
University of Economics, Prague

Faculty of Informatics and Statistics

Department of Econometrics

Technical Report No. 01/2018

Narrow Big Data in a stream: Computational
limitations and regression

Michal Černý

Narrow Big Data in a stream:

Computational limitations and

regression

Michal Černý

Department of Econometrics
University of Economics, Prague,

Winston Churchill Square 4, 13067 Prague 3
Czech Republic

E-mail: cernym@vse.cz

Abstract

We consider the on-line model for a data stream: data points are
waiting in a queue and are accessible one-by-one by a special instruction.
When a data point is processed, it is dropped forever. The data stream
is assumed to be so long that it cannot be stored in memory in full: the
size of memory is assumed to be polynomial in the dimension of data, but
not the number of observations. This is a natural model for Narrow Big
Data. First we prove a negative theorem illustrating that this model leads
to serious limitations: we show that some elementary statistics, such as
sample quantiles, cannot be computed in this model (the proof is based on
a Kolmogorov complexity argument). This raises a crucial question which
data-analytic procedures can be implemented in the stream data model
and which cannot be performed at all, or only approximately (with some
loss of information). After the negative results, we turn our attention
to several positive results from multivariate linear regression with Narrow
Big Data. We prove that least-squares based estimators and regression di-
agnostic statistics, such as statistics based on the residual sum of squares,
can be computed in this model efficiently. The class of statistics efficiently
computable in the stream data model also includes two-step procedures
involving auxiliary regressions, such as White’s heteroscedasticity test of
Breusch-Godfrey autocorrelation test (which may be surprising because
the procedures, as defined, seem to require a data point to be processed
several times). The computation is done exactly: we do not use prepro-
cessing steps involving data compression techniques with information loss
(such as sampling or grouping) for a reduction of the size of the dataset.

2

1 Introduction

Big Data is a hot topic in the current data research and is studied in vari-
ous contexts in computer science and statistics. The topics covered range from
data-driven methods involving clustering [4, 5, 14], detection of changes or fail-
ures [3, 8] or detection of frequent events [16] to methods based on advanced
statistical theory such as [6, 10]. (This is just a small illustration.)

It is usual to distinguish between Narrow and Wide Big Data. A narrow
dataset consists of a huge number of multivariate data points in a moderate
dimension, while a wide dataset consists of a moderate number of data points
in a huge dimension.

This paper is motivated by the general question which data-analytic proce-
dures can be performed with Big Data efficiently and exactly under strong
computational limitations, such as the inability to store the whole dataset in
memory at once. To get a basic insight what kinds of problems are faced,
consider the problem of computing the median of a “long” univariate dataset.
When the whole dataset cannot be stored in memory, even elementary opera-
tions such as sorting become nontrivial. In the stream data model, described
in Sections 2.1–2.4, exact computation of median is a good example highlight-
ing the barriers imposed by the computational model. In Section 3 we prove
formally that the sample median, or any other quantile, cannot be computed
exactly. (This does not rule out that an approximate computation is possible;
but it will always be with loss of some information.)

This paper is a contribution to the theory of data-analytic computing with
narrow datasets. (Wide datasets are not addressed here because they require
different methodology with a different computational model than discussed in
this paper.) First we introduce a natural computational model for narrow data:
it is assumed the data points are supplied in a stream (a queue). We will need a
formal definition in terms of Turing machines, but generally it is a kind of model
informally referred to as fully online row-by-row model for data streams [10].

One of interesting examples, discussed at the 61st World Statistics Congress
of the International Statistical Institute1, is that one flight of a four-engine jet
aircraft over the Atlantic produces a data stream of size 600T (and most of the
data are dropped). This is a narrow dataset: the data consists of long (high-
frequency) series from a moderate number of devices and sensors. Another
nice example is the huge data flow from the Large Hadron Collider in CERN
— methods processing the data can access the stream by reading data points
one by one, but when a data point is processed, it is dropped forever. There
is no possibility to store the entire dataset, even with the best contemporary
hardware. (Thanks to Karel Ha for this example.)

The stream data model leads to serious computational restrictions. On the
one hand, we have complex statistical procedures intrinsically requiring the
entire dataset in hand and these procedures cannot be performed in the stream
model (unless we reduce the dataset, which leads to a loss of information).

1See isi2017.org and www.isi-web.org.

3

For example, the maximization of likelihood often requires advanced numerical
optimization, which can be hardly thought of without the entire dataset in
memory; even linear programming, used e.g. in L1-norm estimation, is known
to be hard-to-decompose into smaller subproblems [7]. On the other hand —
and this is one of the messages of this paper — it is surprising that there
are important procedures, which seem to need the entire dataset in hand and
additional memory as huge as the dataset itself, but they can be transformed
into a special form suitable for the stream data model.

An example is White’s homoscedasticity test (discussed in Section 6.1), or
two-step regressions more generally. First, White’s test requires to estimate
a linear regression model. Then, its residuals are computed. Then, in the
second regression, squared residuals are regressed against transformed regressors
from the first regression. Finally, the residuals from the auxiliary regression
are computed and are used in the F-test or LM-test for the significance of
the auxiliary regression. This procedure, as described, requires a data point
to be accessed several times. Moreover, two vectors of residuals need to be
computed and stored in memory — but this is impossible because there are as
many residuals as the number of data points. We show how to overcome such
limitations and express White’s test in a form suitable for stream data. We also
study other statistics, such as Breusch-Godfrey test or Jarque-Bera test.

Recall that the usual approach to large datasets is the usage of a preprocess-
ing step which consists in compression of the dataset into a smaller one either
by sampling [18] or grouping and replacement of the group by a small vector
of suitable characteristics of the group [12, 20]. In this paper we use no size-
reduction procedures: we deal with exact computations where no information
from the dataset is lost.

Finally, it is worth emphasizing that data streaming is a general concept
studied across various areas, such as computer science [9], computational statis-
tics [10], data mining [21] and classification [4, 20], as well as in other areas of
applied mathematics, such as on-line graphs [17] or on-line scheduling [19].

2 Computational model for Narrow Big Data in
a stream

2.1 Formal definition: outline

Let the dataset be organized as a matrix A ∈ Rn×p with rows aT
1 , . . . ,a

T
n . A

row is also called data point.
Let φ : N → N be a nondecreasing function. We say that a function f(A)

is O(φ)-computable in stream, if the value f(A) can be computed under the
following restrictions:

(i) The data is available via an instruction GetDataPoint. When it is called
for the first time, it returns a1, when it is called for the second time, it

4

returns a2 and so on. When it is called for the (n+ 1)-th time, it returns
a special symbol “EndOfData”.

(ii) The memory consists of O(φ(p)) cells. Each cell can store a real number
and perform usual arithmetical operations.

If there exists k ∈ N (independent of p) such that a function f is O(pk)-
computable in stream, we say that f is polynomially computable in stream.

Remark 1. The expression “polynomially computable” refers to the fact
that the size of memory is restricted by a polynomial in p, the dimension of data.
Of course, this is interesting only if n ≫ O(pk); a reader can think of n = Ω(2p)
for example. This is a formalization of the phenomenon that the memory allows
us to store a data point a ∈ Rp and perform simple operations, such as inverting
(p× p)-matrices (which requires space O(p2)). Thus, the memory is reasonably
larger than a single data point, but too small for the storage of the entire dataset
or a great portion thereof.

In the context of Narrow Big Data, this model seems to be a reasonable
compromise between the restriction on the size of available memory and the
ability to compute at least ‘something nontrivial’. But even more restrictive
stream data models have been studied in literature, see [13].

Remark 2. A stream data model is also known e.g. from on-line quality
control [1, 3]. But the context is different: the main restriction is not in the
size of memory, but in the costs resulting from a late recognition of a structural
break occurring in the on-line observed series.

2.2 A general algorithmic scheme

All algorithms for polynomial stream computing have a similar structure as
shown in Algorithm 1. To specify an algorithm, one has to specify three proce-
dures — Initialization, Process(a) and ComputeOutput — and prove that the
overall memory used can be bounded by a polynomial in p.

Algorithm 1 A general algorithmic scheme for in-stream computations

{1} Initialization
{2} while a := GetDataPoint ̸= EndOfData do
{3} Process(a)
{4} end while
{5} ComputeOutput
{6} end

2.3 A trivial example: one-dimensional data

If p = 1, then A = (a1, . . . , an)
T and we have only O(1) memory. The sample

mean µ := 1
n

∑
i=1 ai can be computed easily:

• Initialization: n := 0; u := 0;

5

• Process(a): n := n+ 1; u := u+ a;
• ComputeOutput: Output := u/n.

The sample variance can be computed in stream by rewriting

1

n− 1

n∑
i=1

(ai − µ)2 =
1

n− 1

 n∑
i=1

a2i −
1

n

 n∑
j=1

aj

2
 (1)

=
1

n− 1

(
s2 −

s21
n

)
,

where sℓ =
∑n

i=1 a
ℓ, ℓ = 1, 2. The resulting algorithm has the following form:

• Initialization: n := 0; s1 := 0; s2 := 0;
• Process(a): n := n+ 1; s1 := s1 + a; s2 := s2 + a2;
• ComputeOutput: Output := (s2 − s21/n)/(n− 1).

2.4 Refining the computational model: Bounding the size
of a memory cell

The definition of the stream computational model from Section 2.1 admits the
following kind of cheating. For simplicity assume that p = 1 and that all
numbers a1, . . . , an are natural. It is possible to encode the entire dataset into
a single (huge) natural number. If (αi0, αi1, . . . , αiLi) is the binary encoding of

ai (i.e., αij ∈ {0, 1} and ai =
∑Li

j=0 αij2
Li−j), then the natural number with

binary encoding

1α10 1α11 · · · 1α1L1 0α20 1α21 · · · 1α2L2 0 · · · 1αnLn (2)

contains the full dataset (the inserted zero bits serve as delimiters). The current
definition of the computational model does not rule out that (2) could be stored
in a single memory cell. Of course, this would be an unfair trick. Thus it is
necessary to restrict the size of a memory cell.

In addition to (i) and (ii) from Section 2.1, we also add the following re-
quirement:

(iii) The input matrix A = (aij)
j=1,...,p
i=1,...,n is rational and the size of each memory

cell is bounded by
O(Lp · logk n) bits, (3)

where L = maxi,j bitsize(aij) and k ≥ 1 is a fixed constant.

Here, bitsize(± q
r) or a rational number ± q

r with q, r coprime natural num-
bers, is the number of bits necessary to write down the sign and the numbers
q, r in binary. Clearly, for an integer z, we have bitsize(z) = O(log z).

Observe that the memory cell of size (3) is sufficient, for example, for the
storage of

∑
i,j a

ℓ
ij for ℓ = O(1). This property illustrates that the choice (3)

6

is natural: the size of a memory cell is large enough to store some natural
quantities and is not unrealistically restrictive, while it rules out the trick (2),
which would require ≈ Lpn bits.

The stream model as a Turing machine. In theoretical computer sci-
ence, all algorithms are Turing machines (details can be found e.g. in [2]). The
stream data model (i) – (iii) can be formalized as a Turing machine with a read-
only input tape equipped with a one-way head, where the data A are stored,
and a work tape restricted to

O(Lpk logk n) bits, (4)

where k ≥ 1 is a fixed constant. This formalization will be useful in Section 3.2.
Observe that one call of the GetDataPoint instruction in Algorithm 1 corre-
sponds to reading one row of A from the one-way input tape.

2.5 Remark: Memory-bounded and time-bounded com-
puting

We have not restricted the computation time between two consecutive calls of
the GetDataPoint routine. It means that we are admitting also computations
with time Ω(2p). In a particular situation, it is a matter of context whether
the computation time 2p is considered as manageable or prohibitive. All of the
algorithms in this paper use the computation time polynomial in p, so taking
a more restrictive model — time-bounded computations instead of memory-
bounded computations — does not jeopardize our results from Sections 4–6.

3 Negative results based on Kolmogorov com-
plexity arguments

The main result of this section is that the sample median (or: quantiles in
general) cannot be computed in the stream model. The proof is based on Kol-
mogorov complexity.

First, we shortly summarize the standard definition along the lines of [15].
Recall, informally, that Kolmogorov complexity of a finite 0-1 sequence is the
length of the shortest program being able to print the sequence. In a sense, it is
the ‘best theoretically possible’ way of compression of the sequence with no loss
of information. For example, a sequence 010101 · · · 01 is very regular and can be
printed by a ‘short’ program, much shorter than the sequence itself. Thus, such
a string has low Kolmogorov complexity. But, as it is easy to prove, there are
sequences which are ‘incompressible’, or ‘algorithmically random’, in the sense
that their Kolmogorov complexity is high.

3.1 Notation

Here, a string refers to a finite 0-1 sequence. For a string x ∈ {0, 1}n, |x| :=
n denotes its length. A special symbol Λ stands for the empty string (with

7

length 0).
Let a universal Turing machine U(p, x) be fixed. If p, x, y are strings, the

relation U(p, x) = y means that the machine U reads the program (formally,
another Turing machine) encoded as the string p, simulates its computation with
input data x and the computation terminates with output y. When U(p,Λ) = y,
we say that program p constructs the string y. The number |p| is referred to as
the length of program p.

The Kolmogorov complexity K(y) of the string y is defined as

K(y) = min{|p| : U(p,Λ) = y}.

A well-known observation shows that there exist string with a high Kol-
mogorov complexity.

Lemma 3.1 ([15]). For every n, there is a string y ∈ {0, 1}n with K(y) ≥ n.

Proof. There are 2n strings of length n, but only
∑n−1

k=0 2
k = 2n−1 programs

of length at most n − 1, and a program can construct at most one string (a
program need not terminate and then it does not construct any string). Thus,
at least one string has Kolmogorov complexity at least n.

3.2 The main negative result: Empirical quantiles are not
computable in stream

We restrict ourselves to the computation of the sample median; once it is proven
that it is not computable, it is straightforward to see that the argument gener-
alizes to any other quantile as well.

Theorem 3.2. The sample median is not computable in stream.

Proof. Consider a one-dimensional (p = 1) dataset a1, . . . , an, where all
the numbers are natural. Then, L = O(maxi=1,...,n log2 ai). Since p = 1, the
memory bound (4) of the stream model reduces to

O((NL)k) bits, (5)

where k ≥ 1 is a fixed constant and

N := log2 n.

We prove the theorem by contradiction. Assume that there exists a stream
algorithm M computing the sample median of a1, . . . , an. Formally, M is a
Turing machine with a one-way input tape containing a1, . . . , an and a work tape
which contains a string not longer than O((NL)k) throughout the computation.

Fix a large enough odd n and a string y = (y1, . . . , yn) with

K(y) ≥ n, (6)

8

which exists by Lemma 3.1. Define the dataset a1, . . . , an as

ai =
i∑

j=1

yj , i = 1, . . . , n.

Since yj ∈ {0, 1}, we have

0 ≤ a1 ≤ · · · ≤ an ≤ n, (7)

and thus L = O(logn) = O(N). The memory bound (5) is

O((NL)k) = O(N2k).

Now we run the computation of M(a1, . . . , an) and stop just before it calls
the GetDataPoint instruction for the (n+ 1)-th time (formally: just before the
input tape head attempts to read the first tape cell after the end of the input
dataset). The configuration of the machine M is a string s with |s| ≤ O(N2k).
[Proof. Formally, s is a string containing (i) the string written on the work tape,
which has size O(N2k), (ii) the head position, which can be written down with
O(k logN) bits, (iii) the internal state of the machine M , which can be written
down with O(1) bits. Clearly, O(N2k) +O(k logN) +O(1) = O(N2k).]

Now consider the following algorithm Q. Its body contains the string s, the
number n and the text of program M as constants:

Program Q:
{1} data n, s,M
{2} for i = 1, . . . , n do
{3} w := (w1, . . . , wn−1) := (0, 0, . . . , 0︸ ︷︷ ︸

n − i times

, n, . . . , n︸ ︷︷ ︸
i − 1 times

)

{4} write w on the input tape of M , just on the position to be read
on its one-way input tape

{5} simulate the computation of M from the configuration s
{6} αi := output of {5}
{7} end for
{8} output y1 := α1, y2 := α2 − α1, . . . , yn := αn − αn−1.

Step {5} gives the same result as the computation of

M(a1, . . . , an, w1, . . . , wn−1).

This is the median of a1, . . . , an, w1, . . . , wn−1, which equals to the i-th smallest
element of a1, . . . , an by {3}. By (7), the i-th smallest element is ai. Thus
αi = ai. It follows that {8} correctly constructs the bitstring y = (y1, . . . , yn).

The size of program Q is O(N2k) — it just stores the bitstring s of size
O(N2k), the number n of size O(N) and the remaining code, including the text
of program M , has size O(1). Program Q constructs the bitstring y, and thus
the size of Q is an upper bound on K(y):

K(y) ≤ O(N2k) = O(log2k n). (8)

If n is sufficiently large, inequalities (6) and (8) are in a contradiction.

9

4 Positive results: Linear regression and least
squares

Now we turn to positive results in the area of linear regression and regression
diagnostic with Narrow Big Data.

Let us assume that the data matrix A ∈ Rn×(p+1) has the form

A = (X,y),

where X = Rn×p and y ∈ Rn. The i-th data point — the i-th row of A
— has the form ai = (xT

i , yi). This vector is the output of the instruction
GetDataPoint.

We consider the linear regression model

y =Xθ + ε, (9)

where θ is the vector of regression parameters and the data (X,y) are streamed.
At this moment we do not need to impose any special assumptions on the
disturbances ε. This is because algorithms do not rely on such assumptions.
But, of course, once a statistic is computed, additional assumptions are required
for the subsequent analysis based on the statistic.

4.1 Least squares and RSS-based statistics

Proposition 4.1. The OLS estimator θ̂ = (XTX)−1XTy and the residual

sum of squares RSS = ∥y −Xθ̂∥22 are O(p2)-computable in stream.

Proof. The number n of observations can be computed easily (as in Section 2.3).
In the Initialization step we put J := 0p×p, v := 0p×1 and Y := 0.
In the Process(x, y) step we update J := J + xxT, v := v + y · x and

Y := Y + y2. At the end of the computation we have the information matrix

J =
n∑

i=1

xix
T
i =XTX

and

v =
n∑

i=1

yi · xi =X
Ty, Y =

n∑
i=1

y2i .

So far we needed O(p2) memory. The matrix J−1 can be computed in O(p2)

memory, too. The ComputeOutput procedure outputs θ̂ = J−1v. For the com-
putation of RSS we can use the expression

RSS = (y−Xθ̂)T(y−Xθ̂) = yTy−yTX(XTX)−1XTy = Y −vTJ−1v. (10)

10

With θ̂ and RSS we can compute various derived statistics:

Corollary 4.2. The following statistics are O(p2)-computable in stream:

• σ̂2 = RSS/(n− p) (the standard estimate of the variance of disturbances),

• Ω̂ := σ̂2(XTX)−1 = σ̂2J−1 (the standard estimate of the covariance

matrix of θ̂),

• θ̂i · (Ω̂ii)
−1/2, i = 1, . . . , p (the t-ratios),

• the coefficient of determination,
• F -tests (e.g. for the hypothesis that all regression coefficients are zero or

that all coefficients, except for the intercept, are zero).

We can summarize: many elementary statistics, which are routinely com-
puted by standard statistical packages, are O(p2)-computable in stream. The
conclusion is that streaming of data makes no serious restriction (at least in
our computational model).

5 Residuals

Analysis of the vector of residuals

r := y −Xθ̂

is a basic tool for regression diagnostics. In the stream data model, we face
the obstacle that r cannot be stored in memory — indeed, it has size n, while
the memory is assumed to be polynomial in p only. But we have seen that
some functions of r, such as RSS, can be O(p2)-computed. Here we study some
further statistics based on residuals.

5.1 Quadratic forms in r and the DW statistic

Some statistics involve quadratic forms rTQr. (We have already dealt with
RSS as the special case with Q = I). In general, the matrix Q = (Qij) can be
assumed to be lower-triangular. Then we can write

rTQr = (y −Xθ̂)TQ(y −Xθ̂) = yTQy − 2yTQXθ̂ + θ̂
T
XTQXθ̂

=
n∑

i=1

i∑
j=1

Qijyiyj − 2

 n∑
i=1

i∑
j=1

Qijyix
T
j

 θ̂ + θ̂
T

 n∑
i=1

i∑
j=1

Qijxix
T
j

︸ ︷︷ ︸

(⋆)

θ̂.

As long as the matrix Q has nonzero entries only on the main diagonal and in
O(p) diagonals below the main diagonal, then the expression (⋆) can be com-
puted in stream in memory O(p2): it suffices to remember last O(p) data points
from the stream and not more (i.e., it suffices to use a sliding window with length
O(p)). A similar argument holds true for the computation of

∑
i≥j Qijyiyj and∑

i≥j Qijyix
T
j . Thus we have proved:

11

Lemma 5.1. Let Q be a lower diagonal matrix with nonzero entries only on the
main diagonal and O(p) diagonals below the main diagonal. Then the quadratic
form rTQr is O(p2)-computable in stream.

The Durbin-Watson (DW) statistic for testing the presence of AR(1) process
in disturbances is a nice example: denoting r = (r1, . . . , rn)

T, the DW statistic
can be written as

DW =
1

RSS

n∑
i=2

(ri − ri−1)
2 =

1

RSS

(
n−1∑
i=1

r2i +
n∑

i=2

r2i − 2
n∑

i=2

riri−1

)
=
rTQr

RSS

with

Q =

1
−2 2

−2 2
. . .

. . .

−2 2
−2 1

.

Matrix Q satisfies the assumptions of Lemma 5.1. We have:

Proposition 5.2. The DW statistic is O(p2)-computable in stream.

Remark 3. Similar considerations hold true also for other statistics based
on quadratic forms of residuals, such as Chow’s test for the equality of regression
parameters between two groups of data. Here we should assume that a data
point has the form (xT

i , yi, Bi), where Bi is an indicator whether the i-th point
belongs to the first or the second group. Then, Chow’s statistic has the form

n− 2p

p
· RSSAllData − RSSGroup1 − RSSGroup2

RSSGroup1 + RSSGroup2
,

which can be O(p2)-computed in stream.
A negative example: a changepoint version of Chow’s statistic. In

some situations the stream computation seems to be hard. Assume that the
division of data into groups 1 and 2 is not known. Assume further that there
exists an index k, called changepoint, such that Group 1 consists of data with
indices 1, . . . , k − 1 and Group 2 consists of data with indices k, k + 1, . . . , n. If
k is unknown, Chow’s statistic is often reformulated [22] to the form

n− 2p

p
·max

k

RSS1:n − RSS1:k − RSSk+1:n

RSS1:k + RSSk+1:n
, (11)

where RSSj:ℓ is the OLS-residual sum of squares from regression yi = x
T
i θ+ εi,

i = j, j+1, . . . , ℓ. (And the argmax of (11) estimates k.) This is another example
where the stream computational model seems to be significantly restrictive.

Remark 4. Generally, matrix Q has size n2 and it cannot be stored in
memory. It must be represented implicitly. We tacitly assumed that the function
(i, j) 7→ Qij can be evaluated in the available memory.

12

5.2 Higher moments and Jarque-Bera statistic

The Jarque-Bera test for normality of residuals is based on the statistic

JB =
n

6

[
µ2
3

µ3
2

+
1

4

(
µ4

µ2
2

− 3

)2
]
,

where

µℓ =
1

n

n∑
i=1

rℓi . (12)

(We use the original version from [11], although other variants of the test have
been described in literature.) Obviously, JB is computable in stream if µ3 and
µ4 are computable in stream (recall that nµ2 = RSS and we have shown how to
compute it in memory O(p2)). In general, µℓ is not polynomially computable
in stream if ℓ is unbounded (more precisely: we don’t have an algorithm for
evaluation of the function (X,y, ℓ) 7→ µℓ using O(pk) memory, where k would
be a fixed constant independent of ℓ). But, as long as

ℓ = O(1), (13)

µℓ can be computed polynomially.

Lemma 5.3. The statistic µℓ is O(pℓ)-computable in stream.

The main result of this section follows:

Proposition 5.4. The JB statistic is O(p4)-computable in stream.

Proof of Lemma 5.3. Let

K =

(k0, k1, . . . , kp) ∈ {0, 1, . . . , ℓ}p+1

∣∣∣∣∣
p∑

j=0

kj = ℓ

 .

Recall that, for k ∈ K, the multinomial coefficient is defined as(
ℓ

k

)
=

ℓ!∏p
j=0 kj !

and that Multinomial Theorem is the equality p∑
j=0

ξj

ℓ

=
∑
k∈K

(
ℓ

k

) p∏
j=0

ξ
kj

j . (14)

13

We apply (14) to µℓ:

µℓ =
1

n

n∑
i=1

rℓi =
1

n

n∑
i=1

(yi − xT
i θ̂)

ℓ =
1

n

n∑
i=1

yi −
p∑

j=1

xij θ̂j

ℓ

=
1

n

n∑
i=1

∑
k∈K

(
ℓ

k

)
yk0
i · (−xi1θ̂1)

k1 · · · (−xipθ̂p)
kp

=
1

n

∑
k∈K

(
ℓ

k

)
θ̂k1
1 · · · θ̂kp

p

n∑
i=1

yk0
i (−xi1)

k1 · · · (−xip)
kp

︸ ︷︷ ︸
=:Pk

. (15)

For each k ∈ K, the value Pk can be computed in stream and stored in a single
memory cell. Thus the memory required is O(|K|).

A counting argument shows that |K| =
(
p+ℓ
p

)
; here,

(
ℓ+p
p

)
is the ordinary

binomial coefficient. Using (13) we can estimate

|K| =
(
p+ ℓ

p

)
=

(p+ ℓ)(p+ ℓ− 1) · · · (p+ 1)p!

p!ℓ!

≤ (p+ ℓ)(p+ ℓ− 1) · · · (p+ 1) ≤ (p+ ℓ)ℓ = O(pℓ).

Thus the memory required for the storage of (Pk)k∈K is O(pℓ).
At the end of the stream computation, all numbers Pk with k ∈ K are

available. We can evaluate µℓ using the expression (15), recalling that θ̂1, . . . , θ̂n
are available by Proposition 4.1 in additional O(p2) space.

6 Procedures involving auxiliary regressions

We will inspect two important procedures — White’s heteroscedasticity test
and Breusch-Godfrey autocorrelation test — as representatives of the class of
procedures sharing the following common structure:

• Step I (basic regression): the regression

y =Xθ + ε (16)

is estimated using OLS and the vector of residuals r is computed;

• Step II (auxiliary regression): another regression

v = Zψ + ν (17)

is estimated using OLS, where v and Z depend on (X,y, r). Then, the
overall significance of the auxiliary regression is tested by the F -test or
LM -test, which — in effect — requires stream computation of the residual
sum of squares from the auxiliary regression. This sum is denoted by
RSSaux.

14

Such procedures look “sequentially” — first, one needs to compute the resid-
uals r from Step I and then perform the auxiliary regression (17), where r or
simple functions of r serve as input data. However, in the stream data model,
this cannot be done directly because r cannot be stored in memory the size of
which is bounded by a polynomial in p.

To avoid confusion, we still assume that the instruction GetDataPoint re-
turns a row of (X,y), which is the vector (xT

i , yi) of size p + 1, and that the
memory is bounded by a polynomial in p, the number of regressors in (16). All
computations necessary for the auxiliary regression must be done within these
limitations.

6.1 White test

Recall that White’s heteroscedasticity test works as follows: after estimation
of the basic regression (16) and computation of its residuals r, in the auxiliary
regression (17) we set

v = (r21, . . . , r
2
n)

T (18)

and construct the design matrix Z involving the intercept, the regressors from
X, their squares and cross terms. (In fact, White’s auxiliary regression seeks for
the dependence of the squared residuals from Step I on low-order polynomials
of X-regressors.) For example, if xT

i = (xi1, . . . , xip) and the basic regression
(16) does not involve the intercept, then zTi , the i-th row of Z, has the form

zTi = (1; xi1 . . . , xip; x2
i1, . . . , x

2
ip; xi1xi2, . . . , xi,p−1xip).

Matrix Z has n rows. If q denotes the number of columns of Z, we have

q = O(p2).

For the significance test of the auxiliary regression (17) it suffices to compute
RSSaux, the OLS-based residual sum of squares from (17). We call this number
as White’s statistic.2

Proposition 6.1. White’s statistic is O(p4)-computable in stream.

Proof. We need to compute

RSSaux = vTv − vTZ(ZTZ)−1ZTv; (19)

we used the same form as in (10). By (12) and (18) we have

vTv =
n∑

i=1

r4i = nµ4,

2Recall that significance tests compare the unrestricted residual sum of squares RSSaux to
the restricted residual sum of squares. For simplicity of presentation, we describe only the
stream computation of the unrestricted sum of squares. The stream computation of restricted
RSS is straightforward — it is a less general problem because the restricted model results
from the unrestricted model by deleting some regressors.

15

which is computable in stream in space O(p4) by Lemma 5.3.
The matrix ZTZ =

∑n
i=1 ziz

T
i can be computed in stream in space O(p4),

because zi can be directly computed from xi in space O(p2). In space O(p4)
we can also compute (ZTZ)−1.

To complete the stream evaluation of (19), recall that the OLS-estimates

θ̂ = (θ̂1, . . . , θ̂p)
T of (16) can be O(p2)-computed in stream. It remains to

evaluate

ZTv =
n∑

i=1

r2i · zi =
n∑

i=1

yi −
p∑

j=1

xij θ̂j

2

· zi

=
n∑

i=1

y2i zi +

p∑
j=1

θ̂2j

n∑
i=1

x2
ijzi − 2

p∑
j=1

θ̂j

n∑
i=1

yixijzi + 2
∑
j<k

θ̂j θ̂k

n∑
i=1

xijxikzi.

(20)

There are O(p2) terms
∑

i y
2
i zi,

∑
i x

2
ijzi,

∑
i yixijzi,

∑
i xijxikzi which are

in-stream computable. Each of the terms has size O(p2) (because the size of zi
is O(p2)) and the overall required memory is O(p4).

Remark 5. A similar method works for some related statistics. For exam-
ple, White’s heteroscedasticity-weighted estimator of θ has the form

θ̂ =

(
n∑

i=1

r2ixix
T
i

)−1(n∑
i=1

r2i yixi

)

and White’s heteroscedasticity-consistent estimator of the covariance matrix Ω
of θ̂ has the form

Ω̂ =
n

n− p
(XTX)−1

(
n∑

i=1

r2ixix
T
i

)
(XTX)−1.

The crucial term
∑n

i=1 r
2
ixix

T
i can be evaluated in stream in a manner similar

to the computation (20) of White’s statistic. Observe that this is a special case
of Weighted Least Squares, where the weights are computable in stream.

6.2 Breusch-Godfrey test

Recall that Breusch-Godfrey (BG) test is a test for the presence of AR(s)-
process in the disturbances of the basic model (16). Here it is assumed that the
lag s satisfies

s = O(p), (21)

or a reader can simply think of s = O(1). Again, let r = (r1, . . . , rn)
T denote

the vector of OLS-based residuals from (17). BG’s auxiliary regression (17) has
the form

v = (rs+1, rs+2, . . . , rn)
T, Z = (X0,R)

16

with

X0 =

xT
s+1

xT
s+2
...
xT
n

 , R =

r1 r2 . . . rs
r2 r3 . . . rs+1

...
...

. . .
...

rn−s rn−s+1 . . . rn−1

 .

The residual sum of squares from (17), denoted by RSSaux again, is called as
BG-statistic (see footnote 1 from page 15).

Proposition 6.2. BG statistic is O(p4)-computable in stream.

Proof. We have
RSSaux = vTv − vTZ(ZTZ)−1ZTv.

The term vTv is a quadratic form in r, which can be evaluated by Lemma 5.1.
The matrix ZTZ has size O(p2) by (21) and its inverse can be computed in

memory O(p2), too. To compute ZTZ in stream, we write

ZTZ =

(
XT

0X0 XT
0R

RTX0 RTR

)
.

Each entry of RTR is a quadratic form in r, which can be O(p2)-computed by
Lemma 5.1. (Observe that (21) implies that the assumption of Lemma 5.1 is
satisfied.) We need memory O(p2) per element of RTR, and thus the overall
memory is O(p4). Each entry of RTX0 is a linear function in r, which is
in-stream computable and the overall memory does not exceed the previously
derived bound O(p4). A similar argument holds true for the computation of
ZTv, too.

7 Conclusions

We have introduced a computational model for multivariate data supplied in a
stream, where the memory is restricted to a polynomial in the dimension p of
data. So, the memory is sufficient for storage of a data point or a simple function
thereof, a polynomially (in p) bounded sliding data window, or a matrix of size
polynomially bounded in p. This model seems to be natural for Narrow Big
Data: the memory is reasonably larger than a single data point and is sufficient
for performing operations with small objects. But the dataset of size n cannot
be stored in general. We asked a question how restrictive this model is for
computing least-squares based regression and related diagnostic statistics based
on regression residuals. (Recall that the vector of residuals has size n and thus
it cannot be stored in memory.) We showed that many statistics, routinely
computed by statistical packages, are efficiently computable in this model and
that streaming of data does not make a serious restriction. We also showed
that some two-step procedures, involving an auxiliary regression with residuals
from the first-step regression, are computable in this model efficiently, too. Two
important representatives are the White test and the Breusch-Godfrey test.

17

Conversely, we have also discussed some statistics which are hard-to-compute
in this model; the examples are quantiles or some max-type statistics of Chow’s
type used in changepoint analysis. Negative proofs — that a statistic cannot
be computed in the stream model — are based on Kolmogorov complexity ar-
guments. This does not preclude that such statistics could not be computed
approximately, e.g. with a preprocessing size-reduction step such as sampling.
The negative proofs tell us that the computation is in principle possible only
with some loss of information from the original dataset.

Acknowledgment. The work was supported by the Czech Science Foundation
under Grant 16-00408S.

References

[1] J. Antoch and D. Jarušková (2002). On-line statistical process control. In:
C. Lauro, J. Antoch, V. Vinzi and G. Saporta (Eds.), Multivariate Total
Quality Control: Foundations and Advances. Book series: Constributions
to Statistics, Physica Verlag HD, 87–124.

[2] S. Arora and B. Barak (2009). Computational Complexity: A Modern Ap-
proach. Cambridge University Press.

[3] D. Bodenham and N. Adams (2017). Continuous monitoring for change-
points in data streams using adaptive estimation. Statistics & Comput-
ing 27 (5), 1257–1270.

[4] F. Cao, M. Estert, W. Qian and A. Zhou (2006). Density-cased clustering
over an evolving data stream with noise. In: J. Ghost, D. Lambert, D. Skil-
licorn and J. Srivastava (Eds.), Proceedings of the 2006 SIAM Conference
on Data Mining, SIAM, 328–339.

[5] F. Cao, J. Z. Huang, J. Liang (2014). Trend analysis of categorical data
streams with a concept change method. Information Sciences 276, 160–173.

[6] T. Cipra and R. Romera (1991). Robust Kalman filter and its applications
in time series analysis. Kybernetika 27, 481–494.

[7] D. Dobkin, R. Lipton and S. Reiss (1979). Linear programming is Log-Space
hard for P. Information Processing Letters 8 (2), 96–97.

[8] A. Forestiero (2016) Self-organizing anomaly detection in data streams.
Information Sciences 373, 321–336.

[9] M. Garofalakis, J. Gehrke and R. Rastogi (2016). Data Stream Manage-
ment: Processing High-Speed Data Streams. Book Series: Data-Centric
Systems and Applications, Spinger-Verlag Berlin Heidelberg.

18

[10] L. Ippel, M. Kaptein and J. Vermunt (2016). Estimating random-intercept
models on data streams. Computational Statistics & Data Analysis 104,
169–182.

[11] C. Jarque and A. Bera (1987). A test for normality of observations and
regression residuals. International Statistical Review 55 (2), 163–172.

[12] N.-A. Khumbah and E. Wegman (2003). Data compression by geometric
quantization. In: M. Akritas and D. Politis (Eds.), Recent Advances and
Trends in Nonparametric Statistics, Elsevier, 35–46.

[13] L. Kontorovich (2012). Statistical estimation with bounded memory. Statis-
tics & Computing 22 (5), 1155–1164.

[14] S. Laohakiat, S. Phimoltares amd C. Lursinsap (2017). A clustering algo-
rithm for stream data with LDA-based unsupervised localized dimension
reduction. Information Sciences 381, 104–123.

[15] M. Li and P. Vitányi (2008). An Introduction to Kolmogorov Complexity
and Its Applications (edition three). Texts in Computer Science, Springer.

[16] H. Lin, S. Wu, L Hou, N. M. Kou, Y. Gao and D. Lu (2018). Finding the
hottest item in data streams. Information Sciences 430–431, 314-330.

[17] A. McGregor (2014). Graph stream algorithms: A survey. ACM SIGMOD
Record 43 (1), 9–20.

[18] B.-H. Park, G. Ostrouchov and N. Samatova (2007). Sampling streaming
data with replacement. Computational Statistics & Data Analysis 52 (2),
750–762.

[19] J. Sgall (1998). On-line scheduling. Lecture Notes in Computer Sci-
ence 1442, 196–231.

[20] P. Steiner and M. Hudec (2007). Classification of large data sets with mix-
ture models via sufficient EM. Computational Statistics & Data Analysis
51 (11), 5416–5428.

[21] C.-W. Tsai, C.-F. Lai, H.-C. Chao and A. Vasilakos (2015). Big data ana-
lytics: a survey. Journal of Big Data 2:21, 1–32.

[22] K. Worsley (1983). Testing for a two-phase multiple regression. Technomet-
rics 25, 35–42.

19

