
Artificial Intelligence in Software Test Automation: A Systematic

Literature Review

Anna Trudova1, Michal Dolezel1[http://orcid.org/0000-0002-5963-5145] and Alena Buchalcevova1[0000-0002-8185-5208]
1Department of Information Technologies, University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic

{qtrua00, michal.dolezel, alena.buchalcevova}@vse.cz

Keywords: Software Testing, Test Automation, Test Tools, Artificial Intelligence, Literature Study

Abstract: Artificial intelligence (AI) has made a considerable impact on the software engineering field, and the area of

software testing is not an exception. In theory, AI techniques could help to achieve the highest possible level

of software test automation. The goal of this Systematic Literature Review (SLR) paper is to highlight the

role of artificial intelligence in the software test automation area through cataloguing AI techniques and

related software testing activities to which the techniques can be applied. Specifically, the potential influence

of AI on those activities was explored. To this end, the SLR was performed with the focus on research studies

reporting the implementation of AI techniques in software test automation. Out of 34 primary studies that

were included in the final set, 9 distinct software testing activities were identified. These activities had been

reportedly improved by applying the AI techniques mostly from the machine learning and computer vision

fields. According to the reviewed primary studies, the improvement was achieved in terms of reusability of

test cases, manual effort reduction, improved coverage, improved fault and vulnerability detection. Several

publicly accessible AI-enhanced tools for software test automation were discovered during the review as well.

Their short summary is presented.

1 INTRODUCTION

The growing complexity of today’s software systems

results in an increased need for sophisticated testing

techniques. Performing software testing activities

manually appears to be ineffective in terms of

demanding manpower consumption, low execution

speed and inadequate test coverage. Those are

precisely the problems which test automation could

address and, in most cases, also solve. Software test

automation is defined by Dustin et al. (1999) as

“management and performance of test activities, to

include the development and execution of test scripts

so as to verify test requirements, using an automated

test tool” (p. 4). In principle, however, test

automation should be considered as a broader

concept, including not only the automated test

scripting and execution, but also other activities

across the whole software testing process (Garousi &

Elberzhager, 2017).

It is known that the software test automation has

its limitations and problems (Rafi et al., 2012). As an

example, fragile automation scripts or ineffective

fault detection may be mentioned. However, the

limitations and problems of test automation are

conceptually similar to certain issues which already

have been solved by the application of artificial

intelligence (AI) techniques (Last, Kandel & Bunke,

2004). On the way towards this promising vision, the

book Artificial intelligence methods in software

testing (Last et al., 2004) incorporated a set of articles

and papers on the relatively new application of

artificial intelligence algorithms in software testing.

Generally speaking, the proposed approaches were as

follows:

1. fuzzy logic for the generalization of cause-

effect software testing;

2. Info-Fuzzy Networks and Artificial Neural

Networks for test case generation and

reduction;

3. AI planning for regenerating regression tests

affected by software change;

4. case-based reasoning and C4.5 for

determination of risky modules in software.

Another publication provided an overview of the

AI techniques usable in software testing (Houranim,

Hammad & Lafi, 2019). Authors of the publication

focused their findings on the software testing domain,

but they paid only a limited attention to software test

automation. The following AI techniques in

connection with test automation were metioned:

Huber Regression, Support Vector Regression

(SVR), multi-layer perceptron, Hybrid Genetic

Algorithms (HGA) and Natural Language Processing

(NLP).

The publications mentioned above represent only

a relatively small selection of possibly promising

applications of AI techniques in the software testing

domain. The papers included in Artificial intelligence

methods in software testing (Last et al., 2004) pointed

out to the next step that should be taken. This step was

defined as a need to move forward with practical tools

that implements AI algorithms not only for software

testing in general, but for software test automation in

particular.

At the time of writing this paper, we found no

publications that would provide a full overview of AI

techniques applications in software test automation.

This paper intends to fill this gap. Therefore, the aim

of this paper is to identify in what manner artificial

intelligence is impacting the software test automation

field, and to systematize the AI techniques that can be

applied to the stated field. Such knowledge can enable

a better understanding of given areas, their conceptual

interconnection, and provide the practitioners with

practical examples of AI techniques applied to

various test automation activities. This paper is

primarily intended for specialists from the quality

engineering field. Due to that fact, it aims to give a

practical, bird-eyes perspective on AI; the paper does

not cover specific details with regard to the

implementation details of various AI techniques.

The rest of this paper is organized as follows.

Section 2 describes the systematic review process,

Section 3 presents the SLR results together with

answering the research questions. Conclusions are

presented in Section 4.

2 SYSTEMATIC LITERATURE

REVIEW

In order to accurately perform the Systematic

Literature Review (SLR) focused on artificial

intelligence in software test automation, the

systematic process was followed according to the

SLR guidelines proposed by Kitchenham and

Charters (2007). A Systematic Literature Review is a

“means of identifying, evaluating and interpreting all

available research relevant to a particular research

question, or topic area, or phenomenon of interest”

(Kitchenham & Charters, 2007, p. 3). The following

subsections reflect and document the process of how

the review was conducted.

2.1 Research Questions

In order to describe the role of artificial intelligence

and its techniques in software test automation, the

following research questions were stated:

RQ1: Which software testing activities can be

improved by applying AI techniques?

RQ2: What AI techniques can be applied for

improving testing activities identified during

answering the RQ1?

RQ3: What are the reported benefits of AI techniques

usage in software test automation?

RQ4: What AI-enhanced software tools can be

pragmatically used by practitioners for software test

automation activities?

2.2 Search Strategy

Several digital libraries were used as a source of the

research papers, including IEEExplore

(https://ieeexplore.ieee.org), ACM Digital Library

(https://dl.acm.org), ScienceDirect

(www.sciencedirect.com), and SpringerLink

(https://link.springer.com). These libraries were

selected due to the quality, accessibility and relevance

of their content for the field of software engineering.
Search queries for each of the libraries are stated

in Table 1. The following list summarizes the
keywords that were identified as relevant to answer
the research questions: artificial intelligence,
machine learning, computer vision, natural language
processing, test automation, automated test,
automated testing, software engineering, software.
The full queries can be found in Table 1.

Table 1: Search queries for digital libraries with the number of results found.

Digital Library Search query Number of

results

ACM Digital

Library

("computer vision" OR "natural language processing" OR "AI" OR "artificial

intelligence" OR "ML" OR "machine learning" OR "NLP") AND ((test* AND

(automated OR automation)) AND ("software engineering" OR "software")

855

IEEExplore ("computer vision" OR "natural language processing" OR "AI" OR "artificial

intelligence" OR "ML" OR "machine learning" OR "NLP") AND ("test* automat*" OR

"automat* test*") AND ("software engineering" OR "software")

455

ScienceDirect ("computer vision" OR "natural language processing" OR "artificial intelligence" OR

"machine learning") AND ("test automation" OR "automated test" OR "automated

testing") AND ("software engineering" OR "software")

426

SpringerLink ("computer vision" OR "natural language processing" OR "AI" OR "artificial

intelligence" OR "ML" OR "machine learning" OR "NLP") AND (("test* AND

automat*") OR ("automat* AND test*")) AND ("software engineering" OR "software")

812

The syntax and the keywords themselves were
adapted depending on the searching-related features
and limitations of each digital library. Notably, the
main difference was a varying usage of specific
syntax (asterisk or double quotes) for different
databases.

The presented search results are accurate as of
15th September 2019. Number of total results without
removing duplicate papers was 2 548.

2.3 Inclusion and Exclusion Criteria

Obtained publications were filtered according to the
inclusion and exclusion criteria that are defined
below. Some of the criteria are based on the fact that
this paper is meant for quality engineers and, as a
result of that matter, does not consider the activities
related to software programming and code
maintenance.

The inclusion criteria were:
IC1: publications written in English
IC2: only primary studies
IC3: publications from the software engineering
domain
IC4: publications that describe the application of
artificial intelligence techniques

The following exclusion criteria were specified:
EC1: publication types such as encyclopaedia, book,
book chapter, conference abstract, editorials, book
review, conference info
EC2: papers issued before publication of Last et al.
(2004), where authors collected a representative set of
papers on the topic of application of artificial
intelligence techniques in software testing
EC3: publications related to training, validating and
testing algorithms
EC4: publications regarding unit testing and fault
localization techniques

The above stated criteria were thoroughly applied

in several phases. During the first phase of the review,

duplicate and incomplete publications were excluded.

In addition to that, all publications were filtered by

year, language and type of publication with the help

of Mendeley reference management software. After

duplicates were removed and the criteria (IC1, EC1,

EC2) were applied, the amount of found publications

was significantly reduced from 2 548 to 1 814. The

next phase involved filtering papers based on reading

their titles and abstracts. Publications were evaluated

by multiple exclusion and inclusion criteria that were

not applied in the previous phase: IC2, IC3, IC4, EC3

EC4. As the outcome, the number of papers that were

included was cut down to 227. In some cases, it was

not sufficient to read only the title and abstract to

identify whether a certain publication is relevant to

the research or not. Therefore, in order to make a

decision regarding inclusion or exclusion of aforesaid

publications, the introduction and conclusion were

read in addition to their titles and abstracts. The next

phase of the review involved reading of the articles’

full text with the intention of identifying whether each

individual paper should be included into the final set

or not, respecting all stated inclusion and exclusion

criteria. During this phase, several papers written by

the same authors regarding the same subject were

discovered, although they were not complete

duplicates. In order not to compromise the review’s

results, only the more recent publication or, in some

cases, the more descriptive one was taken into final

set. Once filtered based on the inclusion and

exclusion criteria specified above, the set of 39 papers

remained (Fig. 1). The quality of that publications

was subsequently analysed and assessed according to

the SLR process (Kitchenham & Charters, 2007). A

more detailed information regarding the quality

assessment is presented in the following Section 2.4.

2.4 Quality assessment

For the purpose of assuring that the previously
selected 39 publications are relevant and unbiased, a
quality assessment was performed. To address the
problem of the papers’ quality, a checklist was used
as it is a standardized way of performing the quality
assessment.

Figure 1: SLR process

The quality checklist proposed and applied
consisted of the following questions:
Q1: Are the study aims clearly stated?
Q2: Is there an adequate description of the study
context?
Q3: Is there a clear statement of findings/achieved
results?
Q4: Are the findings/achieved results based on
multiple projects? That means, whether the solution
proposed by the authors was successfully verified by
its application to at least two cases in a particular
context (e.g. multiple web applications)
Q5: Do the researchers discuss the validity/reliability
of their results?

Answers to the stated questions were binary, with
the answer being either “yes” or “no”. For each
affirmative answer, the paper was given a point, in
other case the point was not granted. The overall
score for the paper is based on the count of points
gained. The maximum achievable score was 5 points,
and with that in mind, if the score was lower than 3,
the paper was excluded from the final set. Table 2
summarizes the results of the quality assessment for
the papers included during the previous phase. The
lines marked in light grey represent the publications
excluded due to their low score. Each publication has
an identifier assigned to it, being used further in this
paper.

Table 2: Quality assessment. Lines marked grey represent the excluded publications.

Identifier Publication Q1 Q2 Q3 Q4 Q5 Score

R1 Méndez-Porras et al. (2015) yes yes no no no 2

R2 Sharifipour et al. (2018) yes yes yes yes yes 5

R3 Shahamiriet al. (2011) yes yes yes no yes 4

R4 Papadopoulos and Walkinshaw (2015) yes yes yes yes yes 5

R5 Wotawa (2016) yes yes no no no 2

R6 Lu et al. (2008) yes yes no no no 2

R7 King et al. (2018) yes yes yes yes yes 5

R8 Srivastava and Baby (2010) no yes yes no yes 3

R9 Paradkar et al. (2007) yes yes yes no no 3

R10 Wang et al. (2007) yes yes no no no 2

R11 Jin et al. (2008) yes yes yes no no 3

R12 Mariani et al. (2012) yes yes yes yes yes 5

R13 Liu et al. (2017) yes yes yes yes yes 5

R14 Li et al. (2011) yes yes yes no no 3

R15 Li et al. (2009) yes yes yes no yes 4

R16 Shen et al. (2009) yes yes yes no yes 4

R17 Li and Lam (2005) yes yes yes no no 3

R18 Souza et al. (2011) yes yes yes yes yes 5

R19 Rosenfeld et al. (2018) yes yes yes yes yes 5

R20 Gu et al. (2017) yes yes yes yes yes 5

R21 Bhattacharyya and Amza (2018) yes yes yes no no 3

R22 Carino and Andrews (2015) yes yes yes yes yes 5

R23 Santiago et al. (2018) yes yes yes yes yes 5

R24 Stocco et al. (2018) yes yes yes yes yes 5

R25 Thummalapenta et al. (2012) yes yes yes no no 3

R26 Bozic and Wotawa (2018) yes yes yes no no 3

R27 Hewett and Kijsanayothin (2009) yes yes yes no yes 4

R28 Hillah et al. (2016) yes yes yes yes yes 5

R29 White et al. (2019) yes yes yes yes yes 5

R30 Moghadam (2019) yes yes yes yes no 4

R31 Sant et al. (2005) yes yes yes no yes 4

R32 Chen et al. (2017) yes yes yes yes yes 5

R33 Braga et al. (2018) yes yes yes yes yes 5

R34 Vieira et al. (2006) yes yes no no no 2

R35 Chang et al. (2010) yes yes yes yes yes 5

R36 Fard et al. (2014) yes yes yes yes yes 5

R37 Pan et al. (2019) yes yes yes yes no 4

R38 Hu et al. (2018) yes yes yes yes yes 5

R39 Choi et al. (2013) yes yes yes yes yes 5

After the quality assessment was performed, the
final set of selected publications included 34
publications.

3 SLR RESULTS

This section presents the outcomes of the Systematic
Literature Review and provides the answers to the
research questions posed (RQ1, RQ2, RQ3, RQ4).

3.1 RQ1: Which Software Testing
Activities Can Be Improved by
Applying AI Techniques?

In the course of this literature study, 9 distinct
activities were identified. These activities constitute
software testing activities which have a potential to
be automated and improved by applying AI
techniques. The activities were identified and
analysed based on the resulting set of 34 papers. A
brief summary of the activities is presented in Table
3.

Some of the papers proposed approaches
applicable across several testing activities. Hence,
based on that fact, the publications were mentioned
multiple times in all the activities they impact.
Figure 2 shows the count of papers that mentioned
individual testing activities. Based on that count, it is

possible to make an assumption that even the AI
techniques are reportedly suitable to be used all
across the testing process, some of the activities (e.g.
test case or test oracle generation) attract more
attention than the others.

As mentioned earlier, several software testing
activities were identified during the SLR process.
These are described below in more detail as they are
important for the remaining research questions.

Test case generation. Test case generation can be
defined as a process of creation of a sequence of test
operations or test steps for the particular system under
test (Hu et al., 2018; Li & Lam, 2005; Mariani et al.,
2012; Papadopoulos & Walkinshaw, 2015;
Srivastava & Baby, 2010).

Test oracle generation. This activity can also be
titled test evaluation. Test oracles provide the
feedback on the obtained outputs from the system
under test. They determine whether the outputs
correspond with the expected ones (Braga et al.,
2018; Jin et al., 2008; Shahamiri et al., 2011).

Test execution. The core of this activity is
represented by the execution of test cases and by
recording the results of those test runs. In certain
cases, test execution and some other activities such as
data generation are performed together
(Bhattacharyya & Amza, 2018; Chang et al., 2010;
Gu et al., 2017; Hillah et al., 2016).

Test data generation. Test data generation is a
process of creation of the data for test cases. As an

Figure 2: Number of publications by testing activity.

0 2 4 6 8 10 12 14 16 18 20

Test case generation

Test oracle generation

Test execution

Test data generation

Test results reporting

Test repair

Test case selection

Flaky test prediction

Test order generation

Publications

T
e
st

in
g

 A
c
ti

v
it

y

example, input values that should be relevant to each
particular test can be mentioned (Liu et al., 2017;
Sharifipour et al., 2018; White et al., 2019).

Table 3: Software testing activities that can be improved by

applying the AI techniques.

Testing

Activity

Publication identifier

Test case

generation

R4, R8, R9, R12, R15, R16, R17, R19,

R22, R23, R25, R26, R28, R29, R30,

R31, R36, R38

Test

oracle

generation

R3, R4, R9, R11, R12, R19, R26, R28,

R29, R32, R33, R35, R36

Test

execution

R12, R19, R20, R21, R26, R28, R30,

R32, R35, R37, R39

Test data

generation

R2, R13, R14, R28, R29, R39

Test

results

reporting

R19, R20, R32

Test repair R24, R25, R37

Test case

selection

R18, R28

Flaky test

prediction

R7

Test order

generation

R27

Test results reporting. Test results reporting is

the collection of test outputs in the form of a report.
This activity is performed after test execution and test
evaluation activities have been finished. Such reports
can possibly contain the following information:
executed steps, execution status, occurred failures
identification, defect reports, etc. (Chen et al., 2017;
Gu et al., 2017; Rosenfeld et al., 2018).

Test repair. Test repair is, in essence, a
maintenance activity. Within the course of this
activity, test scripts are adjusted to changed
conditions. The need for it lays in a fact that test
scripts are fragile and vulnerable to the changes
introduced by developers in a newer version of the
tested software (Pan et al., 2019; Stocco et al., 2018).

Test case selection. This activity focuses on the
selection of test cases from a test suite. The selection
is made based on criteria individually defined for
each test case execution. Test case selection also
involves removal of the duplicate, redundant or
inexecutable test cases from the test set, which is
typically generated by the tools (Souza et al., 2011).

Flaky test prediction. Flaky test is characterized
as such when it reports false positive or false negative
test result, when adjustment was made to the test
scripts and/or to the code of the system under test
(King et al., 2018). If the tests expressing similar

characteristics could be identified and repaired, the
overall stability and reliability of the tests can be
significantly improved.

Test order generation. This activity is
concentrated on determination of the number and
order of the components under test during the
component integration testing. The aim is to
minimize the number of mocked components
required for testing, and to select their appropriate
orchestration (Hewett & Kijsanayothin, 2009).

3.2 RQ2: What AI Techniques can

be Applied for Improving Testing

Activities Identified during

Answering the RQ1?

During the SLR process, several promising AI
techniques were identified. The findings are
presented in Table 4, where the identified techniques
are introduced together with the publications,
mentioning and using the technique. Figure 3
summarizes all identified artificial intelligence
techniques and the publications where usage of those
techniques was reported. The mentioned artificial
intelligence techniques are ordered according to the
count of publications where these techniques were
used. For the sake of readability of the diagram, a few
algorithms and methods from Table 4 were
aggregated. Specifically, those belonging to the
computer vision (CV) field were combined into the
group labelled as “CV techniques” by grouping
namely: non-maximum suppression method (NMS),
Scale Invariant Feature Transform (SIFT), Features
from Accelerated Segment Test (FAST), Fast

0 1 2 3 4

ANN
CV techniques

Q-learning
ACO

BN
Graphplan algorithm

Hybrid GA
SVM

AdaBoostM1, IREP
C4.5
CNN

Fuzzing algorithm
Heuristics algorithms

k-means
KStar classifier

L*
Markov model

MF-IPP
NLP algorithms

PSO
RNN

Publications

A
I t

ec
h

n
iq

u
e

Figure 4. Count of publications by AI techniques

Normalized Cross Correlation (FNCC) algorithms,
contour detection, Scale-Invariant Feature Transform
(SIFT), Optical Character Recognition (OCR).

The visible trend from Figure 3 is that more than
half of the reported AI techniques was reported only
by a single publication. However, if the individual
techniques were grouped by AI subfields, it would be
apparent that most used techniques are from the
machine learning and computer vision fields. From
the machine learning field, the most popular
techniques were different types of networks (e.g.
Artificial Neural Network, Convolutional Neural
Networks, Recurrent neural network, Bayesian
Network) and Q-learning (Mariani et al., 2012),
which were used in 23% and 8% of the publications
respectively. The application of computer vision
techniques was reported by 11% of the publications
in the final set, where the individual techniques from
these field include template matching algorithms,
contour detection and OCR.

Table 4 maps the identified AI techniques to
testing activities that were identified in RQ1.
Unfortunately, it was not possible to identify the exact

AI technique used in the Thummalapenta et al. (2012)
publication. Therefore, in Table 4 it is mentioned as
“Algorithm from NLP field”.

3.3 RQ3: What Are the Reported

Benefits of AI Techniques Usage in

Software Test Automation?

This section describes the benefits of AI techniques
usage in the field of software test automation. The
identified benefits may be perceived as a main
motivation for applying artificial intelligence in
software test automation. To answer the research
question, it was important to differentiate the research
contributions of the selected publications to software
engineering field in general from the practical value
AI techniques can bring to the testing activities. The
reported benefits were grouped into larger categories
and are shown in Table 5 together with their short
description.

Table 4: Mapping AI techniques and testing activities (x = technique is applicable).

AI technique \ Testing activity

P
u

b
li

ca
ti

o
n

s

id
en

ti
fi

er

T
es

t
ca

se

g
en

er
at

io
n

T
es

t
o

ra
cl

e
g

en
er

at
io

n

T
es

t
ex

ec
u

ti
o

n

T
es

t
d

at
a

g
en

er
at

io
n

T
es

t
re

su
lt

s
re

p
o

rt
in

g

T
es

t
re

p
ai

r

T
es

t
ca

se

se
le

ct
io

n

F
la

k
y

 t
es

t
p

re
d

ic
ti

o
n

T
es

t
o

rd
er

g

en
er

at
io

n

Non-maximum suppression method (NMS) R32 x

SIFT, FAST, and FNCC algorithms R24, R37 x

Contour detection, OCR R37 x

Bayesian Network R7, R28 x x x

Particle swarm optimization (PSO) R18 x

Hybrid genetic algorithms R14, R16 x x

Ant colony optimization (ACO) R2, R8 x x

Artificial Neural Network (ANN) R3, R11, R22, R23 x x

Graphplan algorithm R9, R26 x x

Support vector machine (SVM) R36, R38 x x

AdaBoostM1 and Incremental Reduced Error

Pruning (IREP) algorithms
R33 x

Convolutional Neural Networks (CNN) R29 x x

Template-matching algorithm R32, R35 x

Decision tree algorithm (C4.5) R4 x

Markov model R31 x

MF-IPP (Multiple Fact Files Interference

Progression Planner)
R15 x

Algorithm from NLP field R25 x

Q-learning R12, R17, R30 x

Recurrent neural network (RNN) R13 x

L* R39 x x

Fuzzing algorithm R20 x

k-means R21 x

KStar classifier R19 x

Heuristics algorithms R27 x

It is pertinent to note that the relationship between
the AI techniques and the benefits can be described as
many-to-many relationship type. Taking this fact into
consideration, in more than 70% of all papers at least
one of the first tree benefits from the table below
(Table 5) was observed.

3.4 RQ4: What AI-enhanced Software
Tools Can Be Pragmatically Used
by Practitioners for Software Test
Automation Activities?

During the review, 14 software tools presented in
Table 6 were discovered. As it is obvious from the

table, only half of them is publicly accessible on the
web. Information regarding the year of relevant
research publication, in which the tool was used, and
the year of last tool update are presented in Table 6 as
well. The latter information is presented only for
those tools that are publicly accessible.

The table also shows that only a few tools (3) have
been under active development after the papers,
which reported on the tools, were published. These
are as follows: AutoBlackTest, Sikuli Test and
SwiftHand.

In total, seven publicly accessible tools were
identified and are shown in Table 6. A detailed
description for each of them is presented below.

Table 5: Reported benefits of using AI techniques.

Benefit Benefit description Publications

identifier

Manual effort

reduction

Some of the testing activities are already automated but still require user

guidance, some of them are only semi-automatic, with more human

interventions. Application of AI techniques saves the manual effort in

terms of reduction of time and cost required for the creation of the tests,

execution and their maintenance.

R7 R9, R20, R24,

R25, R27, R28, R30,

R32, R33, R35, R37,

R38, R39

Improved code

coverage

Reported benefits regarding the coverage can be described as an ability

to cover either a significant part of the statements, branches, transitions

or to fully cover them. In the publications, the improvement in coverage

was measured against the already existing approaches.

R2, R8, R12, R22,

R29, R31, R36, R39

Improved fault and

vulnerability

detection

effectiveness

Generally speaking, generated test cases or oracles are more efficient

and effective at identifying flaws in software in comparison with the

existing approaches.

R4, R9, R12, R22,

R26, R32, R36, R38

Reusability of created

test cases and test

oracles

Reusability of generated test cases and oracles in the context of the

publication could be perceived as an independence of one or more

conditions: specific GUI library, application, operating system, source

code, system model.

R23, R29, R30, R35,

R38

Test breakage repair Papers were reporting the effectiveness of breakage repair capabilities

by correcting the significant amount of breakages, outperforming

existing solutions.

R24, R25, R37

Avoidance of

redundant actions

during the test

execution

To improve the execution time and accuracy of the test, the AI

techniques contribute to avoidance of system under test restarts and of

unnecessary activity transitions.

R8, R20, R39

Improvement of

existing solutions

Some of them are improvements that AI-based approach can bring to

existing test case generation, selection and data generation techniques:

generated text inputs are depending on the context of the system under

test and not generated randomly; avoidance of the combinatorial

explosion during the generation; selection of test cases based not on one

but multiple objectives.

R13, R15, R18

Improved test

adequacy of the

generated test cases

Generated test cases are able to achieve the required test adequacy,

which exceeds equivalent test adequacy for other non-AI approaches.

The adequacy is based on the states covered, practicability and non-

redundancy of the generated test cases.

R4, R17

Model-Inference driven Testing (MINTest) can
be used for the test case generation using the C4.5
algorithm (Papadopoulos & Walkinshaw, 2015). At
its webpage (“MIN Test Framework”, 2012), it is
described as a test framework for unit and integration
levels of testing. Its implementation is intended for
Linux operating system (OS).

Automatic Black-Box Testing (AutoBlackTest)
implements the reinforcement learning, namely Q-
Learning. The tool serves for the automatic graphical
user interface (GUI) test case generation (Mariani et
al., 2012). According to the AutoBlackTest GitHub
repository (Shekhar, Murphy-Hill, & Oliviero, 2016),
it runs only with IBM Rational Functional Tester on
Windows OS. Based on available information, it is
not possible to say whether the tool is usable on a
higher version of Windows OS than 8.1 and JRE
above 1.6.

AimDroid is a tool that was designed for the GUI
testing of Android applications. The automated
testing of the application is made by the exploration
of its activities. The tool handles test execution and
test results reporting back to the user. As an AI-
enhancement, the fuzzing algorithm was used (Gu et
al., 2017). One of the limitations and a concern
regarding the usage of AimDroid is the fact that the
device should be rooted: the user of the device is
granted root privileges (Institute of Computer
Software of Nanjing University, 2017).

Vista leverages the computer vision techniques
for the purpose of GUI test breakage repair. It records
a successfully running test in its web-based GUI.
Once the test starts to fail on a later version of the
application, Vista is able to compare the current state

of the application with the recorded one and can
perform the repair of the test scripts (Stocco et al.,
2018). The tool currently supports the repair of the
scripts written in Java, in particular Selenium scripts
(Stocco, 2018).

Sikuli Test is an automated tool that enables
usage of visual notation (e.g. by using a picture of an
element for the sake of element identification on the
screen) while writing the GUI test. The tool uses
computer vision in order to make automated testing
easier for the user. Sikuli Test is designed to be
platform independent. So, it can be used for testing of
not only desktop applications, but also web and
mobile (Android) applications (Chang et al., 2010). It
seems that the tool is currently under active
development as SikuliX (Hocke, n.d).

Testilizer is capable of generating test cases from
existing Selenium test scripts for web applications
using SVM (Vapnik, 2013). The Selenium tests are
the starting point for the tool, which is able to
generate new test cases for the previously not reached
states of the application (Fard et al., 2014). Crawljax
is required as a prerequisite installed on the machine,
where the tests should run (Fard & Mesbah, 2014).

SwiftHand supports the GUI test automation of
Android applications. It uses L* algorithm (Irfan,
Oriat, & Groz, 2010) for exploration of the model of
the application-under-test’s GUI. Subsequently,
SwiftHand uses it to generate needed inputs in order
to examine the previously not visited states of the
application (Choi et al., 2013). SwiftHand can be run
on Linux OS or OSX (Choi, 2015). The GitHub
repository (Choi, 2015) of the tool provides a detailed
information on how to install and run the tool.

Table 6: AI-enhanced software tools, their public accessibility with years of publication and tool update.

Tool name Publication

identifier

Is tool publicly

available?

Publication

year

Last update

year

MINTest - Model-Inference driven Testing R4 yes 2015 2012

AutoBlackTest - Automatic Black-Box Testing R12 yes 2012 2016

DAS - Dynamic Ant Simulator R17 no 2005 -

ACAT - Activities Classification for Application Testing R19 no 2018 -

AimDroid R20 yes 2017 2017

Vista R24 yes 2018 2018

ATA - Automating Test Automation R25 no 2012 -

MIDAS R28 no 2016 -

UI X-RAY R32 no 2017 -

Sikuli Test R35 yes 2010 2019

Testilizer R36 yes 2014 2014

METER - Mobile Test Repair R37 no 2019 -

AppFlow R38 no 2018 -

SwiftHand R39 yes 2013 2015

4 DISCUSSION AND

CONCLUSION

The overall goal of this paper was to raise awareness
regarding the potential benefits that AI could bring
into the software test automation field. A Systematic
Literature Review (SLR) study was conducted for the
purpose of fulfilling the goal. As the main outcome of
the SLR process, 34 resulting publications were
closely analysed and found relevant to the stated
research questions.

Based on the discovered publications, nine
software testing activities were identified as activities
which could be improved by the application of AI
techniques. The testing activities are as follows: test
case generation, test oracle generation, test execution,
test data generation, test results reporting, test repair,
test case selection, flaky test prediction, test order
generation. The analysed papers addressed mostly
test case generation.

According to the collected data, most commonly
used AI techniques appears to be from the field of
machine learning, specifically different types of
neural networks: Artificial Neural Network,
Recurrent Neural Network, Bayesian Network; Q-
learning; L* etc. Bayesian Network and techniques
from the Computer Vision field belong among the
techniques that were used across more testing
activities more frequently than others.

Eight benefits of AI usage in software test
automation were discovered during the SLR. With
respect to the fact that the artificial intelligence
techniques described in the publications can
contribute to multiple benefits, 73% of all papers
reported at least one of the following benefits: manual
effort reduction, improved coverage, improved fault
and vulnerability detection.

In order to provide test practitioners with practical
examples of AI application in the test automation
field, several AI-enhanced tools were identified.
From these tools, only the publicly accessible ones
were described here in more details: MINTest,
AutoBlackTest, AimDroid, Vista, Sikuli Test,
Testilizer and SwiftHand. Importantly, some of the
tools mentioned above appear to be already outdated.
Therefore, pragmatically speaking, they may not be
practically usable as the software engineering field
and artificial intelligence techniques evolve quickly.
As two examples, we mention MINTest and
Testilizer, which have not been updated for seven and
five years respectively.

During the review process, an observation was
made that most of the publications included in our

SLR were concentrated on solving one or two
particular problems that can arise during software test
automation activities. That means, an integrative and
simply-to-use toolset for test automation practitioners
starving for AI-driven test automation does not seem
to be readily available yet. However, one should note
that this review was concentrated on predominantly
academic sources. Therefore, it did not include much
grey-literature, which may be perceived as its main
limitations. In fact, probing into commercial AI-
powered tools by means of multivocal literature
reviewing (Garousi, Felderer, & Mäntylä, 2016)
might bring additional insights.

Furthermore, as the paper focused mostly on the
benefits of AI usage in software test automation,
future work should also consider limitations and risks
that AI might bring into this context. As an example,
it is reasonable to expect that high initial investments
into AI technologies, together with a need for special
training, may significantly hinder the AI adoption
process in the software industry. To cope with these
dilemmas, future empirical work should ideally take
a practice-based view. Notably, mapping specific
motives and approaches driving the deployment and
usage of AI-powered test automation tools in real-
world companies appears to be an ideal way forward.

REFERENCES

Bhattacharyya, A., & Amza, C. (2018). PReT: A tool for

automatic phase-based regression testing. CloudCom,

2018, 284–289.

Bozic, J., & Wotawa, F. (2018). Planning-based security

testing of web applications. AST@ICSE 201, 20-26.

Braga, R., Neto, P. S., Rabêlo, R., Santiago, J., & Souza, M.

(2018). A machine learning approach to generate test

oracles. SBES 2018, 142–151.

Carino, S., & Andrews, J. H. (2015). Dynamically Testing

GUIs Using Ant Colony Optimization. ASE 2015, 138–

148.

Chang, T.-H., Yeh, T., & Miller, R. C. (2010). GUI testing

using computer vision. CHI 2010, 1535.

Chen, C.-F., Pistoia, M., Shi, C., Girolami, P., Ligman, J.

W., & Wang, Y. (2017). UI X-Ray. IUI 2017, 245–255.

Choi, W., Necula, G., & Sen, K. (2013). Guided GUI testing

of android apps with minimal restart and approximate

learning. OOPSLA 2013, 623–640.

Choi, W. 2015. wtchoi/SwiftHand. Retrieved October 27,

2019, from https://github.com/wtchoi/SwiftHand

Dustin, E., Rashka, J., & Paul, J. (1999). Automated

Software Testing: Introduction, Management, and

Performance. Addison-Wesley Professional.

Fard, A. M., Mirzaaghaei, M., Mesbah, A. (2014a).

Leveraging existing tests in automated test generation

for web applications. ASE 2014, 67-78

Fard, A. M., Mesbah, A. (2014b). saltlab/Testilizer.

Retrieved October 27, 2019 from

https://github.com/saltlab/Testilizer

Garousi, V., Felderer, M., & Mäntylä, M. V. (2016). The

need for multivocal literature reviews in software

engineering: complementing systematic literature

reviews with grey literature. EASE 2016: 26:1 – 26:6

Garousi, V., & Elberzhager, F. (2017). Test Automation:

Not Just for Test Execution. IEEE Software 34(2), 90-

96.

 Gu, T., Cao, C., Liu, T., Sun, C., Deng, J., Ma, X., & Lü,

J. (2017). AIMDROID: Activity-insulated multi-level

automated testing for android applications. ICSME

2017, 103–114.

 Hewett, R., & Kijsanayothin, P. (2009). Automated test

order generation for software component integration

testing. ASE 2009 , 211–220.

 Hillah, L. M., Maesano, A.-P., Maesano, L., De Rosa, F.,

Kordon, F., & Wuillemin, P.-H. (2016). Service

functional testing automation with intelligent

scheduling and planning. SAC 2016, 1605–1610.

Hocke, R., n.d. SikuliX by RaiMan. Retrieved October 27,

2019, from http://sikulix.com/

 Hourani, H., Hammad, A., & Lafi, M. (2019). The Impact

of Artificial Intelligence on Software Testing. JEEIT

2019, 565–570.

Hu, G., Zhu, L., & Yang, J. (2018). AppFlow: using

machine learning to synthesize robust, reusable UI tests.

ESEC/SIGSOFT FSE 2018, 269–282.

Institute of Computer Software of Nanjing University.

(2017). AimDroid: Activity-Insulated Multi-level

Automated Testing for Android Applications. Retrieved

October 27, 2019, from

https://icsnju.github.io/AimDroid-ICSME-2017/

Irfan, M. N., Oriat, C., & Groz, R. (2010). Angluin style

finite state machine inference with nonoptimal

counterexamples. MIIT 2010, 11-19.

 Jin, H., Wang, Y., Chen, N., Gou, Z., & Wang, S. (2008).

Artificial Neural Network for Automatic Test Oracles

Generation. CSSE (2) 2008, 727–730.

 King, T. M., Santiago, D., Phillips, J., & Clarke, P. J.

(2018). Towards a Bayesian Network Model for

Predicting Flaky Automated Tests. QRS Companion

2018, 100–107.

 Kitchenham, B., & Charters, S. (2007). Guidelines for

performing Systematic Literature Reviews in Software

Engineering. EBSE-2007-01.

Last, M., Kandel, A., Bunke, H. (2004). Artificial

Intelligence Methods in Software Testing Series in

Machine Perception and Artificial Intelligence, Volume

56, 2004. World Scientific Publishing Co.

Li, H., & Lam, C. P. (2005). An ant colony optimization

approach to test sequence generation for state-based

software testing. QSIC 2005, 255–262.

Li, L., Wang, D., Shen, X., & Yang, M. (2009). A method

for combinatorial explosion avoidance of AI planner

and the application on test case generation. CiSE 2009,

1–4.

Li, X., Wang, T., Wang, F., & Wang, M. (2011). A novel

model for automatic test data generation based on

predicate slice. AIMSEC 2011, 1803–1805.

Liu, P., Zhang, X., Pistoia, M., Zheng, Y., Marques, M., &

Zeng, L. (2017). Automatic Text Input Generation for

Mobile Testing. ICSE 2017, 643–653.

Lu, Y., Yan, D., Nie, S., & Wang, C. (2008). Development

of an Improved GUI Automation Test System Based on

Event-Flow Graph. CASE (2) 2008, 712–715.

Méndez-Porras, A., Nieto Hidalgo, M., García-Chamizo, J.

M., Jenkins, M., & Porras, A. M. (2015). A top-down

design approach for an automated testing framework.

UCAml 2015, 37–49.

Moghadam, M. H. (2019). Machine Learning-assisted

Performance Testing. ESEC/SIGSOFT FSE 2019,

1187–1189.

MIN Test Framework. (2012). MIN Test Framework.

Retrieved October 27, 2019, from

http://min.sourceforge.net/.

Pan, M., Xu, T., Pei, Y., Li, Z., Zhang, T., & Li, X. (2019).

GUI-guided Repair of Mobile Test Scripts. ICSE

(Companion Volume) 2019, 326–327.

 Papadopoulos, P., & Walkinshaw, N. (2015). Black-box

test generation from inferred models. RAISE@ICSE

2015, 19–24.

 Paradkar, A. M., Sinha, A., Williams, C., Johnson, R. D.,

Outterson, S., Shriver, C., & Liang, C. (2007).

Automated functional conformance test generation for

semantic web services. ICWS 2007, 110–117.

 Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M.

V. (2012). Benefits and limitations of automated

software testing: Systematic literature review and

practitioner survey. AST 2012, 26-42

 Rosenfeld, A., Kardashov, O., & Zang, O. (2018).

Automation of Android Applications Functional Testing

Using Machine Learning Activities Classification.

MOBILESoft@ICSE 2018, 122–132.

Sant, J., Souter, A., & Greenwald, L. (2005). An

exploration of statistical models for automated test case

generation. ACM SIGSOFT Software Engineering Notes

30(4), 1–7.

Santiago, D., Clarke, P. J., Alt, P., & King, T. M. (2018).

Abstract flow learning for web application test

generation. A-TEST@ESEC/SIGSOFT FSE 2018, 49–

55.

Shahamiri, S. R., Kadir, W. M. N. W., Ibrahim, S., &

Hashim, S. Z. M. (2011). An automated framework for

software test oracle. Inf. Softwa. Technol., 53(7), 774–

788.

Sharifipour, H., Shakeri, M., & Haghighi, H. (2018).

Structural test data generation using a memetic ant

colony optimization based on evolution strategies.

Swarm Evol. Comput. 40, 76–91.

Shekhar, S., Murphy-Hill, E., & Oliviero, R., 2016. ICSE-

2011-AutoBlackTest. Retrieved October 27, 2019, from

https://github.com/SoftwareEngineeringToolDemos/IC

SE-2011-AutoBlackTest.

Shen, X., Wang, Q., Wang, P., & Zhou, B. (2009).

Automatic generation of test case based on GATS

algorithm. GrC 2009, 496–500.

Souza, L. S. d., Miranda, P. B. C. d., Prudencio, R. B. C., &

Barros, F. d. A. (2011). A Multi-objective Particle

Swarm Optimization for Test Case Selection Based on

Functional Requirements Coverage and Execution

Effort. ICTAI 2011, 245–252.

Srivastava, P. R., & Baby, K. (2010). Automated software

testing using metahurestic technique based on an Ant

Colony Optimization. ISED 2010, 235–240.

Stocco, A., Yandrapally, R., & Mesbah, A. (2018a). Visual

web test repair. ESEC/SIGSOFT FSE 2018, 503–514.

Stocco, A. (2018b). Saltlab/vista. Retrieved October 27,

2019, from https://github.com/saltlab/vista

Thummalapenta, S., Singhania, N., Devaki, P., Sinha, S.,

Chandra, S., Das, A. K., & Mangipudi, S. (2012).

Efficiently scripting change-resilient tests. SIGSOFT

FSE 2012, 41

Vapnik, V.N. (2013). The nature of statistical learning

theory. Springer science & business media.

Vieira, F. E., Martins, F., Silva, R., Menezes, R., & Braga,

M. (2006). Using Genetic Algorithms to Generate Test

Plans for Functionality Testing. ACM Southeast

Regional Conference 2006, 140-145

Wang, Y., Bai, X., Li, J., & Huang, R. (2007). Ontology-

based test case generation for testing web services.

ISADS 2007, 43–50.

White, T. D., Fraser, G., & Brown, G. J. (2019). Improving

Random GUI Testing with Image-based Widget

Detection. ISSTA 2019, 307–317.

Wotawa, F. (2016). On the Automation of Security Testing.

ICSSA 2016, 11–16.

