Citace:

BUCHALCEVOVA, Alena. Where in the curriculum is thight place for teaching agile methods?
Prague 20.08.2008 — 22.08.2008. In: ProceedingA6tB International Conference on Software
Engineering Research, Management & ApplicationdRSR2008). Prague : Copyright, 2008, s.
205-209. ISBN 978-0-7695-3302-5.

Get ready for SOA

Alena Buchalcevova, Roman Hauptvogl

University of Economics Prague, Czech Republic,dvpent of Information Technology
buchalc@vse.cz
Cleverlance Enterprise Solutions a.s, Czech Republi
romi74371@gmail.com

Abstrakt

Service-oriented architecture (SOA) is nowadays a hot topic in an enter prise development. Building SOAisa
very complex problem that needs qualified people. There are only few courses at universities and therefore
the main pressure nowadays is on SW development and SW vendors companies as well as training
companiesto train skilled developers. In this paper we aimto present how to prepare Web services cour ses.

K eywords
Service-oriented architecture, SOA, Web servicesrse

1 Introduction

Service-oriented architecture (SOA) is nowadaysoa thpic in an enterprise development. Many IT
professionals see the potential of SOA in effecbiusiness integration that delivers flexibility Bjowing
business resources (both inside and outside amiaegemn) to work together to support a company's
business strategy. These resources can includeagigtiications, processes, and people. One wagdm lto
achieve integration throughout a business is byigiog the ability for the business systems to work
together. In other words, there is a need to imatiegthe software and applications. To do this, wedn
technologies that can interoperate easily, stasdanat specify consistent styles of interaction and
communication and especially understand that basimetegration is not just a technical problem aut
business problem. To truly solve it, the IT develemt and business management sides of the organizat
need to work hand in hand. For many organizatibas tmay require a change in the way they think and
work.

SOA is an architectural style for building distribd systems that delivers application functionahty
services to end-user applications or other serviéeservice is an application function packagedaas
reusable component that can be used in a businessss. Service exposes a well defined interfadehas

no dependencies on the state of other services. BOdsually realized through standards-based web
services. A web service is a service that commuescaith clients through a set of standard prosmewmid
technologies. Web services standards are implemémiglatforms and products from all the major waite
vendors, making it possible for clients and sewvit®@ communicate in a consistent way across a wide
spectrum of platforms and operating environments.

Another SOA potential, especially a web serviceseda is seen in dramatically shorter application
development process and more adaptable applicatiwmionly is SOA a hot topic, but it's clearly tivave

of the future. Gartner reports that "By 2008, SOl e a prevailing software engineering practieeding
the 40-year domination of monolithic software atetiiure" and that "Through 2008, SOA and web sesvic
will be implemented together in more than 75 percémew SOA or web services projects.”

Building SOA is a very complex problem that needmlified people. There are only few courses at
universities and therefore the main pressure noygdaon SW development and SW vendors companies as
well as training companies to train skilled develap In this paper we aim to present how to prejéebd
services courses.

2 Web Services Courses

Although web services are designed to be languadeatform neutral, the Java programming language
ideal for developing web services and applicatitthrad use web services. The Java applications pligab
and interoperability mesh well with the objectiieneb service interoperability. Therefore, in theper, we
concentrate on Web services development in Javaesu

The Web Services courses are usually intended éweldpers who are already familiar with J2EE
application development and have some basic kn@elethout Web service technologies. In these courses
students learn the technologies involved in devefppdeploying and securing Web services in-detail.
Generally, the courses are organized in threeviodays. The length of the course depends as wete
platform on which it is presented. The general epitg and technologies courses are shorter thaseur
designed for a specific platform (for example BEWebSphere). Platform specific courses focus dpart
common concepts and technologies as well on spefeéitures of given platform, concrete wizards and
differences. The Web services courses are desigiwéoyou enough knowledge to be able to:

» Develop, test, debug and deploy Web services,

» Describe the Service Oriented Architecture and stip technologies, such as SOAP, WSDL and
uUDDl,

» Describe the motivations for synchronous and asymadus Web services,

» Implement and invoke synchronous and asynchronoeis $&rvices,

» Develop and use custom data types,

» Create handlers and handler chains for pre- andgrosessing of messages,
* Manipulate SOAP attachment,.

e Secure the Web services.

2.1 Structureof the Web services course

The structure of the course, no matter on whiclfgia it is presented, is usually the same. Thelehge is
how to present complex concept of Service OrieAtathitecture and Web services in a time of threfivie
days. The course usually begins with the introductio distributed computing. Distributed computing
enables processes and application in one locaticaactess functionality (operation and data) avkalaio
another location, which is also one of the prirespbf Service Oriented Architecture. There is neeshow

the benefits of distributed computing and technigiegvhich tried to address issues related to Higed
computing. Next subject covers SOA and Web servitedmition and fundamentals of these concepts and
technologies (see 2.2). The core of the courseeptesieveloping Web services according to two 28E]
specifications: JAX-RPC and Web services for J2@Ee 2.2.2) Programming models for developing web
services (J2EE Web Services Programming Model, &me§ and Deployment Model, Message Handlers
and SOAP Programming Model) are there introducetthisipart. The remaining subjects involve advanced
features of Web services development such as: JMpost, Web services security and Web services
interoperability.

2.2 SOA and Web Services Fundamentals

Implementing a SOA can involve developing applmasi that use services, making applications availasl
services or both. Some key aspects of the SOA are:

» to leverage open standards to represent softwaedsass services,
» to provide a standard way of representing andaotarg with software assets,

» to allow individual software assets to become bngdlocks that can be reused in developing other
applications,

» to shift focus to application assembly rather timplementation details,

e can be used internally to create new applicatiann®obexisting components,

» can be used externally to integrate with applicetioutside of the enterprise.

The key goal of a SOA is to achieve loose couplifitis means that services maintain a relationgtép t
minimizes dependencies and only requires that theyn an awareness of each other. Another kegipia

to achieve services reusability, is done by divgdiogic into services with the intention of pronmaireuse.
The SOA vision of interaction between clients armbskly-coupled services demands widespread
interoperability. In other words clients and seegicommunicate and understand each other no mater
platform they run on. This objective can be metyoifl clients and services have a standard way of
intercommunication. More about SOA and Web SerfAagedamentals can be found in [1].

SOA uses thénd-bind-execute paradigm as shows Figure 1. According to this giigra, service providers
register their service in a public registry. Thegistry is used by consumers to find services hatch
certain criteria. If the registry has such a sexyit provides the consumer with a contract aneértpoint
address for that service.

bind

Service < Service
requestor provider
flnd\ ﬁbllsh

Serwce
registry

Figure 1. SOA components and operation

According to W3C Web services Architecture Groupvi¢ can define Web Service as “A software system
identified by a URI, defined, described and disecedeby XML artifacts, which interacts with otherftseare
systems using XML messages through Internet-basedqols”.

Web services comprise a maturing set of protocatstachnologies that are widely accepted and wessd,
that are platform, system, and language independieraddition, these protocols and technologieskwor
across firewalls, making it easier for businessreas to share vital services. Promising to makegtheven
more consistent is the WS-I basic profile, intraetliby the Web Services Interoperability Organizatian
organization chartered to promote web servicesdptrability). The WS-I basic profile identifiescare set
of web services technologies that when implemeimedifferent platforms and systems, helps ensua¢ th
services on these different platforms and systamd,written in different languages, can communiedtk
each other. The WS-I basic profile has widespreskibg in the computer industry, virtually guaragite
interoperability of services that conform to thefje.

Simple Object Access Protocol (SOAP) is an XML-based protocol for exchangingomfation in a
distributed environment. SOAP provides a commonsags format for exchanging data between clients and
services. Complete description can be found in W8 [5].

Web Services Definition Language (WSDL) is an XML based language that provides adehdor
describing Web services. Version 1.1 has not bednreed by the World Wide Web Consortium (W3C) [6].
Version 2.0, for which several drafts have beeaastd, is expected to become a W3C recommendation.
WSDL document serves several purposes. It provade®del for implementing the actual Web service. It
describes how a service requester connects tovaeceseand what messages to send and receive from the
service. It defines a XML schema for describing ebvgervice and its operations, bindings and looatio
specific implementation. To uncover the descriptiona Web service, a client needs to find the isety
WSDL document. A programmer uses the interfacerméion in the WSDL document to construct the
appropriate calls to the service.

Universal Description, Discovery and Integration (UDDI) is an open industry initiative, sponsoreg b
OASIS, enabling businesses to publish servicentistiand discover each other and define how thécserv
or software applications interact over the Interietlefines the structure of the Web service “rdata’
database, as well as an API for accessing the alsgali his API allows clients to discover, bind amgke
Web services at run time. Structure of the UDDIisegyg and its relationship with WSDL is shown ore th
Figure 2.

Business (Business | Implementation
Entity L Service |~ ~-o_ " Document
l Service
(Bindng | | ,[-]
| Template e
I -
Interface
| L mee '[Document
UDDI Registry WSDL

Figure 2: Relationship between UDDI and WSDL

In the UDDI Registry, business entities are seryiceviders that offer one or more business serviéésb
services). A business service holds one or morifgrtemplates, providing access information toabeial
Web service. The access information is a URI toSDIV port element. Binding templates also referesme

or more tModels, metadata about type specificaiad service category. The tModel in turn holds a
reference to a WSDL namespace.

2.3 Developing Web Servicesin Java

As we have meant earlier the Java programming kggus ideal for developing web services and
applications using them. Java technologies aregdedifor use with XML, and conform to web services
standards such as SOAP, WSDL, and UDDI. Java Téom@and Web Services are organized into these
subcategories (more about these subcategoriesedauifd on [12]):

Java API for XML-Based RPC (JAX-RPC)

Java API for XML Web Services (JAX-WS)

Java API for XML Registries (JAXR)

Java API for XML Processing (JAXP)

Java Architecture for XML Binding (JAXB)

SOAP with Attachments API for Java (SAAJ)

XML Web Services Security (XWSS)

XML Digital Signatures (XMLDSig)

Java API for Web Services Addressing (JAX-WSA)

Developing Web services in Java involves two apgiiea, developing Web services according to JAX-RPC
and Web services for J2EE. There are two basidfgions for these two approaches:

JAX-RPC (JSR-101) [11]

o Defines a standard programming model for Java Welice clients and endpoints.

o Ensures that conforming Web service run-time emvirents provide the same level of
functionality.

* Web Services for J2EE (JSR-109) [10]

o Defines a structure and a packaging standard fob Wé&rvices implemented as a J2EE
application.

Java API for XML-Based RPC (JAX-RPC) is a Java Adrlaccessing services through XML (SOAP-based)
RPC calls. The API incorporates XML-based RPC fiametlity according to the SOAP 1.1 specification.
JAX-RPC allows a Java-based client to call webisermethods in a distributed environment, for exiamnp
where the client and the web service are on diffesgstems. Although JAX-RPC is a Java API, it ades
limit the client and the web service to both beldggd on a Java platform. A Java-based client canJédX-
RPC to make SOAP-based RPC calls to web serviceaueton a non-Java platform. A client on a non-Java
platform can access methods in a JAX-RPC enablédservice on a Java platform.

JAX-RPC is designed to hide the complexity of SOMfhen there is JAX-RPC used to make an RPC call,
there is no need to explicitly code a SOAP mesdagéead there is the call coded in the Java progriag
language, using the Java APIl. JAX-RPC convertsRIRE call to a SOAP message and then transports the
SOAP message to the server. JAX-RPC on the seorerects the SOAP message and then calls the web
service. Then the sequence is reversed. The wefreseaeturns the response. JAX-RPC on the server
converts the response to a SOAP message, whitteristtansported back to the client. JAX-RPC on the
client converts the SOAP message and then rethenesponse to the application. This process ig/istom

/c s T
Maps Java to l

A XML

Java]
request ¥ \ request

SOAP handler SOAP handler [
actions] WS port t[actlons] WS impl
resPc’:s Maps XML to Maps Java to / SR
Java XML

{X-F{PC (client) F{untiri(j/ D@ -- _iAX-F{PC (server) Fiuntinf)

Maps XML to

Figure 3: JAX-RPC
Figure 3.

231 Server Programming Model

A server view of a Web service is defined by a jpord port component. Port is created and manageieb
container, which mediates access to the servickeimgntation. Port consists of:

» Service Endpoint Interface (SEI) — declares Webisemrmethods that can be invoked by clients.

* Service implementation bean — java class providoginess logic for the service and provides
implementation for methods declared in SEI.

 WSDL - provides a canonical description of the Webvice.

e Security role references.

Service implementation is either a stateless sedsi®B or a JAX-RPC service endpoint deployed inebW
container. It implements methods of SElI which aesadbed by WSDL. Regardless of the service
implementation bean type, the class must follove¢heiles:

* provide default public constructor,

* implement all methods signatures in the SEI,

* be a stateless object,

» define methods that are public, must not be finalstract,
» finalize method is not defined.

There are two different implementation approachkest is called 'Bottom-up' and generates SEI ai@Dlv
from the existing service implementation. Secondcaied Top-down' and generates SEI and service
implementation from existing WSDL file

2.3.2 Client Programming M odel

Clients can invoke Web service using:
e Static Stub — stub represents the client-side ptoxiie remote Web service implementation,
» Dynamic Proxies — the JAX-RPC client environmemiates dynamic proxies at run time,

« Dynamic Invocation Interface (DII) favax.xml.rpc.Call interface allows clients to invoke Web
service operation at run time.

There are two different types of clients. 'Managddnts run in a J2EE container. 'Unmanaged’ tdieise
the JAX-RPC run-time to invoke Web services. Sulients need to work directly with the generated
Service interface to access stub, proxy or DII.

233 MessageHandlers

Message handler is a mechanism for interceptingaatidg upon SOAP requests and responses. It means
that it allows SOAP message pre-processing andguosessing. They are available on both server and
client side and are defined in JAX-RPC specifigatid SOAP message handler gets access to the SOAP
message that represents either an request or sespbiypical use of a SOAP message handler isaoegs

the SOAP header blocks as part of the processiag oféquest or response. SOAP headers are usadyo c
contextual data for a request — data that is oalyinent to the request and not necessarily tdtigness
interface. A few typical examples of the usagearidiers are:

* Encryption and decryption handler,
* Logging and auditing handler,
* Caching handler.

SOAP message handlers are tied to web service grntslfjeither on client or server) and are usedtwige
additional SOAP message processing facility asxtameion to these components.

24 XML and Web Services Security

XML and Web Services Security (XWS Security) pr@sdnessage-level security for applications
that use JAX-RPC to access web services. In medsaglesecurity, security information is
contained in the SOAP message header. One of ithhanpruses of message-level security is to
secure a SOAP message from unauthorized accegsmbédiate nodes along the message path.
Recall that a SOAP message can pass through &isetronediate nodes as it travels from a client
to a service, and that each node can independenuitess part or all of the message before
forwarding it. Using message-level security, thitige encrypt a SOAP message can be done and
permit decryption can be available only by the éakgeb service. For example, this could be used
to protect credit card information from exposurdlut's received by the target service In addition
XWS security gives the flexibility of securing défient parts of a SOAP message and in different
ways. Specifically, entire service, one or more/iserports, or one or more service operations can

be secured. For instance, some parts of the measageot other parts can be encrypted. Some
parts of the message can be signed with a diggaature. In addition to including encryption
information, the SOAP message header might inctdder security-related items such as an X.509
certificate or a security token. The SOAP headaratso point to a repository of security
information for the message. Issues that are asieldea a security framework:

* Authentication — the identity of the party shou&llalidated based on some credentials,

» Authorization — the party should have the permissim access the requested resource,
* Integrity — there should be a guarantee that inédion is not modified in transit,
» Confidentiality — only authorized actors or segutdken owners should be able to view the data,

* Non-repudiation — the sender and receiver are @bj@ovide legal proof to a third-party that the
sender sent the information and receiver receiredriformation,

* Auditing — all of the transactions are recorded,
» Denial of service — An attack on a computer systansing loss of service.

More information about Web Services Security cafooed on [13].

3 Environment and exercises

For general courses it is worth to use Java Welvi@emDevelopment Pack (Java WSDP) from Sun
Microsystems. The Java WSDP is an all-in-one doaahloontaining key technologies to simplify building
of Web services using the Java 2 Platform. It ptesitools you need to quickly build, test, and dgpveb
services, clients that interoperate with other webvices and clients running on Java-based or aca-J
based platforms. In addition, it enables businegsegpose their existing J2EE applications as sexlices.
This pack presents both specifications for develpWeb services: JAX-RPC and JAX-WS. It is alsotivor
to present some examples on a light web serveeXample Apache Tomcat, to show students that tbhey d
not need to have application server to work withb\§ervices.

To gain some practical experience, it is alwaysuilde supplement theoretical knowledge with preati
exercises. Due to shortness of time these exerargesot done from scratch. On the contrary thegqmt
only specific issues of Web services technology Wreb services developing, debugging and monitoring.
Exercises can be workshop based or individual stkdy each exercise we need to specify requirements
recommended solution strategy, time for complet®ood idea that proves its woithto prepare two types

of exercises: core and extra. Core exercises memfoore concepts. Students should complete dhease
exercises. They usually represent the logical m®essociated with building one complete solutiexira
exercises explain concepts beyond core knowledge.

It is preferred to have one introductory exercigdere instructor explain pieces of Web service and
demonstrate the process of building a simple Welicge The objective of this demonstration is furdents
to become familiar with:

» the structure of the exercises,
» the platform and environment where is the developiroéWeb services presented,
» the pieces that constitute a Web service.

Another proven idea is to present some examples-tihe Web services. Very useful site for thisgmge is
http://www.xmethods.comThis site provides a hosting service for Web isesy under development.
Developers can upload their Web services and hegradevelopers test their solutions. Each Web servi
provides a description of the services using WSOiere developers explore methods that they can call
remotely.

At the end one last but not least note about tlezceses. Since the Web service wizards can pertbem
majority of the work, sometimes there is no codiaguired, there is need to remind students to atred
temptation of rapidly clicking through wizard menuwsgithout understanding the meaning of the wizard
settings.

4 Conclusion

Service-oriented architecture (SOA) becomes stegtdyyprevailing software engineering practice. Building
SOA is a very complex problem that needs qualifjedple. This paper makes an effort to present some
ideas and experiences associated pidparing Web services courses.

References

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

[14]

[16]
[17]

Thomas, E.: Service-Oriented Architecture (SO8yncepts, Technology, and Design,
The Prentice Hall2006, ISBN 0-13-185858-0

Eric Armstrong, Jennifer Ball, Stephanie Bodd#&bbie Bode Carson, lan Evans, Dale
Green, Kim Haase, Eric Jendrock: The J2EE 1.4 Talfdbecember 2005,
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/maém|

The Java Web Services Tutorial, February 2006,
http://java.sun.com/webservices/docs/2.0/tutorgd/d

W3C Working Group Note: Web Services ArchiteetiRequirements, February 2004,
http://www.w3.0rg/TR/wsa-reqs

W3C: Simple Object Access Protocol (SOAP) Mgy 2000,
http://www.w3.0rg/TR/soap/

W3C: Web Services Description Language (WSDIL1), March 2001,
http://www.w3.org/TR/wsdl

W3C: Web Services Description Language (WSDEysion 2.0 Part 1: Core Language,
March 2006 http://www.w3.0rg/TR/wsdI20/

W3C Recommendation: XML Schema Part 1: StrieguBecond Edition, October 2004,
http://www.w3.0rg/TR/xmlschema-1/

W3C Recommendation: XML Schema Part 2: Datasypecond Edition, October 2004,
http://www.w3.0rg/TR/xmlschema-2/

Specification Lead Dhiru Pandey: Implementifigterprise Web Services, May 2006,
http://www.jcp.org/en/jsr/detail?id=109

Specification Lead Roberto Chinnici: Jav&Pls for XML based RPC, October 2003,
http://www.jcp.org/en/jsr/detail?id=101

Java Technology and Web Servidat$p://java.sun.com/webservices/

OASIS Standard: Web Services Security: SOAR%4ge Security V1.0, March 2004,
http://docs.oasis-open.org/wss/2004/01/oasis-200v¥t soap-message-security-1.0.pdf
W3C Recommendation: Canonical XML Version March 2001,
http://www.w3.0rg/TR/xml-c14n

XML Signature Working Groughttp://www.w3.org/Signature/

XML Encryption Working Grouphttp://www.w3.0org/Encryption/2001/

