
 SYSTÉMOVÁ INTEGRACE 4/2011  84 

Pitfalls in transaction time 
 

Helena Palovská 
Vysoká škola ekonomická v Praze  

Fakulta statistiky a informatiky 
nám. W. Churchilla 4, 130 67 Praha 3 

palovska@vse.cz 

Abstract: Impreciseness of the notion of “transaction time” is clarified. Uncertainty in 
application of “transaction time” as  “the starting time of the existence of a database 
record” or “when we got to know” is pointed out. Questions of computer clock 
synchronization and currently available methods for computer clock synchronization 
are resumed. Examples of faults in temporal data interpreted as transaction time data 
in applications are introduced. Safe approaches to the design of systems with 
temporal data are proposed. 

Keywords: temporal database, transaction time, computer clock synchronization, 

chronology, chronological order 

Introduction 

For more than two decades, the database community deals with the temporal aspects 
of data. Two kinds of time information associated with data records are considered: 
transaction time and valid time. Transaction time refers to the period during which the 
database stores the record. It can solely represent the time at which data was 
recorded, optionally including an interval at which data should be removed from the 
database. Also, in a logging system, it may include the time at which the record 
actually was removed. Valid time refers to the period during which the fact was or still 
is or is intended to be true in the business domain. For instance, a time period (T1,T2) 
during which person P lived, lives or will live at address A is a valid time period for the 
fact “person P lives at address A”.  The period for which the record “person P lives at 
address A during time period (T1,T2)” is stored in the database represents the 
transaction time. Therefore, with a database record there could be four time fields 
added: starting valid time (when the fact starts to be true in the business domain), 
ending valid time (when the fact ends to be true in the business domain), starting 
transaction time (when this was recorded in the database) and ending transaction time 
(when this will be/should be/was removed from the database). If both valid and 
transaction time are recorded the term is bitemporal database ([6,2]). Without this 
specification, the more general term is temporal database. 

While the structure design and information retrieval point of view in temporal 
databases is intensively investigated, the question of acquirement and processing of 
transaction time datum is predominantly considered unproblematic. Obviously, the 
intent to maintain a transaction time period, that is to store not only the starting time 
instant but also the ending time instant, leads to issues concerning database 
organization and operation. Against expectation, if the intention is to store only the 
starting time instant, problems can arise, too. This article attempts to show and explain 
how such situations can occur. In the following discussion, transaction time represents 
the starting time of the existence of a database record. 



Pitfalls in transaction time 

SYSTÉMOVÁ INTEGRACE 4/2011  85 

1. What is transaction time? 

It is called transaction time and this itself makes it unclear. Database transaction is  
a process starting at some time instant and ending at another time instant. What the 
“starting time of a database record existence” should be? By a common sense, it 
should be the time instant when the transaction storing the record is committed. 
Unfortunately, also the “commit” is a process, and the question continues to be not 
solved. At some time instant of these processes, i.e. a transaction process including 
the commit process, the “current time” is inserted into an appropriate field of the 
record, but the transaction process further continues. 

Let us investigate the preceding common sense argument: why should the “commit” 
be the starting time instant of existence of a record? From the point of view of the 
transaction owner, the record exists after the insert command was confirmed to him as 
successful, and if the transaction is rolled back, the record ceases to exist for him. 
From the point of view of other transactions (other “threads”) running in the meantime, 
if the record exists depends upon the transaction isolation level [3,4]. If this isolation 
level is set to serializable, the record is visible, and that means it starts to exist for all 
threads, during the commit of the firstly mentioned transaction. If the isolation level is 
set other, for other threads the record can start to exist at another time and it can even 
cease to exist likewise. 

As a conclusion, we see that the task to achieve “the real transaction time” cannot be 
accomplished. We can obtain only some time between the starting instant of the 
transaction and the ending instant of it. These two instants could only be taken from 
the DBMS point of view. Of these two, the only technologically unproblematic “time” is 
the start instant. For the business but, this time would be of no value, as we shall see 
from the next.   

1.1 What is transaction time intended for 

Usually, it is interpreted as a time when the fact was recorded into the database. If this 
is the case, all the impreciseness mentioned in the previous section is to be taken into 
consideration. What can come out of this special application? 

We can ask what the state of the database was at some given time. As explained 
before, we cannot get a precise answer because of the difference between 
“transaction time” recorded and the time of the transaction commit. Eventually, 
“transaction time” is being used to roll back the database. 

If our intention is to review what information could be retrieved from the database at  
a given time, an essential piece of information is missing – what was the transaction 
isolation level at the “transaction time”. This piece of information could possibly be 
added to the “transaction time” data of the record. Nevertheless, the commit time is 
missing either. 

Another usual interpretation of the transaction time is when we got to know. An 
obvious objection is that the data could be recorded later than the specific user got to 
know the fact. More hidden is the need to specify who of us do we mean: the user who 
inserted the record could perhaps know the corresponding fact in advance, while other 
users could get to know it later – possibly we should also take to account the 
corresponding transaction isolation level. 



Helena Palovská 

 SYSTÉMOVÁ INTEGRACE 4/2011 86 

Because the transaction time can be conceived as a mere special case of general 
notion of valid time – that is, the valid time of a higher order fact “... was recorded in 
the database” or “we knew that ...” or “we considered to be true that ...” – all possible 
usages of valid time can take place. These are discussed in the next two sections. 

1.2 Other possible business usages 

Possible usages arise from temporal data comparison, to get an answer to a question 
“how long did it take to...” or “how long did it last”. Valid time can be compared with 
transaction time as well as the transaction time with other transaction time. In these 
cases transaction time is considered the time when “the user” got to know. 

1.3 Other technical usages 

Technical information can be derived from transaction time comparison, in this case 
the transaction time being considered the time when the data was recorded. In this 
case the interpretation is “how long did it take to record...”. 

1.4 Misconceived usages 

Trickery nonsense originates from mismatching the transaction time and the user time. 
That is, time of the database clock and time of the user's clock. These are essentially 
different. Next section will clarify this. 

2. Clock synchronization 

This section attempts to explain to what measure two different computer clocks can be 
saying the same. The most accurate time and frequency standard known give atomic 
clocks. Combined input of many atomic clocks around the world makes up the 
International Time Standard, which is the primary international time standard. Global 
Positioning System (GPS) provides for distribution of this time standard around the 
world. 

Time servers provide for time standard distribution in computer networks. Some time 
servers use atomic clocks, but the most common true time source for time serves is 
GPS. Also another time server on the network or the Internet can be used as a time 
reference for a time server, and also a connected radio clock.   

Other computers can utilize the service of time servers via Network Time Protocol 
(NTP) using UDP, utilize Precision Time Protocol on LANs, or White Rabbit Ethernet-
based network, for instance. Any computer can adjust its clock by regulating its speed. 
Using true time information issuing from some source, offset of the two clocks, jitter 
and an observed delay of message transmission the adjustment is calculated.   

2.1 Network Time Protocol clock accuracy 

Following examples illustrate time precision achievable by NTP; NTP uses Internet 
routes. The first are two outputs from fis2.vse.cz, a computer in local network of 

University of Economics, Prague. First (offset is in milliseconds, * denotes system 
peer, i.e. to which the local clock is actually adjusted): 



Pitfalls in transaction time 

SYSTÉMOVÁ INTEGRACE 4/2011  87 

ntpq> pe 

     remote           refid      st t when poll reach   delay   offset  

jitter 

=======================================================================

======= 

-ca65sb.net.vse. 131.188.3.220    2 u  390  512  377    0.762   -0.599   

3.833 

*ca65rb.net.vse. 192.93.2.20      2 u   99  512  377    0.716    0.159   

1.037 

+ipv6jm.vse.cz   195.113.144.204  2 u  346  512  377    0.296    0.152   

0.188 

-jmnt.vse.cz     91.189.94.4      3 u   95  512  377    0.606   -4.214   

0.339 

-ns.infonet.cz   145.238.203.10   3 u  163  512  377    2.360    0.862   

1.210 

+lx.ujf.cas.cz   195.113.144.201  2 u  471  512  377    1.443    0.461   

0.362 

-ntp.t-mobile.cz 192.53.103.104   2 u  345  512  377    3.167    2.007   

0.521 

A while later: 

ntpq> pe 

     remote           refid      st t when poll reach   delay   offset  

jitter 

=======================================================================

======= 

-ca65sb.net.vse. 195.113.144.201  2 u  409  512  377    0.762   -0.599   

3.822 

+ca65rb.net.vse. 192.93.2.20      2 u  121  512  377    0.716    0.159   

1.032 

*ipv6jm.vse.cz   195.113.144.204  2 u  362  512  377    0.309    0.130   

0.128 

-jmnt.vse.cz     91.189.94.4      3 u   99  512  377    0.606   -4.214   

0.233 

-ns.infonet.cz   145.238.203.10   3 u  181  512  377    2.545   -0.096   

1.464 

+lx.ujf.cas.cz   195.113.144.201  2 u  486  512  377    1.427   -0.039   

0.372 

-ntp.t-mobile.cz 192.53.103.104   2 u  356  512  377    3.167    2.007   

0.415 

In this case, the accuracy can be expected about tenths of milliseconds. Following two 
outputs are from a notebook in an home network connected by a leased line. First: 

ntpq> pe 

     remote           refid      st t when poll reach   delay   offset  

jitter 

=======================================================================

======= 

*odine.cgi.cz    195.113.144.201  2 u 1003 1024  377   14.141    0.058   

1.144 

-bobek.sh.cvut.c 195.113.144.201  2 u  413 1024  177   42.048   11.834  

33.414 

+srv1.trusted.cz 195.113.144.201  2 u  602 1024  377   14.797   -1.232  

35.018 



Helena Palovská 

 SYSTÉMOVÁ INTEGRACE 4/2011 88 

+relay.qls.cz    147.231.19.43    2 u  987 1024  377   24.733    0.585   

3.320 

-ntp1.karneval.c 147.231.19.43    2 u  983 1024  373   12.835   -3.195   

2.469 

A while later: 

     remote           refid      st t when poll reach   delay   offset  

jitter 

=======================================================================

======= 

-odine.cgi.cz    195.113.144.201  2 u  879 1024  377   17.587   -3.036   

0.716 

+bobek.sh.cvut.c 195.113.144.201  2 u  287 1024  377   11.919   -3.662   

 0.908 

*srv1.trusted.cz 195.113.144.201  2 u  480 1024  377   13.608   -3.544   

0.599 

-relay.qls.cz    147.231.19.43    2 u  863 1024  377   14.643   -6.692   

0.046 

+ntp1.karneval.c 147.231.19.43    2 u  857 1024  337   13.988   -3.156   

0.442 

In this case, the expected accuracy is above one order worse. 

For a computer connected to the Internet via GSM, application of NTP makes no 
sense because this protocol is suitable only in a case of a long-lasting connection. 

2.2 LAN protocols clock accuracy 

Precision Type Protocol achieves clock accuracy in the sub-microsecond range. White 
Rabbit aims at being able to synchronize about 1000 nodes with sub-nanoseconds 
accuracy over fiber and copper lengths of up to 10 km. 

2.3 Conclusion on clock synchronization 

As a conclusion, when comparing times from different computer clocks you must scale 
down to a measure corresponding to the expected divergence specific to the 
synchronizing connection of the two computers (see Table 1 bellow). Especially, care 
should be taken in case of multi-tier architecture, when application tier and database 
tier run on different computers. Database time-stamp precision is usually in 
microseconds, can be up to nanoseconds. 

Table 1: Computer clock accuracies outlook 

 Expected accuracy 

Database timestamps from 10
-3

s till 10
-9

s, usually 10
-6

s 

NTP – server in university network, Prague 10
-4

s 

NTP – notebook at home leased line, Prague 10
-3

s 

PTP type protocol less then 10
-6

s 

White Rabbit less then 10
-9

s 



Pitfalls in transaction time 

SYSTÉMOVÁ INTEGRACE 4/2011  89 

3. Examples of fault 

Following examples originate from real business applications. 

3.1 Application server time-stamping instead of a database 
server time-stamping 

For optimization of the whole information system, some operations are performed by 
the application server to reduce burden of the database server. If these operations 
include “current time” setting intended as a transaction time for some records, the 
architect must be aware of significant decrease of accuracy of such “temporal” data 
and of reduced applicability of subsequent temporal comparisons. 

Picture 1: Two possible sources for discrepancy 

3.2 Derived data for optimization of processes 

Because execution of many temporal queries is demanding, derived data are often 
calculated to facilitate corresponding business requirements. While many derived data 
are suitable to be calculated during the transaction that inserts or updates 
corresponding business facts, this may be not the case of temporal derivations. 

Picture 2: Chronological nonsense 

For instance, information, when last event of some type occurred related to currently 
recorded business facts, may be needed. Events of this type can yet be still in the 
progress of recording, and therefore not be known in the database at the beginning of 
the transaction. Transactions of these recordings yet can be committed before the 



Helena Palovská 

 SYSTÉMOVÁ INTEGRACE 4/2011 90 

transaction in consideration, so actually these events are to be taken in the “last 
occurrence” calculation. Now it depends on the order of corresponding commands in 
the transaction of consideration. If the “transaction time” of newly inserted facts is 
calculated before the “last occurrence” calculation, we can obtain chronological 
nonsense. If the “transaction time” is calculated after the “last occurrence” calculation, 
we can get not actually last occurrence, because some new occurrences can be 
recorded in the meantime. 

Picture 3: Not actually last occurrence 

For such cases, an assessment of sufficient delay is necessary and some cron [7] 

utility can complete the “last occurrence” calculation task. 

3.3 Illusive successiveness 

When a set of events follows a causal order and these events are recorded to the 
database in a such way, that before handing over to the next step the process waits 
for database commit, chronological order of according database time-stamps will be 
preserved. When each step instead sends a request to a mediating actor (see e.g. [1] ) 
that sends requests to a database and does not wait for the commit before continuing, 
the chronological order can be corrupted. When information about the order of the 
events is derived from database time-stamps in such a case, this information can be 
false. 

Similar situation can happen when the mediating actor waits for a commit of a 
requested transaction before continuing; if the system uses more than one such an 
actor to speed up the operation of the system, the chronological order can be 
corrupted as well.  

 



Pitfalls in transaction time 

SYSTÉMOVÁ INTEGRACE 4/2011  91 

Picture 4: Corrupted chronological order, version I 

 

Picture 5: Corrupted chronological order, version II 



Helena Palovská 

 SYSTÉMOVÁ INTEGRACE 4/2011 92 

4. Conclusion 

Comparison of time data can be relied upon only when the data come from one and 
only one clock, and if this comparison refers to chronology. Because computer clocks 
possibly adjust their speed, absolute value comparison would bear measurement 
error; such an error can be estimated. When data come from different clocks, 
achievable measure of synchronization must be taken in account; in such case small 
difference in time data may mean that these are chronologically incomparable. 
Chronological order generally is reliable upon only in the case of a causal order. 

“Transaction time” can only be set by a database server and should only be 
interpreted as a time instant from within the period during which the transaction was in 
process. No exact state of database can be deduced from “transaction time” data 
stored in database. 

References 

[1] AMBLER, S.: Encapsulating Database Access: An Agile "Best" Practice. 
www.agiledata.org: Techniques for Successful Evolutionary/Agile Database 
Development [Cit. 27.12.2011.] 
http://www.agiledata.org/essays/implementationStrategies.html 

[2] DATE, Ch. J., DARWEN, H., LORENTZOS, N.: Temporal Data and the Relational 
Model. 1st Ed. The Morgan Kaufmann 2002. 422pages.  ISBN 1-55860-855-9. 

[3] DIGITAL Equipment Corp.: Information Technology - Database Language SQL. 
(Proposed revised text of DIS 9075). 1992. [Cit. 27.12.2011)] 
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt 

[4]  MELTON, J. — SIMON, A.R.: Understanding the New SQL: A Complete Guide. 

1st Ed. The Morgan Kaufmann Series in Data Management Systems 1993.  
536 pages. ISBN 1558602453 

[5] ORACLE corp.: Oracle Workspace Manager. [Cit. 27.12.2011.] 
http://www.oracle.com/technetwork/database/enterprise-edition/index-087067.html 

[6] SNODGRASS, R. T.: Developing Time-Oriented Database Applications in SQL. 
Morgan Kaufmann Series in Data Management Systems 1999. 504 pages.  
ISBN 1-55860-436-7 

[7] WIKIPEDIA, The Free Encyclopedia: cron. [Cit. 27.12.2011.]  

http://en.wikipedia.org/wiki/Cron 


