
Some Pictures and Scripts for Teaching IPMs

Michal Černý, Irena Šindelářová1

Abstract. In the text we discuss some geometric aspects of linear program-
ming and provide a visualisation tool for a type of a short-step central-path
following algorithm. The tool is intended to help in teaching interior point
algorithms.

Keywords. linear programming, central path algorithms, short-step algori-
thms, Khachiyan’s grid, visualisation

The nice property of linear programming, contrary to many other fields of
mathematics, is that its nature is essentially geometric. Therefore, such im-
portant terms as polyhedron, analytic center, central path etc. may be quite
easily visualised when their definitions are taught. Moreover, one can often vi-
sualise also the ideas underlying particular important theorems: for instance,
the duality theorem—probably the most important result in theory of linear
programming—has an intuitive geometric, sometimes called “billiard”, meaning
(see [8], p. 93).

A lot of ideas underlying LP algoritms are of quite geometric nature, too. An
example of a wonderful and easy geometric idea is the well-known Shor-Yudin-
Nemirovskij’s ellipsoid method. Even the Khachiyan’s algortihm may be visua-
lised: it may be regarded as the ellipsoid method where all “important” points,
say vertices of the bounded full-dimensional rational polyhedron (if nonempty)
and centres of the ellipsoids, lay on a special grid: a grid of finitely many rational
points with bounded bit-size. Rounding of coefficients of matrices describing the
ellipsoids may be also geometrically demonstrated: if the ellipsoid is coordinate-
aligned and centered at zero, rounding eigenvalues to a restricted bit-size number
may be seen as shortening semi-axes so that their lengths (and also squares of
their lengths) are points on the Khachyian’s grid. Hence, in some sense Khachy-
ian’s algorithm may be visualised as a discrete version of the ellipsoid method.

To give one more example: a well-known nice geometric idea is the Karmarkar’s
affine transformation, nicely described e.g. in [7]. Interesting geometric aspects
of the Karmarkar potential are given in [9].

1Both authors: University of Economics Prague, Dept of Econometrics, Nám. Winstona
Churchilla 4, CZ-130 67 Prague, Czech Republic; cernym@vse.cz, isin@vse.cz. Supported by
Czech Science Foundation grant No. 402/06/0150.

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 1. Khachiyan’s grid: points [a
b
, c
d

] ∈ IR2 with integral a, b, c, d > 0 such
that sum of bit sizes of a, b, c and d does not exceed 10 bits (10 bits are taken
just as an example) and a polyhedron with vertices on the grid—a triangle in
IR2 with vertices [1

8 ,
1
8], [2, 64] and [16, 1]. Both axes are log-scaled.

The aim of this text is to provide teachers of linear programming with a simple
visualisation tool of a version of a central-path algorithm which will be sketched
later; it is a nice representative of the entire family of central-path short-step
algorithms and is suitable to be presented in lectures. We choose this algorithm
as (i) it is one of the algorithms with so far best-known complexity (its iteration
bound is O(

√
nL), where n denotes dimension and L is the bit-size of the linear

program); (ii) its idea is nicely explained in the excellent book [4]. The book does
not give full theoretical analysis, however the idea behind the algorithm is shown
in a clear way which is suitable for many undergraduate linear-programming
courses (nevertheless, a full analysis exceeds the level of such lectures; an almost-
full analysis is found in [7]).

The algorithm. Assume we are given a full-rank matrix A and vectors b, c
(all vectors are column) and our task is either to find x∗ ∈ argmax{cTx :
Ax ≤ b,x ≥ 0} (for our purposes, an approximate optimum is sufficient) if
such exists or state that no such exists. (In theory, one usually works with
rational arithmetic; here we omit the arithmetic-precision considerations. Our
task is just to give a didactic tool to plot some pictures, so we may admit that
10−10 = 0 or so.) Let us be given a small positive number ε which will govern
the exactness of the algorithm.

For the purpose of visualisation we will assume the dimension n = 2 and F =
{x : Ax ≤ b,x ≥ 0} is nonempty, bounded and has dimension two. (This means

2

the the optimum exists.) However, we describe the algorithm in general. Let m
be the number of rows of A.

First, we construct a type of a self-dual embedding of the linear program
argmax{cTx : Ax ≤ b,x ≥ 0}. Let

D =

0 A −b
−AT 0 c

bT −cT 0

 , d = 1 +D1, E =

(
D −d
dT 0

)
(1)

Now set

q =

y
x
τ
η

 , e =

0
...
0

n+m+ 2

 . (2)

Here, q is a vector of variables: x has n = 2 components and y has m compo-
nents. Now the following holds:

(i) the linear program argmax{−eTq : Eq ≤ e, q ≥ 0} is bounded and feasi-
ble and for every optimal solution (q∗)T = ((y∗)T, (x∗)T, τ∗, η∗), x∗,y∗

and τ∗ form a solution to the Goldman-Tucker system

Ax− τb ≤ 0, −ATy + τc ≤ 0, bTy − cTx ≤ 0, x ≥ 0, y ≥ 0, τ ≥ 0;

(ii) every strictly complementary optimal solution of argmax{−eTq : Eq ≤
e, q ≥ 0} is a solution of the Goldman-Tucker system with either τ > 0
or bTy − cTx < 0,

(iii) q = 1, p = 1 are feasible for the system Eq + p = e, q > 0, p > 0.

By the Goldman-Tucker theorem, either there exists a solution to the Goldman-
Tucker system with bTy − cTx < 0, and then the real optimum of the original
program argmax{cTx : Ax ≤ b,x ≥ 0} does not exist, or there exists a solution
with τ > 0, and then 1

τ x is optimum of the original linear program (and,
moreover, 1

τ y is optimum of its dual program).

So now we have a system Eq + p = e, q ≥ 0, p ≥ 0 where we know an
interior feasible point in advance; moreover it is a “good” starting point for the
algorithm.

To get an optimum of the original system (or conclude that it does not exist)
we need to find a strictly complementary solution of another system. This is the
essence of the algorithm: it gets the linear program

argmax{−eTq : Eq + p = e, q ≥ 0,p ≥ 0} (3)

as its input and will converge to a such a solution.

3

At the beginning, we set µ := 1 and exponentially fast decreasing µ we will ap-
proximately follow the central path {argmax{(q,p) : µ

∑m+n+2
i=1 (lnpi + ln qi)−

eTq};µ ∈ (0, 1]}. To (approximately) follow the central path (keeping within
the quadratic-convergence region), we have to start in a “good” point: indeed,
the initial point p = 1, q = 1 is a point on the central path with µ = 1.

Given µ, the point on the central path argmax{(q,p) : µ
∑m+n+2
i=1 (lnpi+ln qi)−

eTq} may be written as a solution to a non-linear system Eq+p = e, qi ·pi = µ
for all i = 1, 2, . . . , n+m+2, p ≥ 0, q ≥ 0. Given an approximate point near the
central path (q,p), we want to update q := q +α, p := p+ β by performing a
Newton-like step: substituting this into the system, we getE(q+α)+(p+β) = e,
(qi +αi) · (pi +βi) = µ for all i’s, (q+α) ≥ 0, (p+β) ≥ 0 and we neglect the
second-order terms βi ·αi. Hence, we solve the linear system

(
E J

diag(q) diag(p)

)
·
(
α
β

)
=

(
0

µ · 1− q ∗ p
)

(4)

(J stands for unit matrix, diag(q) for a diagonal matrix with entries of q on the
diagonal and q ∗ p = (q1 · p1, q2 · p2, . . . , qn+m+2 · pn+m+2)T) where q,p act as
constants and α,β as unknowns. It may be shown that such an „approximate“
step from (q,p) to (q + α,p+ β) fulfills the constraints q + α > 0,p+ β > 0
and does not deviate from the exact central path too far. (With some further
analysis, this implies that the procedure converges.) Now we may summarize
the algorithm. Of course, we are not correct. . . To be fully correct, we would
have to compute in rational arithmetic and perform further analysis, when it is
appropriate to state that no optimum exists, and also determine the error of the
approximate solution (or perform the usual final “2−2L-truncation” step to get
an exact optimum). We will not do this here; for purposes of visualisation, we
assume the optimum exists, and we do not need to estimate the error in detail.

input: A, b, c, ε
output: approximate x ∈ argmax{cTx : Ax ≤ b,x ≥ 0} or report

optimum does not exist
[1] Construct E as in (1) and set µ := 1, q := 1, p := 1;
[2] if µ < ε then:

look at qT as (yT,xT, τ, η); if τ ≈ 0, report optimum does
not exist; otherwise return 1

τ x as the approximate
solution. Stop.

[3] Set µ := (1− 1
2
√
n

)µ;
[4] find α and β by solving the linear system (4) with current

q and p, update q := q +α, p := p+ β and go to [2].

Now it would be necessary to show that the procedure converges to the strictly
complementary solution of (3); moreover, it holds that if an optimum exists,
then the algorithm converges to the analytic centre of the optimal face.

We will plot F = {x : Ax ≤ b,x ≥ 0} and the trajectory of the algorithm: to
plot the trajectory, in each step, we look at current qT as (yT,xT, τ, η) as in
step [2] and we plot the point 1

τ x.

4

However, the algorithm in fact does not pass through F but a more-dimensional
polyhedron

{q : Eq ≤ e, q ≥ 0}. (5)

So it is instructive, in each step, to plot the projection of this polyhedron into
the plane, too.

Given a definition Ax ≤ b,x ≥ 0 of a nonempty two-dimensional polyhedron,
to visualise the analytic centre it suffices to run the algorithm with c = 0;
it is instructive to see how the analytic centre moves if we, for instance, add
some redundant inequalities into the defining system (e.g., some inequalities are
present more than once).

At the site http://nb.vse.cz/∼cernym/ipm.zip, some MatLab scripts plot-
ting the pictures, that may help in teaching, are available. The function

ip(A,b,c,mode)

gets an m× 2 matrix A, a column vector b with m entries and a column vector
c with two entries such that the feasible region {x : Ax ≤ b,x ≥ 0} is two-
dimensional, nonempty and bounded and plots the trajectory of the described
algorithm. If mode = 1, then the projections of (5) into IR2 are in each step
plotted too.

The function getmatrix(x,y), where x and y are column vectors with l entries,
first computes the convex hull C of the points [x1,y1], . . . , [xl,yl] and returns a
matrix (A b) such that C = {x : Ax ≤ b}. For instance, the command

Ab = getmatrix([2 + cos([0:2*pi./7:2*pi])]’,
[3 + sin([0:2*pi./7:2*pi])]’)

forms a system of inequalities which define a regular septahedron centered at
[2, 3]. Now calling

ip(Ab(:,1:2),Ab(:,3),[0 1]’,0)

and
ip(Ab(:,1:2),Ab(:,3),[0 1]’,1)

yields the following pictures.

5

1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2. Trajectory of the algorithm.

Calling ip(Ab(:,1:2),Ab(:,3),[-1 0]’, mode) (again with either mode=0
or mode=1) shows how the algorithm converges to the analytic centre of the
optimal face (which is the vertical edge of the septahedron). Also note how the
algorithm follows the central path {argmax{(q,p) : µ

∑m+n+2
i=1 (lnpi + ln qi) −

eTq};µ ∈ (0, 1]}: first the direction is governed by the terms lnpi + ln qi and
then by −eTq.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 3. Convergence to the analytic centre of the optimal face.

The function ip2(A1,b1,c1,A2,b2,c2, mode) plots two trajectories of two li-
near programs. It is, for instance, instructive to see how the analytic centre
moves if we change the definition of the same polyhedron. For example, first
generate a triangle

Ab = getmatrix([2 + cos([0:2*pi./3:2*pi])]’,
[3 + sin([0:2*pi./3:2*pi])]’)

and call

6

ip2(Ab(:,1:2),Ab(:,3),[0 0]’,
[Ab(:,1:2); Ab(1, 1:2)], [Ab(:,3); Ab(1,3)], [0, 0]’, 0)

The system A1x ≤ b1 defines the triangle with three inequalities; the system
A2x ≤ b2 with four inequalities: the fourth is a redundant copy of the first one.
(Note that if c = 0 then the optimal face is the entire polyhedron and hence
the algorithm converges to its analytic centre.)

1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

Fig. 4. Convergence to analytic centres of the same polyhedron with two
different definitions.

As the algorithm converges to the analytic centre of the optimal region, it
is suitable for L1-regression. It is well-known that given points [xT

i ; yi], i =
1, 2, . . . , N , finding β̂L1

∈ argminβ{
∑N
i=1 |yi−βTxi|} is equivalent to the linear

program argmax(β,r){−1Tr : Xβ + r ≥ y,Xβ − r ≤ y, r ≥ 0}, where X is a
matrix with rows of xT

i ’s and y is a vector of yi’s. (Our algorithm requires vari-
ables to be nonnegative, hence we have to use the usual trick with β ≡ β+−β−;
β+,β− ≥ 0 and as we start the algorithm with β+ = β− = 1, the initial β
is zero.) The optimum of the linear program need not be unique; then there
is a question which solution shall be taken as β̂L1

. The analytic centre of the
optimal region is a reasonable choice (as it is the “farthest-from-all-borders”
point); unlike the simplex method, with our algorithm we get it free of charge.

The script L1reg(degree,x,y) gets two N -component column vectors x and y
and fits the L1-regression polynomial od degree degree. The pictures show how
fast the regression function converges from βstart = 0 to the optimum. Just for
illustration, the usual (XTX)−1XTy-estimate is shown with a dashed line. For
instance, generate some random data with x = [0:0.1:3]’,

y = 1 + 1.25.*x - 1.5.*x.^2 + 0.3.*x.^3 +
random(’norm’, 0, 0.2, size(x)).

Then, calling L1reg(1,x,y) and L1reg(3,x,y) yields the following pictures.

7

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

Fig. 5. Convergence to L1-regression polynomials of degree 1 and 3 (compared
to L2-regression (dashed)).

The script also produces a picture of evolution of the regression coefficients over
time (i.e. values of β in k-th iteration, where k is on the x-axis). For instance,
if we fit a polynomial of degree 9 to the data described, we get the following
picture. (We stop if µ < 10−9.)

0 50 100 150 200 250 300
−200

−150

−100

−50

0

50

100

150

200

Fig. 6. Evolution of the regression coefficients during computation.

Now say we are fitting a line, hence β has two components. Fix the found
(nearly) optimal residuals r and perform a slight δ-relaxation of the polyhedron:
we get the system Xβ + δ1 ≥ y − r,Xβ − δ1 ≤ y + r in three variables, β1
(intercept), β2 (slope) and δ. Now, given δ, we may plot a “δ-confidence poly-
hedron” which shows how β1 and β2 may change such that the sum of residuals
does not increase more that δN . This is done by the script confp(x,y,δ), where
x and y are as before. If δ is a column vector, then for each component, one
polyhedron is plotted. For our problem, calling confp(x, y, [0:.01:.1]’) we
get the following picture.

8

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
−0.96

−0.94

−0.92

−0.9

−0.88

−0.86

−0.84

−0.82

−0.8

−0.78

Fig. 7. Example of “δ-confidence” polyhedra.

There are more examples of linear programming problems that nicely show
the convergence of the interior-point algorithm. Our last example concerns the
problem of inscribing the largest circle into a polyhedron defined by a set of
inequalities Ax ≤ b. This issue is easily solved by a linear program: maximize r
subject to the following constraints: (i) if a line y = ax+b bounds the polyhedron
from below, add a constraint sy − asx −

√
a2 + 1 · r ≥ b; (ii) if a line y = ax+ b

bounds the polyhedron from above, add a constraint sy − asx +
√
a2 + 1 · r ≤ b;

(iii) if a line x = b bounds the polyhedron from left, add a constraint sx−r ≥ b,
(iv) if a line x = b bounds the polyhedron from right, add a constraint sx+r ≤ b,
(v) r ≥ 0. sx and sy are variables for the centre of the inscribed circle and r its
diameter. (For our algorithm, we need five nonnegative variables: r, s+

x , s−x , s+
y ,

s−y : sx ≡ s+
x − s−x , sy ≡ s+

y − s−y .)

The script circ(A,b) plots how the algorithm approximates the largest circle
inscribed into the nonempty polyhedron {x : Ax ≤ b}. For instance, generating
a septahedron with the command

Ab = getmatrix([4 + cos ([0:2*pi./7:2*pi])]’,
[3 + .5.*sin([0:2*pi./7:2*pi])]’)

and calling circ(Ab(:,1:2), Ab(:,3)) will yield the last picture of this article.

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 8. Convergence to the largest circle inscribed into a polyhedron.

9

References

[1] Coppersmith D. — Winograd S. (1990), Matrix Multiplication via Arithmetic
Progressions. Journal of Symbolic Computation 9, pp. 251–280.

[2] Černý, M., Linear programming is in P (in Czech, 2007). Internet:
http://nb.vse.cz/∼cernym/lpinp.pdf.

[3] den Hertog, D. (1994), Interior Point Approach to Linear, Quadratic and
Convex Programming. Mathematics and Its Applications vol. 277, Kluwer Aca-
demic Publishers.

[4] Matoušek J. — Gärtner B. (2007), Understanding and Using Linear Progra-
mming. Springer Verlag, Berlin.

[5] Nazareth, J. L. (2003), Differentiable Optimization and Equation Solving:
A Treatise on Algorithmic Science and the Karmarkar Revolution. Springer
Verlag, Berlin.

[6] Regenar, J. (2001), A Mathematical View of Interior-Point Methods in Con-
vex Optimization. MPS/SIAM Series on Optimization, Philadelphia.

[7] Roos C. — Terlaky T. — Vial J.-P. (2006), Interior Point Methods for Linear
Optimization. Springer Verlag, Berlin.

[8] Schrijver A. (1998), Theory of Linear and Integer Programming. Wiley and
sons, New York.

[9] Ye, Y. (1997), Interior Point Algorithms: Theory and Analysis. Wiley and
sons, New York.

10

