & Ant; if the coverage is at least t then insert jc & Ant
into OPEN according to the coverage.

Figure 18: The learning algorithm of ESOD

conform to the actual dependency of premises. Some observations and comments to this
problem can be found in section 6.

Let us attempt to characterize the original ESOD learner in terms of input and output.
In the informal description of the algorithm, five input items appear: data, combination
function, composition operation, statistical test and coverage threshold. Among them,
data is the mandatory input of any inductive learner. The remaining four can be charac-
terized as low-level algorithic parameters rather than knowledge. In this respect, ESOD
is a “knowledge-weak” ML method; knowledge appears only on the output, in the form
of weighted classification rules, i.e. problem-solving knowledge.

The types of input knowledge (set aside the human oracle) we have distinguished in the
overview section (section 2) are problem-solving knowledge, static domain knowledge and
metaknowledge. The first two are not considered in original ESOD (their use is actually
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Figure 19: I/O diagram of ESOD.

the main topic of the present thesis, in sections 4.4 and 5). As a particular type of
metaknowledge, somewhat similar to metaknowledge used e.g. in Mobal (section 2.2.2),
can be viewed the central assumption of ESOD: “New knowledge is what cannot be inferred
from existing knowledge.” This “qualitative metarule” is however embedded into the
algorithm instead of being kept separately in some meta-knowledge base. In the I/O
diagram of ESOD in Fig. 19, we present it as metaknowledge, but without claiming that
it actually is such.

3.3 Implementations of ESOD

Original versions of the ESOD algorithms have been implemented by Ivánek and Stejskal
on HP9845 computer (in 1986) and on PCs (in 1988). The original learning algorithm
differed from the one presented above in separation of the two phases - generation of
combinations, and testing of rules. Most later improvements to ESOD are due to P. Berka,
and are connected with the development of a new knowledge engineering toolbox called
Kex - Knowledge Explorer. The theoretical outcomes of Kex are the combinational data
analysis and the above described ESOD method of knowledge acquisition. We will not
describe Kex in detail (comprehensive information in Czech can be found in [Berka95];
a concise description in English is in [BerIva94]) but only point out some new features of
the up-to-date ESOD implementation:

• Rules for multiple classes are learned in one turn.

• Unknown attribute values are handled.

• A pre-processor for class-sensitive discretization of numerical attributes has been
added [Berka93c].
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The whole Kex system runs on PCs and (in a restricted version) on Sun and Apollo
workstations.

For experimental purposes in the framework of the present thesis, a restricted version
of ESOD has been implemented in the Prolog language, with extensions described in
section 5. æ
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4 Learning with problem-solving knowledge using knowl-

edge integration - methodology

4.1 Objectives

In section 2.1 we have described some existing techniques of learning with prior problem-
solving knowledge. Of them, only knowledge revision (section 2.1.2) applies genuinely to
the situation when two sources of information - data and prior knowledge - are available.
Incremental learning (section 2.1.1) largely overlaps with knowledge revision in algorith-
mic principles but applies to the situation when no prior knowledge is available at the
start. On the other hand, knowledge integration (section 2.1.3) does not use data as direct
input, and cannot be characterized as learning method, in the narrow sense.

Our research project carried out in 1993-1994 was concentrated on the following prob-
lem:

Problem 1 Could learning with prior problem-solving knowledge be realized by means of
knowledge integration instead of knowledge revision? How can this approach be formalized
for rules without weight (“logical” rules) and weighted rules?

The first subproblem led to the formulation of an abstract “bypass” model, which
replaces knowledge revision with empirical induction and knowledge integration; some
informal assumptions concerning the applicability of this model have been formulated
(section 4.2). The integration itself was formalized for both types of rules (with and with-
out weight). Rules without weight can be integrated based on the notions of conditional
truth and consequence values. For two algebraically identical rules with different weights
(one given by expert and one learned from data), integration can be performed by means
of weight interpolation.

The research on integration of isolated weighted rules naturally led to the question
whether the integration method could be extended to compositional rulebases, in partic-
ular those learned by the ESOD method (the background project, see section 3):

Problem 2 Could the integration of weighted rules be used as a method for learning
a compositional rulebase from expert’s rules and data, as an extension to the existing
ESOD learning method?

Preliminary analysis has revealed the problem as extremely difficult; although an
experimental implementation of the approach has been realized, the direction has not
been followed any further as a theoretically sound solution did not seem to be within the
reach of the author’s project. Possible modifications of the problem which could be easier
to attack have been formulated but not yet investigated in detail.
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Figure 20: Induction and integration as a “bypass” of revision

4.2 The “bypass” model of learning from expert and data

In distributed AI (cf. section 2.1.3), the motivation for integration is to put together sets
of knowledge learned by independent agents. In our opinion, this task is a specific case of
the more general task of integrating information from multiple, independent, information
sources. In section 2.1.2, we have briefly surveyed the state-of-the-art of another area
with similar characteristics - knowledge revision. Knowledge revision can be viewed as
integration of information from two resources - a dataset (or example set), and a body of
knowledge. If an “alternative” knowledge base were induced from the dataset, we would
instead have two knowledge bases ready for integration. In this way, the revision process
could be “bypassed” (see Fig. 20).

The bypass has, obviously, some arguable points. The starting point of knowledge
revision is the evaluation process, in which the expert rules are confirmed or rejected (or
none) by relevant data objects. In our “bypass” model, there is no guarantee that the
bias of the inductive algorithm allows to learn appropriate “confirming” or “rejecting”
rules; the mutual effect of both resources thus may vanish. Another problem is the need
for inductive learners which output knowledge in the same form (not only syntactically
but also semantically) as experts.

The potential benefits of the “bypass” model arise from the balanced roles of both
information resources. In knowledge revision, in contrast, expert knowledge represents
the starting point of search for plausible hypotheses. The assumption usually is that
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expert knowledge requires “fine tuning rather than major overhaul” [CraSle90] using the
data. If, however, some important relations are left intact by the expert, it may be
difficult to arrive at them via revision. Another caveat of revision is the noise in data,
which may lead, in the case of data-driven (incremental) revision techniques, to frequent
undoing of premature changes and thus to inefficient looping; generate-and-test revision
techniques (which can better cope with noise) may show computationally expensive if
modified knowledge is to be tested on a large dataset in every revision step. In the
“bypass” model, on the other hand, we assume that the induction can be performed with
one of a host of noise-robust learning algorithms, and only once.

We have formed a hypothesis that the “bypass” model can be particularly useful under
the following conditions:

• Neither expert nor data can be fully trusted; the expert is unreliable and the data
are noisy observational data rather than purposefully selected examples.

• Both sources are relatively independent. This e.g. means that the expert has not
built his/her expertise upon analysis of data and, on the other hand, data are not
merely a protocol of the expert’s past decisions.

In this context, we have a credit-assignment problem: it is desirable to yield the best
of both resources, while not fully trusting either of them. An integration method which
treats both resources as equal would then be suitable. In our work, we have concentrated
only on the integration task, in adopting the (probably too simplifying) assumption that
the induction could be performed by almost any of existing symbolic learning algorithms.

Our problem situation is different from the previously described situation in dis-
tributed learning. We do not have any external dataset to evaluate the rules empirically.
The single dataset has already been used to induce the empirical rules; if the rule quality
were measured wrt. the same dataset, empirical rules would be inappropriately favour-
ized compared to expert rules. We can therefore rely merely on algebraic properties of
the rulesets themselves, which can be verified syntactically. In the following subsection,
we describe a simple method, which is currently restricted to integration of rules with-
out weights nor chaining; the method has been presented at the MLnet Familiarization
Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, in
Heraclion, April 1995 [Svatek95].

4.3 Algebraic approach to integration of rules without weight

4.3.1 Basic notions

Let D be a set of decision situations in a given problem domain. Let K - the space of
conditions - be a set of expressions; each expression can be evaluated as either true or
false for a given decision situation; let D(e) denote the set of decision situations from D
for which expression e evaluates as true. Let a generality relation ≥g be defined over K,
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such that if k1, k2 ∈ K, k1 ≥g k2 (k1 is at least as general as k2
50) then D(k2) ⊆ D(k1).

Obviously, such generality relation inherits the transitivity property from the set-inclusion
relation.

Let L (the space of conclusions) be a set of atomic expressions; the expressions are
mutually exclusive, i.e. if two or more of them are true for a given decision situation,
a contradiction arises. However, the conclusions cannot be evaluated as such, for a given
decision situation; this implicitely means that the expressions from K cannot contain
expressions from L, and that decision rules leading from conditions to conclusions cannot
be chained. We will consider a universe U of all decision rules in the form r : k → l,
where r is a unique rule identifier, k is an expression from K and l is an expression from
L. For clarity, we will denote the condition of rule r as L(r) and its conclusion as L(r).

First of all, we are interested in the correctness of rules, which can be most simply
understood in the following way. Each rule r has exactly one of two truth values, in a way
analogical to logical implication:

• ‖r‖T = t (true) iff D(k) ⊆ D(l), i.e. in all situations where r could be applied, its
application would lead to a correct conclusion;

• ‖r‖T =f (false) otherwise.

Especially when considering large numbers of potential rules, we are however interested
not only in their correctness but also in their importance (or, significance). Here, we use
the notion of importance in terms of domain of application. Let n be a fixed importance
threshold (in the following, we will consider it as constant for the whole problem domain);
every rule r from U then has exactly one of two importance values:

• ‖r‖I = i (important) iff card(D(L(r))) ≥ n

• ‖r‖I = u (unimportant) otherwise.

To read, a rule r is considered important if the number of decision situations in which it
is applicable is at least n.

On the universe U of rules, we can define the truth-consequence operation CnT :

CnT (r) = {r′ | R(r)=R(r′) ∧ L(r)≥g L(r′)}

i.e. as the set of all rules with the same conclusion and less (or equally) general condition
than r. The operation can be interpreted as: if a rule r is true (i.e. correct) then all rules
from CnT (r) also true:

50Note that two syntactically different (e.g. first-order) expressions can be equally general. Determining
whether a pair of expressions belongs to the generality relation may be untrivial in first-order languages.
In this thesis, we are, however, interested in expressions having the form of combinations (conjunctions)
of categories, on which the generality relation can be determined more-or-less straightforwardly.
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∀r, r′, r′ ∈ CnT (r) ‖r‖T =t ⇒ ‖r′‖T =t

The truth-consequence of a set of rules will be simply the union of their truth-
consequences:

CnT (R) =
⋃

ri∈R
CnT (ri)

This definition of consequence conforms to the notion of (Tarskian) logical consequence,
as CnT is reflexive, monotonous and transitive: for any sets of rules X and Y holds

1. X ⊆ CnT (X);

2. if X ⊆ Y then CnT (X) ⊆ CnT (Y );

3. CnT (CnT (X)) ⊆ CnT (X).

The proofs are omitted for the sake of brevity; the reflexivity and transitivity imme-
diately follow from the monotonicity, and from the reflexivity and transitivity of both ≥g

and = relations.

Similarly, we can define the falsity-consequence operation CnF :

CnF (r) = {r′ | R(r) �=R(r′) ∧ L(r)≥g L(r′)}
i.e. as the set of all rules with different conclusion and less (or equally) general condition
than r. The operation can be interpreted as: if a rule r is true (i.e. correct) then all rules
from CnF (r) are false:

∀r, r′, r′ ∈ CnF (r) ‖r‖T =t ⇒ ‖r′‖T =f

The falsity-consequence of a set of rules is the union of their truth-consequences:

CnF (R) =
⋃

ri∈R
CnF (ri)

Unlike truth-consequence, falsity consequence cannot be understood as logical conse-
quence in terms of classical logic, as it does not satisfy the transitivity property.

The present method assumes that we cannot evaluate the rules, even not empirically
(on data), their unconditional truth values are thus impossible to determine. Instead, as
we have suggested in the foreword, we will concentrate on interrelations between rules
and sets of rules. For this purpose, we will need the notion of conditional truth values.

Given a rule r ∈ U and a ruleset R ⊂ U , we can assign to r one of four conditional51

truth values wrt. R:
51As we will speak only about conditional truth values since now, we will mostly omit the attribute

“conditional”.
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• ‖r‖T
R=t (true) iff r∈CnT (R) ∧ r �∈CnF (R);

• ‖r‖T
R=c (contradiction) iff r∈CnT (R) ∧ r∈CnF (R);

• ‖r‖T
R=u (unknown) iff r �∈CnT (R) ∧ r �∈CnF (R);

• ‖r‖T
R=f (false) iff r �∈CnT (R) ∧ r∈CnF (R).

The values actually indicate whether the validity of rule r is “declared” or “denied”
(or both, or none) by the rules from the ruleset R. We can arrange them into the lattice
at Fig. 21, with true on the top and false in the bottom.
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Figure 21: Lattice of conditional truth values

Analogically to previously introduced truth- (and falsity-) consequence, we can define
the importance-consequence operation CnI , which will however concern only conditions
of rules:

CnI(r) = {r′ | L(r′) ≥g L(r)}

CnI(R) =
⋃

ri∈R
CnI(ri)

It can be understood as: if a rule is important then all rules with at least as large domain
of application is also important. Importance-consequence is reflexive, monotonous and
transitive, it can be thus viewed as a form of logical consequence.

Given a rule r ∈ U and a ruleset R ⊂ U , we can assign to r one of two conditional52

importance values wrt. R. The values will indicate whether the rule r is “declared”
important by the ruleset R. Note that conditional unimportance, unlike falsity, is defined
via closed-world assumption53:

• ‖r‖I
R = i (important) iff r ∈ CnI(R);

52Again, as we will speak only about conditional importance values since now, we will mostly omit the
attribute “conditional”.

53This can be interpreted as: “All important decision situations are assumed covered.”
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• ‖r‖I
R = u (unimportant) otherwise.

Our method deals with a particular class of rulesets, namely with rulesets which are
already, in some sense, minimal and consistent. For this purpose, we will define the formal
notions of minimality and consistency of rulesets.

Definition 1 A ruleset R is minimal iff it does not contain a pair of rules p, q such that
p ∈ CnT (q).

Definition 2 A ruleset R is consistent iff for every rule r from CnT (R)∩CnI(R) holds
‖r‖T

R = t.

A ruleset which is not minimal will be called redundant; a ruleset which is not consistent
will be called inconsistent.

Note that while minimality is related only to a given ruleset R itself (it should not
contain redundant rules), consistency must be verified for the set of all rules which are
both truth- and importance-consequences of R. We will show later that under certain con-
ditions, the consistency property shrinks to “internal consistency”, which can be verified
on R only.

4.3.2 Construction of the integrated set

Finally, we will proceed with the integration task itself. Let P and Q be two minimal
and consistent rulesets to be integrated, we will refer to them as to source rulesets. We
want to obtain a new ruleset, I(P,Q), which will be also minimal and consistent, and
will capture (heuristically) as much information from both original sets as possible.

From the whole universe U of possible rules (of which only a subset belongs to ei-
ther of source rulesets), we will immediately reject all rules not belonging to the truth-
consequence of either P or Q, and those not belonging to the importance-consequence of
either P or Q. Hence,

I(P,Q) ⊆ (CnT (P) ∪ CnT (Q)) ∩ (CnI(P) ∪ CnI(Q)) (2)

The remaining rules (i.e. those which are “somehow” considered as true as well as
important) can be assigned to six disjoint subsets, according to their truth-values wrt. the
original sets - TT , TC, TU , TF , CU , CF :

• TT will contain the rules that are true wrt. both sets;

• TC will contain the rules that are true wrt. one (any of the two) set and contradic-
tory wrt. the other;

• TU will contain the rules that are true wrt. one (any of the two) set and unknown
wrt. the other;

71



• TF will contain the rules that are true wrt. one (any of the two) set and false
wrt. the other;

• CU will contain the rules that are contradictory wrt. one (any of the two) set and
unknown wrt. the other;

• CF will contain the rules that are contradictory wrt. one (any of the two) set and
false wrt. the other.

With respect to the partial ordering of individual conditional truth values (lattice at
Fig. 21), the new subsets will again form a lattice (Fig. 22).
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Figure 22: Lattice of subsets wrt. truth values

It can be proven (the proof is in the next subsection) that:

Theorem 0 If both source rulesets are minimal and consistent then TT∪TC is a minimal
and consistent ruleset.

The situation is depicted at Fig. 23, with the subsets belonging to the minimal and
consistent ruleset (i.e. candidate for integrated set) written in bold typeset.

Such integration would be rather restrictive; nevertheless, if we add any of other
subsets to the union, the result is no longer guaranteed to be minimal and consistent. We
will thus proceed by determining particular subsets of TU and TF ; we will denote these
subsets by TU1 and TF1 (and their complements as TU2 and TF2):

• TU1 will contain the rules that are true and important in one set, and unknown and
unimportant in the other;
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Figure 23: First candidate for integrated ruleset

• TF1 will contain the rules that are true and important in one set, and false and
unimportant in the other;

It can be proven (the proof is in the next subsection) that:

Theorem 1 If both source rulesets are minimal and consistent then TT ∪TC∪TU1∪TF1

is a minimal and consistent ruleset.

The situation is depicted at Fig. 24, with the subsets belonging to the minimal and
consistent ruleset (i.e. candidate for integrated set) written in bold typeset.

Therefore, let

I(P,Q) = TT ∪ TC ∪ TU1 ∪ TF1

The ruleset I(P,Q) can be immediately considered as a simple, deductive “knowledge
base”. It will contain only rules from P ∪ Q (we omit the proof for the sake of brevity);
its extent is thus “reasonably” restricted. The remaining subsets - CU , CF , TU2 and
TF2 - may be redundant and/or inconsistent. They, however, contain “interesting” rules
(some of them being new wrt. P ∪Q), and may be subjected to further evaluation, i.e. by
an independent expert. This reevaluation could be performed successively (from “better”
rules to “worse” rules), with respect to the existing partial ordering of subsets from Fig. 22.
Practical aspects of human evaluation of rulesets would deserve a further study.

We will close this subsection with a simple example. Let the set of decision situations
be the set of conjunctive expressions on the alphabet

A = {a, b, c, d, e, f, g, h, i, j, k}
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Figure 24: Accepted candidate for integrated ruleset

and the set of classes be

C = {x, y, z}
(with mutually exclusive classes). Let the source rulesets be

P = {a ∧ b → x, c → y, f → z, g → z, h ∧ i ∧ j → y, k → x}

Q = {a ∧ b → x, a ∧ c ∧ e → y, a ∧ c ∧ f → y, h → x, k → z }
The subsets of rules wrt. conditional truth values, corresponding to the lattice from

Fig. 22, are in Table 1. Rules which have not been present in P or Q are written in bold
typeset.

For example, rule a ∧ b → x belongs to TT because it is present (and thus true) in
both source rulesets; rule a ∧ c ∧ f → y belongs to TC because it is present (and thus
true) in Q, and contradictory wrt. P (being “supported” by rule c → y and “rejected” by
rule f → z). The first candidate for integrated ruleset (according to theorem 0) will then
be

I0(P, Q) = {a ∧ b → x, a ∧ c ∧ e → y, a ∧ c ∧ f → y}
We will further decompose the subsets TU and TF in order to include more rules into

the integrated set, see Table 2.
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Class Rules
TT a ∧ b → x, a ∧ c ∧ e → y
TC a ∧ c ∧ f → y
TU g → z, c → y, k → x, k → z, a ∧ c → y, c ∧ e → y
TF h ∧ i ∧ j → y, h → x, f → z, h ∧ i → x, h ∧ j → x, h ∧ i ∧ j → x
CU c ∧ f → y
CF c ∧ f → z, a ∧ c ∧ f → z

Table 1: Table of assignment of rules to subsets in the example

Class Rules
TU1 g → z
TU2 c → y, k → x, k → z, a ∧ c → y, c ∧ e → y
TF1 h ∧ i ∧ j → y
TF2 h → x, f → z, h ∧ i → x, h ∧ j → x, h ∧ i ∧ j → x

Table 2: Further decomposition of subsets TU and TF in the example

For example, rule g → z belongs to TU1 because it is present (and thus true as well
as important) in P and unknown and unimportant in Q (as there is no rule with literal
g in the condition). Rule c → y, on the other hand, belongs to TU2; it is present (and
thus true as well as important) in P , but important also wrt. Q due to more specific rules
a ∧ c ∧ e → y and a ∧ c ∧ f → y. The larger integrated set (according to Theorem 1) is
then

I(P, Q) = {a ∧ b → x, a ∧ c ∧ e → y, a ∧ c ∧ f → y, g → z, h ∧ i ∧ j → y}

It contains one rule shared by P and Q, two rules specific for P , and two rules specific
for Q, i.e. only rules from P ∪ Q as stated earlier.

4.3.3 Proofs of minimality and consistency

We want to prove theorem 1 stating that TT ∪TC∪TU1∪TF1 is a consistent and minimal
ruleset. First, we will prove the following two lemmas:

Lemma 1 If a ruleset R is minimal and for every rule r ∈ R holds ‖r‖T
R = t then R is

consistent.

Lemma 2 If a ruleset R is minimal and consistent then CnT (R) ∩ CnI(R) = R.
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Proof of lemma 1 We will carry out the proof by contradiction. Suppose that the
premises hold but R is inconsistent, i.e. there is, by definition of consistency, a rule
r ∈ (CnT (R) ∩ CnI(R)) such that ‖r‖T

R �= t. From r ∈ CnT (R) follows that there is
a rule r′ ∈ R such that L(r′) ≥g L(r). Similarly, from r ∈ CnI(R) follows that there is
a rule r′′ ∈ R such that L(r) ≥g L(r′′). Due to the transitivity of ≥g, L(r′) ≥g L(r′′).
Then, we will analyse the following possibilities:

1. If R(r′) = R(r′′) ∧ L(r′) = L(r′′) then r′ = r′′ = r, and r thus belongs to R; then it
is not true that for every rule r ∈ R holds ‖r‖T

R = t �

2. If R(r′) = R(r′′) ∧ L(r′) �= L(r′′) then r′′ ∈ CnT (r′) and R is thus not minimal �

3. If R(r′) �= R(r′′) then ‖r′′‖T
R �= t; then it is not true that for every rule r ∈ R holds

‖r‖T
R = t �

Proof of lemma 2 We will carry out the proof by contradiction; it is nearly identical
to the previous one. Suppose there is a rule r such that r ∈ (CnT (R) ∩ CnI(R)), r �∈ R.
From r ∈ CnT (R) follows that there is a rule r′ ∈ R such that L(r′) ≥g L(r). Similarly,
from r ∈ CnI(R) follows that there is a rule r′′ ∈ R such that L(r) ≥g L(r′′). Due to the
transitivity of ≥g, L(r′) ≥g L(r′′). Then, we will analyse the following possibilities:

1. If R(r′) = R(r′′) ∧ L(r′) = L(r′′) then r′ = r′′ = r, and r thus belongs to R �

2. If R(r′) = R(r′′) ∧ L(r′) �= L(r′′) then r′′ ∈ CnT (r′) and R is thus not minimal �

3. If R(r′) �= R(r′′) then ‖r′′‖T
R �= t since r′′ ∈ CnF (r′); R is thus not consistent �

We will proceed by proving the (auxilliary) theorem 0, stating that TT ∪TC is a con-
sistent and minimal ruleset.

Proof of theorem 0

Proof of minimality of TT ∪ TC We will prove the property by contradiction.
Suppose there is a pair of rules, p, q ∈ (TT ∪ TC), such that p ∈ CnT (q). By (2) and by
the specific properties of TT and TC, we know that:

1. p ∈ CnT (P) ∧ p ∈ CnT (Q)

2. q ∈ CnT (P) ∧ q ∈ CnT (Q)

3. p ∈ CnI(P) ∨ p ∈ CnI(Q)

4. q ∈ CnI(P) ∨ q ∈ CnI(Q)
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where P,Q are the original sets. Then exists a set R ∈ {P,Q} such that p ∈ (CnT (R)∩
CnI(R). As R is minimal and consistent, from lemma 2 follows that p ∈ R, and thus
p ∈ P ∨ p ∈ Q. Similarly, q ∈ P ∨ q ∈ Q. For each of P,Q to be minimal, p and q cannot
both belong to P or to Q. Assume that p ∈ P and q ∈ Q (the other case would be treated
analogically). From the above list of properties follows that q ∈ CnT (P), hence there is
a rule q′ ∈ P such that q ∈ CnT (q′). By transitivity of CnT , p ∈ CnT (q′); since both p
and q′ are from P, P is not minimal �

Proof of consistency of TT ∪TC From the previous proof, we know that TT ∪TC
is minimal. By lemma 1, it thus suffices to prove that for every rule r ∈ (TT ∪ TC),
‖r‖T

TT∪TC = t.
We will carry out the proof by contradiction. Suppose there is a rule r ∈ (TT ∪ TC)

such that ‖r‖T
TT∪TC �= t. Since, obviously, r ∈ CnT (TT ∪ TC), the only truth value wrt.

(TT ∪ TC) which remains possible for r is c (contradiction). From ‖r‖T
TT∪TC = c follows

that there is a rule r′ ∈ (TT ∪ TC) such that r ∈ CnF (r′), i.e. L(r′) ≥g L(r).
From (2) we know that there is at least one source ruleset R such that r ∈ CnI(R);

hence there is a rule r′′ ∈ R such that L(r) ≥g L(r′′). From r′ ∈ (TT ∪ TC) follows
that r′ belongs to the truth-consequence of each of the source sets. Hence, there is a rule
r′′′ ∈ R such that L(r′′′) ≥g L(r′). By transitivity of ≥g, L(r′′′) ≥g L(r′′). As both r′′′ and
r′′ belong to R, if R(r′′′) = R(r′′) then R is not minimal, otherwise R is not consistent �

Finally, we can make out the proof of the main theorem, 1.

Proof of theorem 1

Proof of minimality of TT ∪ TC ∪ TU1 ∪ TF1 We will, again, prove the property
by contradiction. Suppose there is a pair of rules, p, q ∈ (TT ∪ TC ∪ TU1 ∪ TF1), such
that p ∈ CnT (q). By (2) and by the specific properties of (TT ∪ TC ∪ TU1 ∪ TF1), we
know that:

1. (p ∈ CnT (P) ∧ p ∈ CnI(P)) ∨ (p ∈ CnT (Q) ∧ p ∈ CnI(Q))

2. (q ∈ CnT (P) ∧ q ∈ CnI(P)) ∨ (q ∈ CnT (Q) ∧ q ∈ CnI(Q))

where P,Q are the original sets. Then exists a set R ∈ {P,Q} such that p ∈ (CnT (R)∩
CnI(R)). As R is minimal and consistent, from lemma 2 follows that p ∈ R, and thus
p ∈ P ∨ p ∈ Q. Similarly, q ∈ P ∨ q ∈ Q. For each of P,Q to be minimal, p and q
cannot both belong to P or to Q. Assume that p ∈ P and q ∈ Q (the other case would
be treated analogically). Since p ∈ P, and there is a rule (namely, q) in Q which has p
in its truth-consequence, p cannot belong to TU nor TF ; it thus belongs to TT ∪ TC.
Similarly, since q ∈ Q, and there is a rule (namely, p) in P which has q in its importance-
consequence, q cannot belong to TU1 nor TF1 (as it is important wrt. both sets); it thus
belongs to TT ∪TC. Hence, both p and q belong to TT ∪TC, which is thus not minimal;
this contradicts theorem 0 we have already proven �
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Proof of consistency of TT ∪TC ∪ TU1 ∪ TF1 From the previous proof, we know
that TT ∪ TC is minimal. By lemma 1, it thus suffices to prove that for every rule
r ∈ (TT ∪ TC ∪ TU1 ∪ TF1), ‖r‖T

TT∪TC∪TU1∪TF1
= t.

We will carry out the proof by contradiction. Suppose there is a rule r ∈ (TT ∪
TC ∪ TU1 ∪ TF1) such that ‖r‖T

TT∪TC∪TU1∪TF1
�= t. Since, obviously, r ∈ CnT (TT ∪

TC ∪ TU1 ∪ TF1), the only truth value wrt. (TT ∪ TC ∪ TU1 ∪ TF1) which remains
possible for r is c (contradiction). From ‖r‖T

TT∪TC∪TU1∪TF1
= c follows that there is a rule

r′ ∈ (TT ∪ TC ∪ TU1 ∪ TF1) such that r ∈ CnF (r′), i.e. L(r′) ≥g L(r).
By (2) and by the specific properties of TT ∪ TC ∪ TU1 ∪ TF1, we know that:

1. (r ∈ CnT (P) ∧ r ∈ CnI(P)) ∨ (r ∈ CnT (Q) ∧ r ∈ CnI(Q))

2. (r′ ∈ CnT (P) ∧ r′ ∈ CnI(P)) ∨ (r′ ∈ CnT (Q) ∧ r′ ∈ CnI(Q))

where P,Q are the original sets. Then exists a set R ∈ {P,Q} such that r ∈ (CnT (R)∩
CnI(R)). As R is minimal and consistent, from lemma 2 follows that r ∈ R, and thus
r ∈ P ∨ r ∈ Q. Similarly, r′ ∈ P ∨ r′ ∈ Q. For each of P,Q to be consistent, r and r′

cannot both belong to P or to Q. Assume that r ∈ P and r′ ∈ Q (the other case would
be treated analogically). Since r′ ∈ Q, and there is a rule (namely, r) in P which has
r′ in its importance-consequence, r′ cannot belong to TU1 nor TF1 (as it is important
wrt. both sets); it thus belongs to TT ∪ TC.

From r′ ∈ (TT ∪TC) however follows that r′ belongs to the truth-consequence of each
of the source sets. Hence, there is a rule r′′ ∈ P such that L(r′′) ≥g L(r′). By transitivity
of ≥g, L(r′′) ≥g L(r). As both r′′ and r belong to P, if R(r′′) = R(r) then P is not
minimal, otherwise P is not consistent �

4.3.4 Problems and perspectives of the algebraic approach

The above method for knowledge integration is restricted to a rather weak formalism.
It would be easily extensible to rules with negated literals allowed as conditions, and
to categorial attribute-value representation. It would also be interesting to investigate
whether a generalization of this method could be applied on weighted rules, as weights
with bayesian semantic could easily be assigned to rules discovered in data; this might
enable to unify the present approach with the weight compromizing technique described in
section 4.4. In this respect, the notion of minimality introduced in section 4.3.1 should be
compared with the notion of knowledge base minimality elaborated by Ivánek [IvaSte88].
Another open problem is that of different a priori credit of both information sources; this
would probably require a certain “fuzzification” of truth (and possibly importance) values
introduced in our approach.

The formulation of the problem and the technique presented (in [Svatek95]) have
inspired Posthoff et al. to the development of their rules/examples integration method,
which is based on logical equations [PosScZ96]. The method involves computation of
solution sets, which can be done efficiently by means of existing dedicated tools; in contrast
to our method, it does not consider the notion of importance.
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4.4 Integration of weighted rules from expert and from data

4.4.1 The problem of revision of weighted rules

In section 4.3 we have analyzed the task of learning with prior knowledge consisting of
simple “logical” (i.e. non-weighted) rules. The task could be treated straightforwardly
as that of knowledge revision, or, as we have shown, as that of knowledge induction and
integration (the “bypass-model”); we have also suggested a simple algebraic approach
for the integration subtask. We however know that expert knowledge often suffers from
uncertainty and cannot be always represented in the form of “logical” rulesets. Let us
now consider a more complex situation of weighted rules. Again, both the revision and
induction-and-integration paradigms can be applied.

In section 3, we have stated that most inductive learning methods output knowledge
in a “logical” form (i.e. without certainty factors). Similarly, most knowledge revision
methods operate on logical theories or rulebases; revision of compositional rulebases is
a lot more complex. It can be decomposed into structure revision, consisting in additions
and removals of rule elements, and strength revision, i.e. adjustment of weights. Ling &
Valtorta [LinVal91] have shown that even if the knowledge is represented by (weighted)
propositional rules without chaining, and the data are noise-free, the strength refinement
problem (i.e. tuning the weights to fit given data) remains NP-hard even for simple com-
position operations such as the probabilistic sum used e.g. in Mycin [Shortl76].

We have approached the refinement problem from a different perspective, namely from
that of knowledge integration, analogically to section 4.3. Instead of adapting the expert
rules to one data object in turn, we assume that empirical rules are first discovered in
data and then integrated with expert rules. We limit ourselves to the case of a single,
isolated expert rule.

Let us suppose that the expert asserts a rule, and immediately associates a certainty
factor, i.e. weight, with it: “I think that rule r holds with weight wE(r)”. Let us accept the
pseudo-bayesian viewpoint, from which wE(r) can be considered as a subjective estimate of
probability of conclusion (class) c given condition Cond. Then it makes sense to compare
the weight wE(r) of expert rule r with the relative conditional frequency of c given Cond
in a dataset D, i.e. with the validity (cf. the definition in section 3.2.2) V alD(r).

We can distinguish three situations:

1. The coverage of r in D, CovD(r), is equal to 0 (V alD(r) is then undefined)

2. V alD(r) = wE(r)

3. V alD(r) �= wE(r)

The first case means that no information can be found in data to support or reject
the expert rule. In the second case, the data perfectly match the expert’s estimate of rule
weight and we will probably keep the rule together with the agreed weight. In the third
case, the expert and the data “disagree” and we are facing a “conflict”.
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In reality, the second case is quite rare and may occur rather as a product of chance
than as a real expression of agreement between the expert and data. We thus need to
replace the requirement of equality of V alD(r) and wE(r) with a more moderate one.
Intuitively, we would suggest a verbal form similar to: V alD(r) does not significantly
differ from wE(r). What the term “significantly differ” means can be defined in various
ways; most likely, we will utilize statistical or heuristic measures.54

The conflict which arises for a rule with different expert weight and validity in data
is an instance of the knowledge revision problem. Since our universe is that of weighted
rules, we have the liberty of choice between structure revision, i.e. removal of the rule
from our knowledge, and strength revision, i.e. adjustment of weight; the last possibility
would be to keep the rule with the “original” weight (i.e. that given by expert).

4.4.2 Interpolation between weight in data and weight from expert

The weight adjustment task can be formulated as follows: having a rule r with weight
wE(r) assigned by the expert, and a set of data objects D, we want to obtain a new,
adjusted weight w(r) as a “compromise” between the expert and the data - or (we antic-
ipate here what comes later), an interpolation between the expert weight and the weight
in data.

The adjusted weight can be expressed as a result of an interpolation function γ, which
takes into account all relevant information. In our simple model, relevant information
can be summarized into three numerical values such that other (especially V alD(r)) are
dependent on them55:

1. The weight given to r by the expert: wE(r).

2. The coverage of r in data: CovD(r).

3. The correct-coverage of r in data: CCovD(r).

Hence:

w(r) = γ(wE(r), CovD(r), CCovD(r)) (3)

Let us now formulate some requirements which should be fulfilled by any “reasonable”
γ:

1. If CovD(r) = 0 then γ = wE(r).

2. If CovD(r) > 0 then ((wE(r) ≤ γ ≤ V alD(r)) ∨ (V alD(r) ≤ γ ≤ wE(r))).

54We should not omit a third type of measure, the “statistically-heuristic” one, which is undoubtedly
most popular within the AI community. It consists in applying statistical measures while relaxing some
of their pre-conditions; we thus obtain heuristic measures which are often (but not always) more plausible
than “ordinary” rules-of-thumb. As we will see later, this was the case for the present work, too.

55The definitions of coverage and correct-coverage can be found in section 3.2.2.
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3. If CovD(r) > 0 then: if for two rules r, r′ with validities V alD = V alD(r) = V alD(r′)
and expert weights wE = wE(r) = wE(r′) holds CovD(r) ≤ CovD(r′)
then for the respective values of γ, denoted as γ and γ′, holds
|V alD − γ | ≥ |V alD − γ′ |.

The first requirement states that if the rule does not cover any data objects, the func-
tion should return the expert weight (no adjustment takes place). This requirement could
be nicknamed as vacuity requirement, after one of Gärdenfors’ postulates (cf.[Garden88])
for closed theory contraction, which has a similar semantic.

The second requirement is also quite natural: it states that the result of γ should lay
in the interval between the expert weight and the weight computed from data (so that
we can use the term “interpolation function”).

The last requirement is derived from the assumption that with increasing coverage of
the rule, we can trust the data more (or, at least, not less). From the statistical point of
view, this amounts to the impact of sample size on the plausibility of estimate.

4.4.3 Heuristic interpolation function based on confidence interval

Statistical techniques have long been a decent source of inspiration for AI researchers.
Here, for the instantiation of the interpolation function, we have borrowed the notion of
confidence interval. Our heuristic interpolation function γci is, for a given dataset D and
a rule r, defined by two partial functions56:

If CovD(r) = 0 or |wE(r) − V alD(r) | ≤ ε, then

γci = wE(r) (4)

otherwise
γci = p.(V alD(r) + εsign) + (1 − p).wE(r) (5)

where

• εsign = ε.sign(wE(r)−V alD(r)); ε is the radius of bilateral (symmetrical) confidence
interval for V alD(r), output by a certain statistical test T on data D.

• p is a heuristic “plausibility function” of the interval estimate, which takes values
from the closed interval [0, 1] and is monotonically increasing with CovD(r).

The function may appear complex, its behaviour is nevertheless quite transparent.
If the weight given by expert falls within the confidence interval, it is considered as
(heuristically) “not rejected by data” and taken as such. If it falls beyond this interval,
the result should intuitively be set to the interval boundary closer to wE(r); it is however
weighted by the plausibility function, which further decreases the impact of data for very
small sample sizes. At Fig. 25 we show an example of behaviour of such function.

It is not difficult to verify that such interpolation function satisfies the requirements
declared in section 4.4.2.

56The definition has been first presented in [Svatek94a].
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Figure 25: Graph of behaviour of interpolation function γci

Proof for property 1 The requirement is fulfilled by definition.

Proof for property 2 The “interpolation” property follows from the fact that (for
CovD(r) > 0) γci is a linear combination of wE(r) and V alD(r) + εsign such that the
sum of coefficients equals to 1 (p + (1 − p) = 1). The result of such a combination
necessarily lays between the values of both operands. Since the interval between wE(r)
and V alD(r)+ εsign is a subinterval of the interval between wE(r) and V alD(r), any value
laying in the former must also lay in the latter. For the limit case when CovD(r) = 0, the
requirement is fulfilled by definition.

Proof for property 3 The “monotony” property follows from the assumption that the
radius of confidence interval is to be non-decreasing with increasing sample size, for any
statistical test. The set of values of CovD(r) for which | wE(r) − V alD(r) | ≤ ε is thus
a lower set of the set of all values of CovD(r), for fixed wE(r) and V alD(r). The value
of γci is equal to wE(r) in this case (according to (4)); from the interpolation property
follows that for any value of γci:

|V alD(r) − wE(r) | ≥ |V alD(r) − γci |

i.e. the difference function ∆(CovD(r)) = | V alD(r) − γci | takes its maximum for γci =
wE(r). Now, we will analyze the situation when |wE(r)−V alD(r) |> ε, wE(r) > V alD(r).
Then the value of difference function is

∆(CovD(r)) = (1 − p).(wE(r) − V alD(r)) + p.ε
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which is non-decreasing for non-decreasing ε (and thus for increasing CovD(r)). Analogi-
cally, for |wE(r) − V alD(r) |> ε, wE(r) < V alD(r),

∆(CovD(r)) = (1 − p).(V alD(r) − wE(r)) + p.ε

with the same result. Altogether, as ∆(CovD(r)) is maximal in the lower set of the domain
and non-decreasing in the rest of the domain, it is non-decreasing in the whole domain.
The property 3 thus holds for any pair of rules.

4.4.4 Problems and perspectives of the weight interpolation approach

The ultimate aim (cf. [Svatek94b]) of the above described technique was to enable in-
tegration of (multiple) weighted rules suggested by an expert with rules extracted from
data by means of the ESOD method. This aim however showed to be somewhat spuri-
ous. The rulebase learned by means of ESOD is closely linked to data from which it was
learned. Any modification to the rulebase, such as weight adjustment, disturbs this link -
some rules are influenced by the expert while some other are based on data only. If these
rules are syntactically dependent, a serious inconsistency may occur. It can be proven
that even a single, isolated weight adjustment may give rise to a rulebase which does not
correspond to the original dataset any longer (this could be still viewed as more-or-less
desirable) and even to any dataset at all, due to an inconsistent probability structure.
Empirical experiments with a clone of the Knowledge Explorer system have shown that
this situation is typical rather than exceptional57.

To overcome the above problem, every weight adjustment would have to be accompa-
nied with additional probability propagation steps. The choice of these steps, however,
would not be fully deterministic, since the consistency of conditional probabilities could
be achieved in different ways. The integration process could then be guided by heuristics
and/or by a human oracle (the expert himself).

Another solution could be to resign on the real domain of weights and to introduce
some qualitative weights instead, such as:

• “certainly 100%” rules,

• “possibly 100%” rules,

• “certainly above 50%” rules,

• “possibly above 50%” rules.

57For the purpose of experiments, we have implemented the interpolation-function-based weight ad-
justment mechanism in a very simple form, using a standard-deviation test (at significance level 0.05),
where ε is understood as standard error of random choice from alternative distribution; the plausibility
function p was derived from a sample-size heuristic commonly used in the context of this test. For every
rule generated from data, the expert rulebase was examined; if an identical (but the weight) rule was
found, the result of the interpolation function was computed and tested against the composed weight of
subrules.
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This type of weights would probably be easier to obtain from an expert, and could
also make the propagation of weights more tractable. The rules could be organized into
different layers and the weight adjustment could be performed according to a look-up
table58 instead of numerical computation.

æ

58The achievements of non-monotonic logic (research on stratified rulesets, cf. e.g. [Przym88]) could be
taken into account.
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5 Learning with hierarchies and constraints as static

domain knowledge - methodology and implemen-

tation

5.1 Objectives

In section 2.2 we have described some existing techniques of learning with prior static
domain knowledge. They have been tentatively divided into two groups - those where prior
knowledge constrains the search space (section 2.2.2) and those where prior knowledge
extends the search space (section 2.2.3). In addition, we have focused on projects involving
two particular forms of such knowledge - value hierarchies and/or integrity constraints
(section 2.2.4), namely the forms which are treated in this section describing original
research.

Our project carried out in 1995-1996 concentrated on the following problem, in its
more general forms as well as in the specific context of the ESOD method (the background
project, see section 3):

Problem 3 Which forms of static domain knowledge are applicable in learning from cat-
egorial data? How can their exploitation be incorporated into the ESOD learner as well
as reasoner (classifier)?

So far, three forms of static domain knowledge have been investigated: hierarchies of
attribute values, hierarchies of classes and integrity constraints. A new implementation of
ESOD can exploit all of them; it has been tested on three real-world tasks. First testing
results suggest that the impact of hierarchies may consist in better comprehensibility as
well as in higher reliability of classification; integrity constraints reduce the learning time
under specific conditions, which should be assessed in advance.

An additional problem that arose in this context was the inavailability of hierarchical
background knowledge in some cases. This entailed the need for automatic methods for
hierarchy-building:

Problem 4 Can hierarchies of input attribute values and of classes be constructed auto-
matically from data? Are they meaningful (compared to hierarchies suggested by expert)?

For this purpose, a simple hierarchical clustering technique has been suggested, which,
unlike most such techniques used in ML, accounts for different extrinsic dissimilarity of
values of attributes on which the clustering is based (so-called source attributes). The
testing results are promising, but very preliminary.

5.2 Abstraction hierarchies

5.2.1 The notion of abstraction hierarchy

A hierarchy is understood as a transitive partial ordering over a set of elements, such that
one of the elements (“root”) precedes all others; the semantic of this precedence is usually
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that of “superiority” of some kind. In artificial intelligence, two types of hierarchies are
most often used (in particular, within semantic networks): abstraction (“is-a”) hierar-
chies and decomposition (“part-of”) hierarchies. Decomposition hierarchies are used to
describe the physical decomposition of some system - one object is a part of another (see
the example at Fig. 26). Abstraction hierarchies have to do with the degree of abstrac-
tion of terms, in the domain language - one notion is a special case of another (see the
example at Fig. 27). An important property of abstraction hierarchies is the assumption
of inheritance: if we know that the entity X has property p, we can expect that entity Y
which is a special sort of X (Y is-a X) also has property p.

PC!!!!!!!!! ��
�����
"""""""""

monitor central unit keyboard . . .
######## ��
�����
"""""""""

processor memory disk . . .
######## ��
   
������

controller heads plates . . .

Figure 26: Example of decomposition hierarchy

computer!!!!!!!!! ��
�����
"""""""""

PC workstation mainframe . . .
######## �� 		
$$$$

Apollo Sun HP . . .

Figure 27: Example of abstraction hierarchy

In a language restricted to combinations of attribue-value pairs, hierarchies can be
defined either on the attributes themselves, or on their domains (sets of values). An
abstraction hierarchy defined on the set of attributes may regroup them into abstract
classes of attributes; further domain knowledge can e.g. specify that attributes from cer-
tain groups often appear together in a rule, etc. We will not, however, consider hierarchies
of attributes in this work, and will instead concentrate on the hierarchies of attribute values
- both for input attributes (section 5.2.2) and the goal attribute (section 5.2.3).
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5.2.2 Hierarchies of input attribute values

The notion of attributes with hierarchically structured domain (also structured, tree-
structured, taxonomic...) is not new in the ML literature, cf. [AlmAkK95], [AroPrB96],
[Nunez91]. Here, we adopt one of the common ways of describing it: Let a be an attribute
and V = VO∪VA the domain of its values. VO is the set of observable values (which can be
observed on data objects), while VA is the set of abstract values. VO must contain at least
two elements, and VA must contain at least one element - the universal value any. As
a hierarchy on a, we consider a directed acyclic graph59 on V , with one source - the value
any - and the sinks corresponding to values from VO; internal nodes correspond to values
from VA. A hierarchy can be defined on a nominal or ordered attribute - in the latter
case, each value from VA should subsume a contiguous sequence of values from VO

60.

The most typical examples of value hierarchies used in machine learning are probably
taxonomies of natural objects, geographical/administrative partitionings, and linguistic
thesauri. The application described in [AroPrB96], for example, involved the tree struc-
ture of US geographic areas, a large botanical taxonomy, and a smaller hierarchy of climate
types. In the orienteering application mentioned in this paper (section 5.5.1), the largest
hierarchy dealt with terrain objects of distinguishable size. Almuallim et al. [AlmAkK95]
applied their method to trees of linguistic concepts.

The way how abstract values are introduced into target knowledge structures much
depends on the particular learning technique: usually, some form of general-to-specific
search is performed. Learning rules with abstract values is a natural means to improve the
comprehensibility of target knowledge structures, as these shift the classification process
to a more abstract level; cf. the notion of heuristic classification introduced by Clancey
[Clanc85], with the abstraction of Variables from Observables as its first step. Another
potential benefit is the conciseness of such rulebase, as one rule with abstract values
expresses a hypothesis otherwise dispersed in several (lower-grained) rules. Furthermore,
if the learner is biased towards high coverage to avoid overfitting, abstract (or anyhow
conjoined) values are necessary for any rules to be induced from smaller datasets, as
individual values have too low frequency.61

Let us make a brief remark on the relation between generalization and abstraction.
According to [Saitta95], abstraction is an “ability to change the level of details of a rep-
resentation”; in machine learning, it could “give solutions to the fundamental dilemmas

59It need not be a tree, as some branches may conflue; namely if the hierarchy addresses multiple ways
of abstraction. For illustration, see the two fragments of a hierarchy at Fig. 31, in section 5.5.

60We do not consider partitions of abstract values orthogonal to the ordering of observable values, such
as “even-odd” for integer values.

61The last two statements may seem somewhat contradictory; actually, without using the hierarchies,
there is a tradeoff between a large size of the knowledge base and incapability to detect important
relations. Decision trees are biased towards the former; therefore, Núñez [Nunez91] observed an abrupt
decrease of size when using hierarchies. Rule-discovery systems with statistical constraints on coverage
tend to the latter: hierarchies were thus needed to detect interesting rules by our learning algorithm in
the orienteering domain (see section 5.5.1), similar observations have been presented also by Aronis et
al. [AroPrB96].
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involving the trade-off between knowledge simplicity and predictivity, knowledge mean-
ingfulness and task-dependency”. Abstraction should be viewed as complementary to gen-
eralization, as “generality is an extensional property of concepts and is based on instance
set inclusion”, while “abstraction is an intensional property and is based on hypothesis
information content”.

In this respect, rule learning with hierarchical attributes consists of both generalization
and abstraction. As an example, consider a learning task aiming at finding rules which
should determine whether a certain project environment (including e.g. hardware, soft-
ware, legal conditions and human resources) is suitable for developing knowledge-based
systems. The input dataset describes environments which have proven suitable or unsuit-
able for KBS design, in the past. In each data record, the “hardware” option is expressed
by a hierarchical attribute, whose domain of values corresponds to the tree in Fig. 27.
Let us assume that, in the dataset, all environments where hardware was Apollo, Sun or
HP are labelled suitable for KBS design. A pure generalization would yield e.g. the rule

hardware = (Apollo OR Sun OR HP) --> class = suitable

while generalization combined with abstraction would yield

hardware = workstation --> class = suitable

The first rule is more complicated - it contains an internal disjunction62 - while the second
is simpler and more meaningful.

Let us recall the notion of learning bias, introduced in section 2.2.1. With regard to
the common distinction of bias types - representational, procedural and sample bias, the
impact of input attribute value hierarchies amounts to representational bias: it extends
the language in which the inductive hypotheses can be expressed.

The concept of hierarchical attributes and of “generalization as climbing up in a hi-
erarchy” was notoriously mentioned in the mainstream ML literature - the “climbing-
up-hierarchy” operation was known to be a generalization technique alternative to the
common “drop-literal” one. Nevertheless, it was mainly used for “textbook”, demon-
strative purposes, in connection with small example sets (e.g. the notorious taxonomy
of simple geometric objects). Only recently, attempts appeared to exploit hierarchies to
discover important relations in raw data. This is the case of the RL knowledge discovery
system [ClePro90], which has been used in several domains to discover useful relations; its
more advanced successor KBRL [AroPrB96] uses role links in addition to taxonomies. The
phenomen of tree-structured attributes has also been studied in the context of decision-
tree learning, by Núñez [Nunez91] and Almuallim et al. [AlmAkK95], with the primary
aims of cutting down computation time, increasing accuracy and decreasing the size of

62Internal disjunctions have been exploited in the AQ family of learning algorithms, in connection
with Michalski’s annotated predicate calculus [Michal83]. Construction of internal disjunctions can also
be viewed as a simple form of feature construction, namely conjonction of nominal values of attributes;
cf. the note on constructive induction, section 2.2.3 of this work.
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the tree learned (although comprehensibility was also mentioned as a secondary issue).
Our approach seems to lay between the “discovery” and “performance” streams, as the
systematic search method of ESOD is akin to discovery techniques, while it disposes an
embedded performance element. Unlike [AlmAkK95], we assume that the primary in-
put source is the data, the size of the hierarchies being moderate; the common point of
both approaches is the search method, which consists of pre-computing the frequencies
for all abstract values, followed with search for a kind of optimal representation. Within
the KDD stream, hierarchies (even non-tree dags) are also used to aggregate data from
large databases, along the so-called domain generalization paths [HamHiC96]; these lead
bottom-up, from most specific (leaf) values toward the root (“any” value), thus being
reversions of top-down explanation paths we introduce in this work, in the context of
class hierarchies (see section 5.2.3).

Abstraction hierarchies (and is-a relations within semantic nets) have been also ac-
cepted as a rudimentary form of domain knowledge for relational systems, such as the
apprenticeship-learning systems Disciple [TecKod90], APT [NedCau92] and Odysseus

[Wilk90]. Another related approach may be that of Either, a knowledge revision sys-
tem, one version of which was adapted to constructive induction [MooOu91b]. Either

works with chained rules on propositional concepts; some of these rules are similar to
is-a links (e.g. “has handle → graspable”). If such rules lead from observable features to
intermediate features, the truth-values of the latter can be deduced for data objects by
forward chaining, added to the descriptions of these objects and used as input features
in the subsequent empirical induction process. However, Either’s rules can be more
complex (at least, they mostly involve conjunctive antecedents) and their semantic may
only incidentially become that of concept generalization.

5.2.3 Hierarchy of classes

While hierarchies on input attributes have been used in the ML research for some time,
little attention has been paid to the possibility of exploiting hierarchies of classes. Our
understanding of class hierarchies can be characterized in three dimensions:

Syntax A hierarchy defined on the goal attribute is syntactically identical with hierar-
chies on input attributes, see previous section.63

Semantics For each path leading from the any node downto a leaf node, there are (at
least) two possible interpretations (semantics); it can be viewed as either

• a refinement path, along which the initially coarse conclusion is refined (spe-
cialized);

• an explanation path, which explains the specific (leaf-level) conclusion given in
advance.

63In our work, we have so far considered only tree-shaped class hierarchies - this limitation should be
overcome in the future.
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Pragmatics Classification (in the form of refinement) as well as explanation can be
performed by means of rulesets linked to each non-leaf node of the hierarchy.

A learning algorithm can be used to provide each non-leaf node in the hierarchy with
a partial ruleset64, which is able to assign a data object into one of its immediate successor
nodes. To induce such a ruleset, only a subset of data is used, and the class of each object
replaced with that of the corresponding immediate successor node (see Fig. 28). This
“macro-learning” algorithm is applicable irrespective of the particular learning technique.

The resulting hierarchical rulebase can be used for classification, which has the form
of class refinement (see Fig. 29); again, the macro-algorithm can be coupled with any sort
of classifier (compatible with the learner used for induction).

Another possibility is to perform two separate learning tasks - one with the class
hierarchy, yielding a hierarchical rulebase, and the other without it (learning on the whole
dataset), yielding a flat ruleset, which discerns among all leaf classes at once. We can then
separate the problem-solving task (i.e. classification) from the explanation task - the former
can be performed using the flat ruleset while the latter using the hierarchical rulebase. The
explanation has the form of path from any to c, E = (c0 =any, c1, c2, . . . , cn−1, cn = c),
where c is the leaf class returned by the classifier based on the flat ruleset; within each
node ci in the path, those rules are displayed which support the conclusion ci+1. If the
classifier returns ci+1 for each ci in E, 0 ≤ i < n (based on ruleset Ri linked to ci), then we
will call E perfect-fit explanation - this also means that the hierarchical macro-classifier
would agree with the “flat” classifier. An example of such explanation can be found at
Fig. 34 in section 5.5.2. Fit can be also expressed numerically, as “m-of-n”, where m ≤ n;
m = n (i.e. 1 of 1, 2 of 2 and so forth) corresponds to perfect fit.

We assume that the use of class hierarchies can improve comprehensibility if the in-
dividual refinement steps are more transparent than the one-shot classification performed
by the flat ruleset. The transparency of classification is, in turn, likely to increase with
the decreasing number of rules which participate on the derivation. The plausibility of
explanations naturally depends on the relevance of the hierarchy to the classification pro-
cess: if the expert followed the same or similar hierarchy when assigning the training
objects to classes, then the explanation attempts to reconstruct his behaviour, in contrast
to the “shortcut” derivation performed by the flat ruleset; we can view it as reconstructive
explanation. Experiments (section 5.5) suggest that the imperfect fit of explanation can
also serve as indicator of lowered confidence in the conclusion, thus having indirect impact
on accuracy; moreover, in some situations, the hierarchical rulebase can be itself more
accurate that the flat ruleset.

In terms of learning bias, class hierarchies provide representational bias, as the lan-
guage of classes (right-hand sides of target rules) changes due to relabelling, but also
instance bias, as only a subset of objects is picked up in each micro-learning step.

Step-by-step refinement of the conclusion has first appeared in man-made expert sys-
tems. Early diagnostic expert systems like Mycin or Prospector (which are related

64Instead of a ruleset, we can naturally conceive a different knowledge structure such as a decision tree
or list.
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Input: dataset O, class hierarchy HC .
Output: hierarchical rulebase (HC with a ruleset linked to each non-leaf node).
Computation:
At every non-leaf node c of the hierarchy, we

1. determine the set Oc of objects from O whose class ci is successor of c in HC;

2. replace the class of these objects with cj which is immediate successor of c and
predecessor of ci

65 in HC - we obtain a dataset O′
c;

3. run LEARNER on O′
c, which yields a ruleset Rc;

4. link Rc to node c.

Figure 28: Macro-learning algorithm (induction of a hierarchical rulebase)

Input: object o, class hierarchy HC with linked hierarchical rulebase.
Output: one of the leaf-classes from HC .
Computation:

1. Let NODE = any.

2. Let R be the ruleset linked to node NODE in HC . Let c be the class returned by
CLASSIFIER for o, based on R. Let NODE = c.

3. If NODE is a leaf-class then stop and return NODE, else go to 2.

Figure 29: Macro-classification algorithm
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to ESOD in the sense of reasoning mechanism) were rather knowledge-monolitic: they
reasoned from symptoms to hypotheses in one shot (be it through multiple layers of rules)
and did not provide explanations other than simple chains of rules. Later, however, more
modular systems have been built, where different forms of knowledge participated on the
problem-solving task. An important improvement was the shift to successive refinement of
the initial hypothesis; hierarchically structured knowledge also played an important role -
cf. e.g. the work on Neomycin, by Clancey [Clanc88]). This trend was recently reflected
in the work on reusable problem-solving methods, e.g. within the KADS methodology.
The KADS library of generic task models [TanHay93] distinguishes three generic forms
of classification: simple classification, heuristic classification and systematic refinement.
In this respect, we view the reasoning performed with the use of hierarchies (as shown
in sections 5.2.2 and 5.2.3) as simple classification involving some aspects of heuristic
classification (the abstraction of features of the given data object) as well as of systematic
refinement (the refinement of classes in the class hierarchies).

Our use of class hierarchies for generating explanations seems to be novel. However,
many approaches exist which exploit various forms of knowledge to break the classification
task into simpler steps or to give deeper insight into it: the Enigme system [ThoLaG93]
is guided by a KADS model of expertise of the given task, the learning method of Clark
& Matwin [ClaMat93] uses qualitative models of the domain, Bruha [Bruha95] uses man-
made decision trees etc. All these approaches rely on control knowledge elicited from
expert. In contrast, our method requires only static domain knowledge; this of course
entails that the explanation proposed is fully valid only if the static knowledge structure
(abstraction hierarchy) captures the refinement steps of the undercover problem-solving
procedure. The problem of hierarchical explanations can be also compared with the cur-
rent research in explanation for expert systems. One of the hot issues seems to be the
generation of reconstructive explanations in addition to trace-based ones [Wick94]; our
separation of (“shortcut”) classification and step-by-step explanation can be viewed as
a humble move in this direction. Moreover, the idea of separate classification and ex-
planation has already penetrated to ML; note e.g. the Gem system [VMeDec95], where
explanation arises as axis-parallel approximation of the complex representation found by
an instance-based neural learner; van Someren [VSom95] explicitely distinguishes learn-
ing for problem-solving and learning for explanation, which corresponds to our separate
learning of flat ruleset and hierarchical rulebase.

5.2.4 Constructing value hierarchies

The above methods for exploitation of value hierarchies assume that the hierarchies are
given in advance. The source can be a human expert, but, as taxonomy knowledge often
belongs to common knowledge of the domain, it can be as well a textbook or a person
who is familiar with the domain only to some extent. In some situations, however, even
such a source is not available; then we can consider building hierarchies automatically.
This task is akin to two well-known ML tasks:
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• conceptual clustering, which groups unclassified instances into tentative classes based
on values of input attributes (see e.g. [Fisher87], [GenLaF89], [OliBaW96]),

• class-sensitive discretization of continuous input attribute values into intervals (see
e.g. [Catl91], [LeeShi94]).

Both these tasks consist in joining together distinct values of an attribute wrt. the
values of other attribute/s.66 However, the former restructures the domain of the goal
attribute based on values of input attributes, while the latter the opposite. To avoid
ambiguity, we will now denote the attribute to be restructured as target attribute (TA)
and the attribute on whose values the restructuring is based as source attribute (SA). As
criteria deciding about the utility of the join (or, alternatively, about the similarity of the
TA values to be joined), various measures based on empirical conditional probabilities
of SA values given TA values have been used: the common idea of all of them (Fisher’s
category utility, information gain, MML measure, Hellinger’s divergence) is the effort to
maximize internal similarity and minimize mutual similarity of TA values in terms of
SA values; those TA values should be joined which correspond to similar distributions
of SA values, so that the join does not substantially increase the average “impurity”.
Different SA values are however treated as having always uniform (i.e. maximal) extrin-
sic dissimilarity, with the exception of the Classit system [GenLaF89], which utilizes
a standard-deviation-based measure to handle continuous source attributes.

In our work, we want to address the problem of a larger class of source attributes,
namely attributes with hierarchically structured and/or linearly ordered domain. For
this, we need an objective function capable of reflecting extrinsic dissimilarity unique
for each pair of SA values. We demonstrate the concept of dissimilarity among values
on a simple example of military grades (see Fig. 30). The full set of military grades is
linearly ordered; in addition, there are (contiguous) groups of grades which share many
properties, and can be viewed as abstract values in a hierarchy. A heuristic dissimilarity
measure should comprise both factors; we suggest the following form, without claiming
that it is necessarily the best one:

Diss(x, y) = HDiss(x, y).LDiss(x, y)

where

• HDiss(x, y) is hierarchical dissimilarity:

HDiss(x, y) = 1 − (‖e(x)‖ + ‖e(y)‖) . ‖e(x) ∩ e(y)‖
2.‖e(x)‖.‖e(y)‖

66This is the bottom-up view which we keep throughout this paper. In top-down view, we want to split
the domain of values instead; the problem of construction of the objective function, which is focal in this
section, is however independent of the search method. Finding a hierarchical structure optimal wrt. such
measure typically requires a combination of joining and splitting steps - see [Fisher96] for an overview.
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where e(x) is the set of edges in the hierarchy which belong to some path leading
from any to x (each edge appears only once); ‖.‖ denotes set cardinality.67

• LDiss(x, y) is linear dissimilarity:

LDiss(x, y) =
| Ord(x) − Ord(y) |

Total − 1

where Ord(x) is the ordinal number of x in the linear sequence and Total is the
total number of values; it is thus the relative distance of values in the ordering.
This kind of dissimilarity measure has been used previously in ML research (e.g. in
[KrePoS95]).

The whole Diss(x, y) as well as its components are symmetric and take values from [0, 1];
HDiss(x, x) = LDiss(x, x) = Diss(x, x) = 0 for any x. Given the structure of military
grades above, we can e.g. compute hierarchical dissimilarity between the values “corporal”
and “lieutenant” as 2/3 and linear dissimilarity as 2/5, thus Diss(corporal, lieutenant) =
0.267. If a clustering algorithm is to build a hierarchy of TA values based on the values
of the source attribute “grade” it should strive to join together not only TA values which
correspond to the same grade, but also TA values which correspond to different but similar
grades. It must then take into account the dissimilarity of SA values, which is extrinsic
to the clustering itself.

As a measure expressing the degree of internal cohesion of a dataset in terms of SA
values, we use the following formula:

Coh(A) =
Σn

i=1Σ
n
j=1 ‖ai‖ ‖aj‖ (1 − Diss(ai, aj))

n2
(6)

where n is the number of values of source attribute A and ‖ai‖ is the frequency of value
ai in data. This measure roughly expresses the average degree of instance dissimilarity
within the whole data. To evaluate the utility of a partition of target attribute B into
m values, we can further compute aggregated cohesion given B, in a way analogical to
information-theoretic or probabilistic approaches (‖./.‖ stands for conditional frequency):

Coh(B, A) = Σm
k=1P (bk)

Σn
i=1Σ

n
j=1 ‖ai/bk‖ ‖aj/bk‖ (1 − Diss(ai, aj))

‖bk‖2
(7)

For multiple source attributes, the overall cohesion can be calculated as the average value
of (7).68 This typically occurs in hierarchization of the class attribute given a set of input
attributes.

Exploitation of constructed hierarchies, with each non-leaf node representing merely
a union of observable values (without a semantic meaning of its own) differs from ex-
ploitation of man-made hierarchies: the former merely enable generalization while the

67An advantage of this measure is its applicability to non-tree dags.
68Different weights (importances) of attributes can be taken into account if this form of background

knowledge is available.
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1 - soldier officer
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lower o. higher o. 6 - general
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2 - corporal 3 - sergeant 4 - lieutenant 5 - colonel

Figure 30: Example hierarchy of military grades

latter enable abstraction, which has stronger impact on comprehensibility. As the hierar-
chization step is separated69 from the rule-learning step, they should (in fully-blown ap-
plications) be interleaved with another step - interpretation of constructed values (unions)
by an expert, and possibly rejection of some obviously meaningless unions.70 The risk
of accidential formation of value unions is higher for input attributes, where the source
information is limited to one (i.e. class) attribute; it seems that for plausibility of such
hierarchization, it is necessary that the the single source attribute has at least a richer
value structure (hierarchical and/or linear with multiple values, as illustrated above). An
example of tentative interpretation of conjoined values can be found in section 5.5.3.

As a predecessor to our hierarchization technique, we can see the on-line value-unioning
operation suggested also by [Nunez91], as well as other techniques exploiting the so-called
internal disjunction. The difference lays in the off-line position of hierarchization, which
is prone to be followed by interpretation of unions, prior to learning; unlike [Nunez91], our
technique is adapted to nominal as well as ordered attributes. From another point of view,
our technique is closely akin to conceptual clustering (of classes) [Fisher87], [GenLaF89],
[OliBaW96] and to discretization (of input attributes) [Catl91], [LeeShi94]. Its difference
from the bulk of clustering techniques consists in the account of extrinsic-dissimilarity,
as presented in section 5.2.4; among the previous clustering systems, it is only Classit

which considers extrinsic dissimilarity but only in the specific sense of continuous attribute
values. The same holds for discretization techniques, among which the one proposed by
Lee and Shin [LeeShi94] is most similar to our hill-climbing clustering in the search method
(but not in the objective function).

69This distinguishes our approach from that of Núñez, where the value-merging operation (of input
attribute values) is performed online, during the construction of a decision tree. [Nunez91] mentions the
use of existing hierarchies and the construction of unions as substantially different operations.

70This interpretation problem is mentioned e.g. by Catlett [Catl91], in the context of finding intervals
of continuous attributes.
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5.3 Integrity constraints

In models of human reasoning, two important types of statements can be identified:
positive and normative71. Both types of statements can appear as a conclusion of a sort
of rule. This implies that also two types of “rules” can be distinguished; let us call them
inference rules and integrity constraints.

An inference rule infers, from the validity of a certain statement, the validity of an-
other statement; an integrity constraint, in contrast, infers, from the validity of a certain
statement, the requirement of validity of another statement. In this respect, an inference
rule and an integrity constraint can deal with the same matter; in an extreme case, they
may even look quite similar. Consider the following example:

If Mr. X works as private lawyer then he must have a university degree.

The rule can be read as an inference rule: from the profession of Mr. X, you can
deduce that he (almost) certainly has the degree. If you are a journalist from a local
newspaper, you can e.g. trust that the article on legal issues he sent you is sound and
should be published.

The same rule can also be read as an integrity constraint: a university degree is
required for the profession and, if Mr. X lacks it, there is a spot on his “moral integrity”.
If you are the same journalist but this time wanting to scandalize Mr. X, you are seeking
for negative evidence of his degree...

In sections 2.2.2 and 2.1.2 we have come across multiple feature of the Mobal system.
Mobal also uses integrity constraints in the form of disjunctive Horn clauses - these are
syntactically richer than inference rules, for which a single literal is allowed as head.
If the left-hand side of the constraint is satisfied then the right-hand side is checked;
if it evaluates false, a message is output (“Integrity constraint violation in...”) and an
inconsistency-solving task is added to the agenda of tasks. The principles of integrity
constraints of this type are probably borrowed from the field of deductive databases
[Bry93]. There, the goal is to keep a database consistent through multiple updates.

Nevertheless, integrity constraints, even in a simpler form, can be also used for guid-
ing empirical induction from categorial data. They prevent the inclusion of “forbidden”
combinations into the set of potential left-hand sides of rules to be learned. If we recall
once more the distinction of bias types from section 2.2.1, we see that the impact of in-
tegrity constraints can be characterized as representational bias, similarly to hiearchies of
attribute values. This time, however, the bias reduces the hypothesis space.

71This is a general topic which appears in numerous disciplines such as philosophy, psychology, law etc.
For the sake of brevity, we will however treat it rather pragmatically, i.e. merely in the sense in which it
“protrudes” into the applied artificial intelligence research.
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5.4 Implementation

5.4.1 Hierarchies and ESOD

We have implemented separately the learning and classification algorithms72 from sec-
tion 5.2.3 and a hierarchization algorithm based on similarity measures from section 5.2.4.
The former are grafted upon the ESOD method of learning a set of weighted rules from
observational data (including the compositional mechanism used for classification of new
instances). ESOD (and its recent implementation named Kex) has been described in
more detail e.g. in [IvaSte88], [BerIva94] and section 3 of this work. Its learning algo-
rithm was shown before, in Fig. 18. It consists in systematic search through the space of
categorial rules, in the decreasing order of coverage; only those rules are accepted which
“bring new information” wrt. the pseudobayesian composition of simpler rules accepted
before. From the beginning, ESOD was viewed as a method for learning from data with-
out expert. This was considered as a major advantage, as the method could be used
even in domains where experts are not available, and on raw data rather than on selected
examples only - the “Feigenbaum’s bottleneck” (see section 1.1.2) could thus be avoided.

The motivation for using ESOD as the base-level learner and classifier was twofold73:

• the systematic search method of ESOD can be augmented to work with hierarchies
of input attributes without any change to its principles;

• the compositional method of classification enables to quantify the plausibility of
each alternative conclusion, which can be beneficial for sensitive evaluation of ex-
planations74.

To incorporate value hierarchies into the ESOD algorithm, two simple extensions are
needed:

• to include into the CAT list also abstract values (categories), and

• to replace the notion of subrule75 (rule whose left-hand side contains a subset of
attribute-value pairs from the original rule) with the notion of more general rule,
namely a rule with more general combination at the left-hand side: a combination
C is more general (or equal) than D iff for every literal Ai = vi from C, there is
a literal Ai =vj from D such that either vi =vj or there is a path leading from vi to
vj in the hierarchy defined on attribute Ai.

The way of handling class hierarchies in ESOD-based learning is obvious, as the macro-
learner in Fig. 28 does not impose any requirements on the embedded learner; a set of

72The algorithms have been first described in [Svatek96].
73A third, less explicit reason might be the fact that ESOD has been developed at the author’s work-

place, the sum of unpublished know-how concerning its use being immediately available.
74Especially in the case of multiple explanations in a non-tree hierarchy, which has not been investigated

yet.
75This is the reason why we have underlined it in the algorithm at Fig. 18.
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weighted rules is induced for each non-leaf node of the hierarchy (hierarchical rulebase),
as well as without recourse to the hierarchy (flat ruleset). The classification element of
ESOD composes, separately for each class, the weights of rules which match the given
instance, and returns the list of classes ordered according to composed weight. For testing
purposes, we can assume that the class with highest weight - best-weight class - is always
chosen76. This enables to integrate the ESOD classifier into the macro-classifier from
Fig. 29.

The current version of the hierarchization algorithm is based on simple bottom-up
hill-climbing clustering (similar to the discretization technique suggested by Lee and Shin
[LeeShi94]), the objective function being the extrinsic-similarity-based cohesion intro-
duced in section 5.2.4. At the beginning, each value of the target attribute corresponds
to one cluster. In each step, a pair of clusters is joined so that the loss of overall cohesion
is minimal. In the end, the resulting binary tree is heuristically pruned - some nodes for
which the loss of cohesion was too small are removed. In order to process continuous
values, a discretization pre-processor was also developed. It uses the same objective func-
tion as the hierarchization algorithm, but the search method is one-shot search for local
maxima of the objective function (cf. e.g. [Kock95]). As the search techniques of hier-
archization/discretization are likely to be replaced by more sophisticated ones in future
versions, we do not describe them formally and in detail.

5.4.2 Integrity constraints and ESOD

The ESOD method is a generate-and-test method based on systematic search; with an in-
creasing number of attributes and their values, the combinatorial complexity may become
prohibitive. Essentially, there are two ways how to fight it:

• to impose fixed limits of search, such as the maximum number of left-hand-side
literals or absolute/relative frequency of combinations to be considered,

• to introduce explicit restrictions on combinations to be investigated - integrity con-
straints, so as to eliminate impossible or uninteresting combinations.

The first group of techniques is widely used in machine learning; they rely upon the
assumption of appropriate heuristics being available in a given domain. Their use is
almost inevitable when applying ESOD-like methods on medium- and large-size datasets,
as they enable a substantial cutoff of computational cost. They may, on the other hand,
incur a serious loss of information present in data.

The second approach is much less reported, as it requires an external source of domain
knowledge, which is not always available. In our work, we assume that in many domains,

76Note that when evaluating an explanation, we need not cling to the boolean concept of fit (1 if
the next element in the explanation is returned as the best-weight class in the given step, 0 otherwise)
but can take into account e.g. the weight difference between the best-weight class and the successor in
explanation. The choice of explanation-evaluation schemes would deserve a thorough study, which has
not been undertaken yet.
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it is at least possible to point out impossible combinations of attribute values, which are
ruled out by the fundamental logic of the domain.

For simplicity, let us consider only integrity constraints in the form:

ai : (Vi1, . . . , Vim) ⇒ aj : (Vj1, . . . , Vjn)

or

ai : (Vi1, . . . , Vim) ⇒ ¬(aj : (Vj1, . . . , Vjn))

where ai, aj are attributes and (Vi1, . . . , Vim), (Vj1, . . . , Vjn) are subsets of their domains.
They can be read as: if ai has a value from (Vi1, . . . , Vim)77 then aj must (or must not,
respectively) have a value from (Vj1, . . . , Vjn).

The use of constraints in an ESOD-like algorithm is quite simple: when combinations
are generated, those ruled out by the constraints are eliminated.78 Integrity constraints
may be particularly useful in conjunction with hierarchical attributes - it is possible to
specify constraints at a higher level of abstraction, without recourse to concrete values
present in data. Such constraints remain valid even if the concrete language of data
changes.

It is obvious that in systematic-search-based methods like ESOD, most computer time
is spent on computing the frequencies of combinations and goal concepts in data. There
is, therefore, a tradeoff between evaluating combinations wrt. integrity constraints and
wrt. data. We can deduce that:

• with increasing number of objects, the use of constraints saves more time spent on
evaluation wrt. data, but

• at the same time, the number of combinations considered may rapidly grow and
if only a small proportion of these are covered by constraints, the time spent on
evaluation wrt. constraints increases.

The computation-time cutoff can be roughly expressed as

Coff = mIC . n . to − m . tIC (8)

where

• mIC is the number of generated combinations which are counterdicted by integrity
constraints,

• n is the number of objects,

77Or a value which is subordinated to a value from (Vi1, . . . , Vim), given ai is a hierarchical attribute.
The same holds for the right-hand side of the constraint.

78Presently, we do not consider the problem of mutual logical consistency of constraints, and left it to
their provider.
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• to is the time needed to verify whether an object satisfies a combination,

• m is the total number of generated combinations,

• tIC is the time needed to verify whether a combination violates an integrity con-
straint.

This formula is naturally very simplified and does not account for many variable features
present in the ESOD algorithm.

An important point is whether and when the number of combinations actually grows
with increasing data size. Typically, we set a minimal frequency threshold for categories,
which keeps the number of combinations very low for small data sizes; if we increase the
number of objects, the number of combinations grows until all “common” combinations
are present; since then it stagnates. The utility of constraints thus strongly depends on
the size of the combinatorial space of attribute values - they will be most suitable for large
datasets described by a low number of attributes with small domains. First experiments
on using constraints are reported in section 5.5.1.

5.5 Experiments

The empirical experiments aimed at finding out about the impact of hierarchies and
constraints on accuracy, comprehensibility and computation time. Three problems (and
datasets) have served for this purpose so far: the control-site description problem formu-
lated by the author of this work himself [Svatek96], the glass identification problem from
the UCI repository of machine learning databases, and the problem of per-share revenue
assessment from the Czechoslovak voucher privatization.

5.5.1 The control-site description (CSD) problem

An orienteering competition is a sport event, in which every competitor has to visit
a sequence of control sites, in a given order; he uses a map and a compass to navigate in
the terrain. Every control site is described by a set of pictograms which provide additional
information. These are available long before the race (unlike the map which is obtained
as late as at the start) and thus can be thoroughly analyzed. Each description consists
of several items. The most important ones (which have only been considered for our
purposes, as input attributes) describe:

• the object near which the control flag is situated (such as a hill, an outstanding tree
or a stream)

• the position of the flag wrt. the object (such as on the top, at the south-west corner,
or at the bend)

• additional property of the object (e.g. deep, sandy or deciduous)

• distinction of the object among several objects of the same type in the control area
(e.g. southern, upper or middle).
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Our goal attribute was the difficulty of finding the control flag.79 Three classes have
been heuristically suggested: 1 means no trouble finding the control flag, 2 means a small
loss of time (up to a few tens of seconds), 3 means a greater loss of time, i.e. a serious
navigation failure. It should be forestated that the difficulty of controls depends on many
aspects not present in the descriptions, especially on other objects nearby, which can ease
the navigation. In addition, the success of an individual competitor may be influenced
negatively by his/her lowered concentration in the particular moment (even the easiest
control can thus be missed), and positively by following another competitor. This is
a reason why (noise-robust) methods for learning from observational data seem to be
appropriate.

As a source data file, we have taken the protocol compiled by the author of this paper
himself during 17 orienteering competitions across 3 years. The file contained 244 data
objects corresponding to control sites. Of them, 186 were of class 1, 40 of class 2 and 18 of
class 3. The observable values for (the four above mentioned) input attributes have been
encoded according to standards of the International Orienteering Federation [ConDes90],
and the attribute hierarchies have been constructed along rather obvious criteria80. In
Fig. 31 we show two fragments of the hierarchy on attribute obj type; each of them
addresses a different way of abstraction. Class hierarachies have not been considered.
Table 3 summarizes the numbers of observable and abstract values.
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Figure 31: Fragments of the hierarchy on obj type in the CSD task

79Recalling the categorization of classification problem solving tasks from section 1.2.3, we can see that
our task can be most naturally viewed as prediction, as the properties of the control cause, with a certain
likelihood, some entailments for the competitor, in the future.

80The knowledge we have used when building up the hierarchies can be, in the “scarcity” dimension
from section 2.2.1, characterized as “common-sense”, as it mostly deals with common names of terrain
objects. Some terms and their relations (e.g. “thicket” or the difference between a hill and a knoll) may
however not be clear to a non-initiated person; they can be viewed as “rudimentary” domain knowledge.
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attribute observable values abstract values
obj type 59 18
flag pos 18 4
add prop 11 2
which of 6 3

Table 3: Numbers of attribute values in the CSD task

with hierarchies without hierarchies
number of rules 24 5
number of literals 42 2
accuracy in source data 76.64% 76.23%
average weight difference 0.107 0.135

Table 4: Results of experiments with hierarchies in the CSD task

We ran the learner with attribute hierarchies and without them, both times with
a fixed frequency threshold (minimum) of 10 objects, to avoid overfitting. Then we ran
the classifier with the rulesets induced, on the source dataset. The results are summarized
in Table 2. In addition to accuracy obtained by choosing always the best-weight class,
we have computed the average difference between the composed weight of the best-weight
class and the composed weight of the actual class of the object; it can be viewed as a kind
of “average error”.

The rulebase learned without hierarchies contained almost only rules with empty left-
hand side, as the frequency of most observable values was too low to allow generalization
(due to the fixed frequency threshold as well as to the properties of the embedded sta-
tistical test). Its classification capability corresponded to majority rule approach, i.e. to
assigning all objects to the most frequent class overall (which was class 1). The only
“non-empty” rules induced were (weight in parentheses):

obj_type=boulder --> class = NOT 1 (0.75)

obj_type=boulder --> class = 3 (0.78)

which can be interpreted as “controls at boulders are rather difficult to find”.
The rulebase learned with hierarchies contained substantially more rules but the accu-

racy did not significantly improve. This is not surprising because the data were extremely
noisy due to external factors. However, most rules with abstract literals were meaningful
and would definitely provide more information than rules with empty left-hand sides:

obj_type=1-dimensional --> class = 1 (0.61)

obj_type=0-dimensional --> class = NOT 1 (0.61)
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obj_type=in_forest AND flag_pos=not_known --> class = NOT 1 (0.59)

obj_type=rock_object --> class = NOT 1 (0.71)

obj_type=man_made --> class = 1 (0.77)

obj_type=1-dimensional AND flag_pos=foot_of --> class = NOT 1 (0.77)

...

These rules are quite plausible: in the orienteering community, it is generally agreed that
e.g. controls at linear or man-made objects are easy to find, unlike controls in rocky areas
or at the foot of small (“0-dimensional”) objects.

We have also experimented with integrity constraints. We have formulated the follow-
ing ones:

obj_type:(0-dimensional) ==>

flag_pos:(unknown,top,side,edge,middle,foot)

obj_type:(1-dimensional) ==>

flag_pos:(unknown,slope,end,bend,crossing,fork,top,inner_corner,

outer_corner,foot)

obj_type:(2-dimensional) ==>

flag_pos:(unknown,top,side,edge,middle,part,inner_corner,outer_corner,

tip,foot)

obj_type:(vegetation) ==>

add_prop:(no,coniferous,deciduous,overgrown)

The first three claim that the dimension of the object (point, linear or planar) delimits
the variety of possible positions of the control flag. The remaining one, analogically, lists
possible properties of vegetation objects.

We have performed a series of tests, with data size growing81 from 25 to 200, both with
constraints and without them. The parameters were otherwise set as follows: frequency
threshold (minimum) 5, combination length (maximum) 3, significance level 0.05. The
results are summarized in Table 5. The columns of the table correspond, in turn, to the:

1. number of objects82,

2. total number of combinations generated by the learner,

3. number of combinations eliminated by constraints (and thus not tested on data),

81For simplicity, the objects have been added in the natural order, not picked by random.
82We refer to the notation introduced in equation (8) in section 5.4.2.
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Figure 32: Change of relative cutoff wrt. data size

4. computation time with constraints83,

5. computation time without constraints,

6. difference between tw/o and twith (the cutoff),

7. percentage of time cut off by constraints (i.e. Coff/tw/o) - see also the graph at
Fig. 32.

From the table we can see that the number of combinations (m) grows approximitely
linearly with increasing data size (n), which, together with the increase of n itself, accounts
for the increase of computation time. At the beginning, the constraints do not save any
time (as there is no combination violating them). Subsequently, the constraints apply
and eliminate impossible combinations such as “bend of a pit” or “flat tree”. As the
combinatorial space is rather large in the CSD task, we did not reach the stagnation point
of m within acceptable data size; nevertheless, the utility of the constraints eventually
seemed to (at least) outweigh their cost. The relative cutoff was constantly increasing
(starting from negative value), with a single exception (at data size 150), which we could
not explain so far84. The rapid increase of cutoff for largest data sizes should not be
overestimated, as it may be implementation-dependent and related not only to the time
complexity but also to the space complexity of the algorithm: it seems that, without
constraints, the size of the database containing the combinations exceeds the limits of
conventional memory, and time-consuming swapping is applied.

In general, the experiments above suggest that, in particular for tasks with combina-
torial properties more favourable than in the CSD task, integrity constraints could lower

83The times are in the form hh:mm:ss. The high numbers are partly due to the slowness of the computer
used for testing (PC386SX) and of the Prolog implementation.

84The preliminary hypothesis is that the newly accepted combinations were mostly rather specific, and
thus “hard” to verify by constraints and “easy” to verify in data, in terms of position in the lattice of
combinations.
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n m mIC twith tw/o Coff Coff (%)
25 255 0 0:19:08 0:16:57 -0:02:11 -12.88
50 322 0 0:57:49 0:53:39 -0:04:10 -7.77
75 494 8 2:14:49 2:08:19 -0:06:30 -5.07

100 675 23 4:03:37 3:57:38 -0:05:59 -2.52
125 843 42 6:47:27 6:49:21 0:01:54 0.46
150 1001 65 9:55:07 9:55:59 0:00:52 0.15
175 1130 68 13:09:34 13:22:19 0:12:45 1.59
200 1402 107 20:10:04 21:27:51 1:17:47 6.04

Table 5: Results of experiments with integrity constraints in the CSD task

the computation time. In order to establish rules deciding whether to apply them in
a particular situation, more thorough research would be needed.

5.5.2 Glass identification problem

The GLASS database is one of those recently added to the UCI repository of machine
learning databases85; the original source was the British Home Office Forensic Science
Service. The problem was formulated in the context of criminological investigation, which
involved the need to identify the type of glass, found in the place of crime, based on
optical and chemical analysis. The dataset has 214 instances described by values of 9
continuous-valued attributes indicating the refraction index and the content of various
chemical elements. There are 7 classes of glass (of which only 6 are present in data); the
documentation includes the hierarchy from Fig. 33, which has 5 non-leaf values.
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Figure 33: Class hierarchy in the glass domain

85The public repository at the University of California Irvine contains a large collection of datasets
that have been used in ML research and applications and are constantly used for testing and comparison
of new systems. See [UCI-rep95].
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no.of rules of FR 93
avg.no.of rules per node in HR 25
acc.of FR in src.data 81.8%
acc.of HR in src.data 77.1%
perfect-fit explan.(PFE) 88.8%
acc.of FR / PFE 84.2%
acc.of FR / ¬PFE 62.5%

Table 6: Summary of results from the glass domain

We have first discretized and then hierarchized86 the input values with respect to class
distributions, by means of techniques presented in section 5.2.4; as class hierarchy, we
took the one present in documentation, as it was. Then we induced both the flat ruleset
(FR) and the hierarchical rulebase (HR), and tested them on source data. The results
are summarized in Table 6.

We can see that the average number of rules in partial rulesets of the hierarchical
rulebase was significantly lower than the number of rules of the flat ruleset. We can thus
assume that individual refinement steps within the hierarchy could be more transparent
than the classification made merely with the flat ruleset. The hierarchical rulebase had
an acceptable performance by itself; moreover, it provided a high number of perfect-fit
explanations to the classification decisions produced by the flat ruleset. An important
observation (see the last two lines in the table) was that the accuracy of classification
was substantially higher for decisions with perfect-fit explanations than for the others.
This seems to suggest that the lack of explanatory justification signals a lower degree of
confidence in the conclusion.

To illustrate the outlook of a hierarchical explanation, we present the trace for instance
no.1 from the source dataset (Fig. 34). First, the input values are listed. Then, the
classification by the flat ruleset is described, in terms of rules which decided about the
class assignment.87 Finally, each individual step of the explanation is listed in the same
way. We can see that the explanation decomposes the process of classification: the content
of magnesium decides between window/non-window glass, while the content of silicium
indicates that the glass has been float-processed; finally, as none of the “exception” rules
for vehicle glass is fired, it is assumed by default that the instance belongs to class 1
(float-processed building window glass).

86For the sake of brevity, we list only the results achieved with input value hierarchies. For comparison,
we have also proceeded with non-hierarchized values; the results were slightly but insignificantly worse
in terms of accuracy.

87Not all rules applied are listed but only those satisfying a heuristic criterion of display; the problem of
selection of rules to be displayed in explanation is omitted here, as it is rather specific for the compositional
paradigm of ESOD.
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OBJECT:

RI=1.52101, Na=13.64, Mg=4.49, Al=1.10,

Si=71.78, K=0.06, Ca=8.75, Ba=0.00, Fe=0.00.

CLASSIFICATION:

1 - Building windows float processed glass

default: 1 (0.33)

rule: Mg > 2.695 --> 1 (0.63)

rule: Si from 71.3 to 71.785 --> 1 (0.86)

composed: 1 (0.93) - best weight by 0.34

HIERARCHICAL EXPLANATION:

FIT 3 of 3

LEVEL 1: choosing between

win - Window glass

nonwin - Non-window glass

default: win (0.76)

rule: Mg > 2.695 --> win (0.94)

composed: win (0.99) - best weight by 0.98

LEVEL 2: choosing between

fp - Float-processed window glass

nfp - Non-float-processed window glass

default: fp (0.53)

rule: Si from 71.3 to 71.785 --> fp (0.91)

composed: fp (0.94) - best weight by 0.88

LEVEL 3: choosing between

1 - Building windows float processed glass

3 - Vehicle windows float processed glass

default: 1 (0.80)

composed: 1 (0.80) - best weight by 0.60

Figure 34: Example of hierarchical explanation in the glass domain (object no.1)
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5.5.3 Per-share revenue problem

The third experimental dataset, eventually, was an economic one. During the last years,
the domain of economics and business is becoming more and more fruitful for ML appli-
cations. As a fairly distant goal, we can view the suggestion by Jaime Carbonell, made
in 1992: “I propose several different challenges that could be within reach of present-day
researchers from different ML paradigms, borrowing liberally from discussions with my
colleagues: ..(parts left out).. ML in finance. The first machine learning program that
learns in some aspect of investment (e.g. the equities market), producing an investment
strategy that earned the investors over one million dollars in a one-year period when
the strategy was followed to the letter without human intervention...” [Carbon92]. Our
experiments were, naturally, much more humble.

In the Czechoslovak voucher privatization (1992-4), the stock of large companies pre-
viously owned by the state has been distributed to masses of shareholders by means of
a “roulette-like” investment game. For the investors it was important to assess, in advance,
the future per-share revenue. The dataset we used in our experiments is a pre-processed
version of information provided by the investors by a public-information company; the
pre-processing, which consisted in discretization of numeric values in dialog with expert,
has been done within a master-thesis project [Kovar95]. The dataset contains 581 objects
(companies) described by 18 input attributes and a class attribute with 8 ordered values -
the actual per-share revenue. Among the input attributes, two were binary, two were mul-
tivalued nominal (region and industry), and the remaining ones were discretized ordered
(various economic indicators). After the removal of incompletely specified objects88, 509
entered the actual experimentation.

First, we have hierarchized all but the binary input attributes, based on the class at-
tribute. Despite the simplicity of the hill-climbing clustering algorithm, some meaningful
value unions arose, which were interpretable even without recourse to an expert. For the
“region” attribute, for example, the top split of the hierarchy separated the eight Czech
regions from the three Slovak ones (it should be noted that the dataset was collected
before the political splitting of Czechoslovakia!); the next split divided the Czech regions
into sets of five and three, the latter being exactly the western regions which neighbour
with EC countries (Germany and/or Austria). The class attribute has been also submit-
ted to hierarchization, which yielded a simple partition into the upper three and the lower
five values.

The rule learning tasks were performed in the same way as in the glass domain. The
results are in Table 7. As the exact correspondence of real/proposed class may be too
strict a requirement in the case of eight ordered classes, we have also computed “tolerant-
matching” accuracy, such that each object was considered as correctly classified even
if the proposed class was the one immediately above/below the real class. The results
are similar as for the glass domain, except that the hierarchical rulebase achieves higher
accuracy that the flat ruleset. This may be attributed to the high number and thus low

88Techniques for handling unknown values in ESOD learning exist but they have not been incorporated
into the hierarchical version yet.
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no.of rules of FR 97
avg.no.of rules per node in HR 38.67
Testing strict “tolerant”
acc.of FR in src.data 35.8% 68.8%
acc.of HR in src.data 43.0% 77.8%
perfect-fit explan.(PFE) 58.7% ———
acc.of FR / PFE 47.5% 78.9%
acc.of FR / ¬PFE 19.0% 54.3%

Table 7: Summary of results from the privatization domain

frequency of leaf classes, which prevents some correct rules from being accepted in flat
learning, due to insufficient coverage; rules at the any node, deciding between two large
class unions only, are more likely to pass. This phenomenon definitely deserves a deeper
study.

5.5.4 Summary interpretation

Based on the preliminary experiments described in this section, we have formulated several
hypotheses, which should be verified by more thorough testing:

• abstraction hierarchies on input attributes can improve comprehensibility of rules
learned; the impact on accuracy is not significant (at least, not in source data);

• hierarchies of classes can improve comprehensibility of classification, via provid-
ing reconstructive explanations; they can be also used to (roughly) estimate the
confidence in the classification decision; under certain circumstances, hierarchical
classification can be even more accurate than classification without class hierarchy;

• class-sensitive clustering can discover interesting unions of attribute values; these
unions should be subject to post-interpretation in order to bring benefits in terms
of rule comprehensibility;

• integrity constraints can lower the computation time if they cover each a significant
amount of the combinatorial space, and the number of objects is high enough to
make up for the overhead of constraints testing.

5.6 Problems and perspectives of learning with hierarchies and
constraints

We have described a set of implemented methods for dealing with value hierarchies within
the learning process, both for input attributes and for the class attribute. The main under-
lying motivation is gaining better comprehensibility, which seems to have been achieved
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to a certain extent: abstract values of input attributes improve comprehensibility of in-
dividual rules, while the structure of classes gives a deeper insight into the classification
process. We also study the related task of hierarchy building, and suggest an objective
function for clustering with hierarchical and/or linear source attributes. Furthermore,
integrity constraints can decrease the learning time, under specific circumstances related
to the combinatorial complexity of the attribute-value search space.

Much work should be done to verify the hypotheses formulated so far more thoroughly,
and to increase the power of the methods. The former will require to complement source-
data testing with cross-validation, which is one of the central points of the original ESOD
method, but has not been considered in our version yet; also, learners and classifiers
based on other than compositional paradigms should be embedded into the hierarchical
macro-algorithms.

For the methods themselves, multiple extensions are at hand, of which some are to be
realized in the near future:

• comparing multiple explanations (in non-tree dags of classes);

• handling non-leaf (i.e. partial “no-care”) values in data89;

• replacing hill-climbing in the hierarchization algorithm with a more sophisticated
search technique (cf. [Fisher96]).

89This phenomenon is natural for case libraries, where the expert’s decision is often made based on
higher-level input values (cf. e.g. [Lenz95]).
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6 Conclusions

In this work, we have analyzed the problem area of learning from data with prior knowl-
edge, from multiple viewpoints. Following an investigation of the state-of-the-art (which
yielded a brief overview, in section 2), we have concentrated on the problems of:

• learning with prior problem-solving knowledge (in the form of rules with/without
weight);

• learning with prior static domain knowledge (in the form of abstraction hierarchies
and integrity constraints).

For each of these, novel techniques have been devised, which solve the problem to
a certain extent. Nevertheless, open problems remain which would require more thorough
work. Some of the techniques are not general enough yet to be applicable to real-world
problems. In this section, we summarize the outcomes of the subprojects and outline the
perspectives of each approach.

The research on learning with prior decision rules without weight has resulted in for-
mulation of a knowledge-integration scheme (section 4.3), which takes into account the
correctness as well as the importance of individual rules; the integrated ruleset is, in a cer-
tain sense, minimal and consistent. It can be applied straightforwardly in a propositional
framework, where the generality relation can be determined easily; in a richer (e.g. first-
order) language, the application would be much more difficult. Moreover, the technique
addresses only the integration segment of the “bypass” model (cf. section 4.2); attention
should be paid to the induction segment as well, as the utility of application depends on
the synergy of techniques realizing both segments.

The research on integration of weighted rules from expert and from data (section 4.4)
has opened many problems. We have suggested a simple heuristic technique for interpo-
lation of expert’s and empirical weights of a rule; however, it is not clear how this can
be adapted to a set of multiple interrelated rules. The expected difficulties related to the
complexity of consistent weight adjustment have proven real, and led to a partial failure of
this subproject, especially with respect to the implementation within the existing ESOD
method. Some preliminary ideas have, however, been formulated (in section 4.4.4), which
could give rise to more successful solutions in the future (e.g. use of qualitative weights).
This would of course require a substantial amount of further research, both in the field of
theory and that of experimental endeavour.

In the context of learning with prior static domain knowledge, we have suggested and
implemented a set of methods for dealing with value hierarchies and integrity constraints
within the learning process. The hierarchies can be defined on the domains of both the
input attributes and the class attribute.

The main underlying motivation was to gain better comprehensibility, which seems to
have been achieved to a certain extent. First experiments suggest that abstract values
of input attributes improve the comprehensibility of individual rules, as they are closer
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to human thinking (they alleviate the abstraction step which would be necessary for
interpretation of “data-level” rules with detailed values). Potentially, such rulebases can
be also more concise, as a single rule with abstract values can replace multiple rules with
detailed values. The structure of classes, on the other hand, gives a deeper insight into
the classification process, thanks to hierarchical explanation.

Moreover, abstract values of input attributes have higher coverage than detailed val-
ues, and thus are more likely to satisfy sample-size biases of a given learning method.
Somewhat analogically, an impact of class hierarchies can be that of increased reliability
of the classification results, as hierarchical classification complements direct classification;
if there is an agreement, the result is (more) reliable, otherwise it is (more) dubious. In
some situations, hierarchical classification can “focus” on the right part of the classifica-
tion domain an thus provide, by itself, better accuracy than direct classification.

Furthermore, we have studied the related task of hierarchy building, and suggested
an objective function for clustering with hierarchical and/or linear source attributes (sec-
tion 5.2.4). The generic part of the function introduces sensitivity to extrinsic dissimilarity
(i.e. dissimilarity among different values of the same source attribute), which seems to be
a novel idea in the machine learning research.

The impact of integrity constraints (in terms of computation time cutoff) depends
on the proportion of combinations covered by them and on the number of objects (sec-
tion 5.4.2). As soon as the data objects saturate the combinatorial space, further increase
of data should rapidly increase the cutoff. However, in one of our experiments, the utility
of constraints has outweighted their cost after a certain sample size has been reached,
even though the number of combinations grew approximately linearly.

The present thesis has addressed several problems considered as important by machine
learning research. It has attempted to categorize and characterize some (most prominent)
existing approaches to learning with prior knowledge, and to contribute to the research in
this field by novel methods and techniques. These methods have been, at least partially,
evaluated in a theoretical as well as experimental manner.

The author envisages to elaborate further on (at least some of) the outcomes of the
work in his next project(s), giving priority to application-ripen methods, especially in
connection with analysis of economic data.

æ
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Glossary of Abbreviations

AI artificial intelligence
CLT concept learning tool
CSD control-site description
DBS database system
D/E data/examples
EBG explanation-based generalization
EBL explanation-based learning
ESOD Expert System from Observational Data
FR flat ruleset
GTM generic task model
HR hierarchical rulebase
ILP inductive logic programming
I/O input/output
KADS Knowledge Acquisition and Design System
KAW Knowledge Acquisition Workshop
KBS knowledge-based system
KEX Knowledge Explorer
KRT knowledge revision tool
MDL minimal description length
MML minimal message length
MK meta-knowledge
ML machine learning
PSK problem-solving knowledge
RDT rule discovery tool
SA source attribute
SDK static domain knowledge
TA target attribute
TDIDT top-down induction of decision trees
UCI University at California-Irvine
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