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Abstract. Extraction of meaningful content from collections of web pages with
unknown structure is a challenging task, which can only be successfully accom-
plished by exploiting multiple heterogeneous resources. In the Ex information
extraction tool, so-called extraction ontologies are used by human designers to
specify the domain semantics, to manually provide extraction evidence, as well
as to define extraction subtasks to be carried out via trainable classifiers. Elements
of an extraction ontology can be endowed with probability estimates, which are
used for selection and ranking of attribute and instance candidates to be extracted.
At the same time, HTML formatting regularities are locally exploited.

1 Introduction

In the last decade, web information extraction (WIE) was dominated by two paradigms.
One—wrapper-based—exploits regular surface-level structures found in HTML code,
which can be used as anchors for the extraction. This approach is now widely adopted
in industry, however, its dependence on formatting regularities limits its use for di-
verse categories of web pages. The other—inductive—paradigm assumes the presence
of training data: either web pages containing pre-annotated tokens or stand-alone exam-
ples of data instances; state-of-the-art trainable IE algorithms are surveyed e.g. in [11].
Again, however, sufficient amount of appropriate training data is rarely available in
practice and manual labelling is often too expensive even with the help of active learn-
ing; statistical bootstrapping alleviates this problem to some degree but at the same time
it burdens the whole process with ‘heavy computational machinery’, whose require-
ments and side-effects are not transparent to a casual user of a WIE tool. In addition,
both approaches usually deliver extracted information as rather weakly semantically
structured; if WIE is to be used to fuel semantic web repositories, secondary mapping
to ontologies is typically needed, which makes the process complicated and possibly
error-prone.

There were recently proposals for pushing ontologies towards the actual extraction
process as immediate prior knowledge. Extraction ontologies [2] enumerate attributes
of the concepts to be extracted, their allowed values as well as higher level (e.g. car-
dinality or mutual dependency) constraints. Extraction ontologies are assumed to be
hand-crafted based on observation of a sample of resources; however, due to their well-
defined and rich conceptual structure they are superior to ad-hoc hand-crafted patterns



used in early times of WIE. At the same time, they allow for rapid start of the actual
extraction process, as even a very simple extraction ontology may cover a sensible part
of target data and generate meaningful feedback for its own redesign. It seems that
for web extraction tasks where the subject of extraction evolves and does not require
sophisticated NLP, extraction ontologies are the first choice. However, to achieve com-
petitive extraction results and to prevent overfitting to a few sample resources, one must
not neglect available labelled data, formatting regularities and even pre-existing do-
main ontologies. This was the motivation for building our WIE tool named Ex1, which
exploits all the mentioned resources, with central role of extraction ontologies. It has
been so far tested in three domains: product catalogues of computer monitors and TVs,
contact information on medical pages, and weather forecasts. First, experimental re-
sults were reported in [5]. In this paper we present the principle how multiple pieces of
evidence from extraction ontologies are combined during the extraction process. Sec-
tion 2 uses a real-world example to explains the most important features of extraction
ontologies used in Ex. Section 3 describes the steps of the information extraction pro-
cess and, especially, the underlying pseudo-probabilistic apparatus. Finally, section 4
surveys related research, and section 5 outlines future work.

2 Ex(traction) Ontology Content—Overview and Example

Extraction ontologies in Ex are designed so as to extract occurrences of attributes, i.e.
standalone named entities, and occurrences of whole instances of classes, as groups of
attributes that ‘belong together’, from HTML pages or texts in a domain of interest.
An extraction ontology defines evidence of different types which is used to identify the
extractable items. Token, character and formatting level patterns may address both the
content and context of attributes and instances to be extracted, axioms may encode their
complex constraints and relations; there are also formatting constraints and ranges or
distributions for numeric attribute values and for attribute content lengths. The extrac-
tion ontology language of Ex was introduced in [5].

In Ex, every piece of evidence may be equipped with two probability estimates:
precision and recall. The precision P (A|E) of evidence states how probable it is for
the predicted attribute or class instance A to occur given that the evidence E holds,
disregarding the truth values of other evidence. For example, the precision of a left con-
text pattern “person name: $” (where $ denotes the predicted attribute value) may be
estimated as 0.8; i.e. in 80% of cases we expect a person name to follow in text after a
match of the “person name:” string. The recall P (E|A) of evidence states how abun-
dant the evidence is among the predicted objects, disregarding whether other evidence
holds. For example, the ”person name: $” pattern could have a low recall since there are
many other contexts in which a person name could occur. Pattern precision and recall
can be estimated in two ways. First, annotated documents can be used to estimate both
parameters using smoothed ratios of counts observed in text. When no training data is
available the user specifies one or both parameters manually. Our initial experiments in-
dicate that extraction ontology developers are often able to specify precision and recall
values with accuracy sufficient to create useful prototype IE systems.

1 Alpha version of Ex is available from http://eso.vse.cz/˜labsky/ex.



Fig. 1. Fragment of code of extraction ontology for contact information

Our example shows a simplified contact information ontology developed within the
EU project MedIEQ2, aiming to extract peoples’ degrees, names and emails. Extraction
results for this task were presented in [5]. The first pattern claims that 70% of Con-
tact instances start with a person name or degree separated by punctuation. An axiom
further claims that in 80% of cases, the person’s name and email exhibit string sim-
ilarity which is identified by a script function nameMatchesEmail(), introduced in a
script ”contact.js” above. Finally, a classifier link contracts an external trained classifier
to classify all attributes of the Contact class. Classifications made by this classifier are
used by some of the attribute content patterns defined below, e.g. for name we expect the
classifier to have a 70% precision and a 50% recall. Other content and context patterns
rely on token-level regular expressions including large named entity lists; e.g. the first
value pattern for name claims that 80% of its matches correctly identify a person name,
while it is only expected to cover about 40% of all person names since the lists are
not exhaustive. In addition, a script is used by the refers section to match co-referring
mentions of the same person name on a single page.

3 The Extraction Process

The inputs to the extraction process are the extraction ontology and a set of documents.
First, analysed documents are tokenized and equipped with formatting structure DOM
trees3. Extraction consists of four stages.

2 http://www.medieq.org
3 To parse malformed HTML we use the CyberNeko parser http://people.apache.
org/˜andyc/neko/doc/html



3.1 Attribute candidate generation

Attribute candidates (ACs) are created where at least one content or context pattern
matches. Let ΦA be the set of all evidence Ei known for an attribute A. To compute a
conditional probability estimate PAC = P (A|E ∈ ΦA) of how likely the AC is given
the presence of each evidence, we use these naive bayesian independence assumptions:

∀E,F∈ΦA,F 6=E : F ⊥ E|A, F ⊥ E|¬A. (1)

That is, evidence is assumed to be mutually independent within positive examples of A
and outside of A. To compute PAC , we use the precision P (A|Ei) and recall P (Ei|A)
of each evidence Ei ∈ ΦA and their truth values, and the prior probability P (A) of
encountering each attribute in text. Φ+

A denotes the set of evidence Ei ∈ ΦA observed
for that candidate, and Φ−A is the set of unobserved evidences Ei ∈ ΦA:
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(2)
The P (A|¬F ) member of Eq. 2 is computed according to Eq. 3; the remaining values

are known from the extraction ontology. Derivation of both formulas is shown in [6].

P (A|¬F ) =
P (¬F |A)P (A)

1− P (F |A)P (A)
P (A|F )

. (3)

The set of (possibly overlapping) ACs created during this phase is represented as an AC
lattice spanning through the document, where each AC node is scored as score(AC) =
log(PAC). Apart from ACs, the lattice includes one ‘background’ node BGw for each
token w that takes part in at least one AC. Supposing |AC| is the length of an AC in
tokens, we define score(BGw) = minAC,w∈AC log( 1−P (AC)

|AC| ) where |AC| is the AC
length in tokens. The extraction process can terminate here by extracting all ACs on the
best path through this lattice or it may continue with instance parsing and formatting
pattern induction.

3.2 Instance candidate generation

Initially, each AC is used to create a simple instance candidate IC={AC}. Then, in-
creasingly complex ICs are generated bottom-up from the working set of ICs. At each
step, the highest scoring (seed) IC is popped from the working set and added to a valid
IC set if it satisfies all ontological constraints. The seed IC is then extended using its
neighboring ACs if their inclusion does not break ontological constraints. Only a sub-
set of constraints is considered at this time as e.g. minimum cardinality constraints or
some axioms could never get satisfied initially. An AC is only added as a reference if a
user-defined function determines its value may corefer with an AC that already is part
of the IC. The newly created ICs are added to the working set. A limited number of
ACs is allowed to be skipped (ACskip) between the combined IC and AC, leading to a
penalization of the created IC. The IC scores are computed based on their AC content
and on the observed values of evidence E known for the IC class C:

sc1(IC) = exp(

∑
AC∈IC log(PAC) +

∑
ACskip∈IC(1− log(PACskip

))

|IC|
) (4)



sc2(IC) = P (C|E ∈ ΩC) (5)

where |IC| is the number of member ACs and ΩC is the set of evidence known for
class C; the conditional probability is estimated as in Eq. 2. By experiment we chose
the Prospector [1] pseudo-bayesian method to combine the above into the final IC score:

score(IC) =
sc1(IC)sc2(IC)

sc1(IC)sc2(IC) + (1− sc1(IC))(1− sc2(IC))
(6)

IC generation ends when the working set becomes empty or on a terminating con-
dition such as after a certain number of iterations or after a time limit has elapsed. The
output of this phase is the set of valid ICs.

3.3 Formatting pattern induction

When extracting from a single web page or web site, it often happens that a large part
of valid ICs satisfies some unforeseen HTML formatting pattern. E.g. all person names
and emails could reside in two dedicated columns of a table. We try to induce these
local formatting patterns as follows. First, the best scoring path of non-overlapping
ICs is found through the valid IC lattice. For each IC on the path, we find its nearest
containing formatting block element (e.g. paragraph, div, table cell). We then create
a subtree of formatting elements between the block element (inclusive) and the ACs
comprising the IC. Each subtree consists of the formatting element names and their
order within parent. Formatting subtrees whose relative and absolute frequencies satisfy
certain thresholds are transformed into new context patterns indicating presence of the
corresponding class, with precision and recall based on their relative frequencies. The
AC and IC generation phases are then re-run for the newly created local context patterns,
rescoring and possibly yielding new ACs and ICs.

3.4 Attribute and instance parsing

All valid ICs are merged as additional nodes into the AC lattice created in previous
steps, so that each IC node can be avoided by taking a path through standalone ACs
or through background states. In the merged lattice, each IC node is scored by |IC| ×
score(IC). The merged lattice is searched for the best scoring node sequence from
which all instances and standalone attributes are extracted.

4 Related Work

Most state-of-the-art WIE approaches use inductively learnt models and consider on-
tologies as additional structures to which extracted data are to be adapted [3]. There is
no provision for directly using the rich structure of a domain-specific ontology in order
to guide the extraction process. Our early research has been inspired by [2]. Distinctive
features of our approach include the effort to combine manually encoded extraction
knowledge with other sources such as formatting and trained classifiers; the possibil-
ity to equip extraction evidence with probability estimates; and the pragmatic distinc-
tion between extraction ontologies and domain ontologies: extraction ontologies can be



arbitrarily adapted to the way data are typically presented on the web while domain
ontologies describe the domain semantics. An approach to automatically discover new
extractable attributes from large amounts of documents using statistical and NLP meth-
ods is described in [7]. On the other hand, formatting information is heavily exploited
for IE from tables in [8]. Our system has a slightly different target; it should allow for
fast IE prototyping even in domains where there are few documents available and the
content is semi-structured. While our system relies on the author to supply coreference
resolution knowledge for attribute values, advanced automatic methods are described
e.g. in [10]. A system described in [9] uses statistical methods to estimate the mutual
affinity of attribute values.

5 Conclusions and Future Work

The Ex information extraction system is capable of combining, in a pseudo-probabilistic
manner, multiple pieces of extraction evidence, provided by the user within an extrac-
tion ontology as well as learnt from annotated data and from local formatting regulari-
ties. As the next step we want to focus on bootstrapping techniques and to compare our
extraction results with other approaches using standard datasets. Finally, we intend to
provide support for semi-automated transformation of domain ontologies to extraction
ones; first experiments (for weather domain) have been described in [4].

The research was partially supported by the EC under contract FP6-027026, Knowl-
edge Space of Semantic Inference for Automatic Annotation and Retrieval of Multime-
dia Content - K-Space. The medical website application is carried out in the context of
the EC-funded (DG-SANCO) project MedIEQ.
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