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Abstract: Artificial intelligence (AI) has made a considerable impact on the software engineering field, and the area of 

software testing is not an exception. In theory, AI techniques could help to achieve the highest possible level 

of software test automation. The goal of this Systematic Literature Review (SLR) paper is to highlight the 

role of artificial intelligence in the software test automation area through cataloguing AI techniques and 

related software testing activities to which the techniques can be applied. Specifically, the potential influence 

of AI on those activities was explored. To this end, the SLR was performed with the focus on research studies 

reporting the implementation of AI techniques in software test automation. Out of 34 primary studies that 

were included in the final set, 9 distinct software testing activities were identified. These activities had been 

reportedly improved by applying the AI techniques mostly from the machine learning and computer vision 

fields. According to the reviewed primary studies, the improvement was achieved in terms of reusability of 

test cases, manual effort reduction, improved coverage, improved fault and vulnerability detection. Several 

publicly accessible AI-enhanced tools for software test automation were discovered during the review as well. 

Their short summary is presented. 

1 INTRODUCTION 

The growing complexity of today’s software systems 

results in an increased need for sophisticated testing 

techniques. Performing software testing activities 

manually appears to be ineffective in terms of 

demanding manpower consumption, low execution 

speed and inadequate test coverage. Those are 

precisely the problems which test automation could 

address and, in most cases, also solve. Software test 

automation is defined by Dustin et al. (1999) as 

“management and performance of test activities, to 

include the development and execution of test scripts 

so as to verify test requirements, using an automated 

test tool” (p. 4). In principle, however, test 

automation should be considered as a broader 

concept, including not only the automated test 

scripting and execution, but also other activities 

across the whole software testing process (Garousi & 

Elberzhager, 2017).  

It is known that the software test automation has 

its limitations and problems (Rafi et al., 2012). As an 

example, fragile automation scripts or ineffective 

fault detection may be mentioned. However, the 

limitations and problems of test automation are 

conceptually similar to certain issues which already 

have been solved by the application of artificial 

intelligence (AI) techniques (Last, Kandel & Bunke, 

2004). On the way towards this promising vision, the 

book Artificial intelligence methods in software 

testing (Last et al., 2004) incorporated a set of articles 

and papers on the relatively new application of 

artificial intelligence algorithms in software testing. 

Generally speaking, the proposed approaches were as 

follows: 

1. fuzzy logic for the generalization of cause-

effect software testing;  

2. Info-Fuzzy Networks and Artificial Neural 

Networks for test case generation and 

reduction;  

3. AI planning for regenerating regression tests 

affected by software change;  

4. case-based reasoning and C4.5 for 

determination of risky modules in software. 

Another publication provided an overview of the 

AI techniques usable in software testing  (Houranim, 

Hammad & Lafi, 2019). Authors of the publication 

focused their findings on the software testing domain, 

but they paid only a limited attention to software test 

automation. The following AI techniques in 



connection with test automation were metioned: 

Huber Regression, Support Vector Regression 

(SVR), multi-layer perceptron, Hybrid Genetic 

Algorithms (HGA) and Natural Language Processing 

(NLP). 

The publications mentioned above represent only 

a relatively small selection of possibly promising 

applications of AI techniques in the software testing 

domain. The papers included in Artificial intelligence 

methods in software testing (Last et al., 2004) pointed 

out to the next step that should be taken. This step was 

defined as a need to move forward with practical tools 

that implements AI algorithms not only for software 

testing in general, but for software test automation in 

particular.  

At the time of writing this paper, we found no 

publications that would provide a full overview of AI 

techniques applications in software test automation. 

This paper intends to fill this gap. Therefore, the aim 

of this paper is to identify in what manner artificial 

intelligence is impacting the software test automation 

field, and to systematize the AI techniques that can be 

applied to the stated field. Such knowledge can enable 

a better understanding of given areas, their conceptual 

interconnection, and provide the practitioners with 

practical examples of AI techniques applied to 

various test automation activities. This paper is 

primarily intended for specialists from the quality 

engineering field. Due to that fact, it aims to give a 

practical, bird-eyes perspective on AI; the paper does 

not cover specific details with regard to the 

implementation details of various AI techniques. 

The rest of this paper is organized as follows. 

Section 2 describes the systematic review process, 

Section 3 presents the SLR results together with 

answering the research questions. Conclusions are 

presented in Section 4. 

2 SYSTEMATIC LITERATURE 

REVIEW 

In order to accurately perform the Systematic 

Literature Review (SLR) focused on artificial 

intelligence in software test automation, the 

systematic process was followed according to the 

SLR guidelines proposed by Kitchenham and 

Charters (2007). A Systematic Literature Review is a 

“means of identifying, evaluating and interpreting all 

available research relevant to a particular research 

question, or topic area, or phenomenon of interest” 

(Kitchenham & Charters, 2007, p. 3). The following 

subsections reflect and document the process of how 

the review was conducted. 

2.1 Research Questions 

In order to describe the role of artificial intelligence 

and its techniques in software test automation, the 

following research questions were stated:  

RQ1: Which software testing activities can be 

improved by applying AI techniques?  

RQ2: What AI techniques can be applied for 

improving testing activities identified during 

answering the RQ1? 

RQ3: What are the reported benefits of AI techniques 

usage in software test automation? 

RQ4: What AI-enhanced software tools can be 

pragmatically used by practitioners for software test 

automation activities? 

2.2 Search Strategy 

Several digital libraries were used as a source of the 

research papers, including IEEExplore 

(https://ieeexplore.ieee.org), ACM Digital Library 

(https://dl.acm.org), ScienceDirect 

(www.sciencedirect.com), and SpringerLink 

(https://link.springer.com). These libraries were 

selected due to the quality, accessibility and relevance 

of their content for the field of software engineering. 
Search queries for each of the libraries are stated 

in Table 1. The following list summarizes the 
keywords that were identified as relevant to answer 
the research   questions: artificial intelligence, 
machine learning, computer vision, natural language 
processing, test automation, automated test, 
automated testing, software engineering, software. 
The full queries can be found in Table 1.  

 
Table 1: Search queries for digital libraries with the number of results found. 

Digital Library Search query  Number of 

results 

ACM Digital 

Library 

("computer vision" OR "natural language processing" OR "AI" OR "artificial 

intelligence" OR "ML" OR "machine learning" OR "NLP") AND ((test* AND 

(automated OR automation)) AND ("software engineering" OR "software") 

855 

IEEExplore ("computer vision" OR "natural language processing" OR "AI" OR "artificial 

intelligence" OR "ML" OR "machine learning" OR "NLP") AND ("test* automat*" OR 

"automat* test*") AND ("software engineering" OR "software") 

455 



ScienceDirect ("computer vision" OR "natural language processing" OR "artificial intelligence" OR 

"machine learning") AND ("test automation" OR "automated test" OR "automated 

testing") AND ("software engineering" OR "software") 

426 

SpringerLink ("computer vision" OR "natural language processing" OR "AI" OR "artificial 

intelligence" OR "ML" OR "machine learning" OR "NLP") AND (("test* AND 

automat*") OR ("automat* AND test*")) AND ("software engineering" OR "software") 

812 

The syntax and the keywords themselves were 
adapted depending on the searching-related features 
and limitations of each digital library. Notably, the 
main difference was a varying usage of specific 
syntax (asterisk or double quotes) for different 
databases. 

The presented search results are accurate as of 
15th September 2019. Number of total results without 
removing duplicate papers was 2 548. 

2.3 Inclusion and Exclusion Criteria  

Obtained publications were filtered according to the 
inclusion and exclusion criteria that are defined 
below. Some of the criteria are based on the fact that 
this paper is meant for quality engineers and, as a 
result of that matter, does not consider the activities 
related to software programming and code 
maintenance. 
 
The inclusion criteria were: 
IC1: publications written in English 
IC2: only primary studies 
IC3: publications from the software engineering 
domain 
IC4: publications that describe the application of 
artificial intelligence techniques 

 
The following exclusion criteria were specified:  
EC1: publication types such as encyclopaedia, book, 
book chapter, conference abstract, editorials, book 
review, conference info 
EC2: papers issued before publication of Last et al. 
(2004), where authors collected a representative set of 
papers on the topic of application of artificial 
intelligence techniques in software testing 
EC3: publications related to training, validating and 
testing algorithms 
EC4: publications regarding unit testing and fault 
localization techniques 

The above stated criteria were thoroughly applied 

in several phases. During the first phase of the review, 

duplicate and incomplete publications were excluded. 

In addition to that, all publications were filtered by 

year, language and type of publication with the help 

of Mendeley reference management software. After 

duplicates were removed and the criteria (IC1, EC1, 

EC2) were applied, the amount of found publications 

was significantly reduced from 2 548 to 1 814. The 

next phase involved filtering papers based on reading 

their titles and abstracts. Publications were evaluated 

by multiple exclusion and inclusion criteria that were 

not applied in the previous phase: IC2, IC3, IC4, EC3 

EC4. As the outcome, the number of papers that were 

included was cut down to 227. In some cases, it was 

not sufficient to read only the title and abstract to 

identify whether a certain publication is relevant to 

the research or not. Therefore, in order to make a 

decision regarding inclusion or exclusion of aforesaid 

publications, the introduction and conclusion were 

read in addition to their titles and abstracts. The next 

phase of the review involved reading of the articles’ 

full text with the intention of identifying whether each 

individual paper should be included into the final set 

or not, respecting all stated inclusion and exclusion 

criteria. During this phase, several papers written by 

the same authors regarding the same subject were 

discovered, although they were not complete 

duplicates. In order not to compromise the review’s 

results, only the more recent publication or, in some 

cases, the more descriptive one was taken into final 

set. Once filtered based on the inclusion and 

exclusion criteria specified above, the set of 39 papers 

remained (Fig. 1). The quality of that publications 

was subsequently analysed and assessed according to 

the SLR process (Kitchenham & Charters, 2007). A 

more detailed information regarding the quality 

assessment is presented in the following Section 2.4. 

2.4 Quality assessment 

For the purpose of assuring that the previously 
selected 39 publications are relevant and unbiased, a 
quality assessment was performed. To address the 
problem of the papers’ quality, a checklist was used 
as it is a standardized way of performing the quality 
assessment. 

  



 
Figure 1: SLR process

The quality checklist proposed and applied 
consisted of the following questions: 
Q1: Are the study aims clearly stated?  
Q2: Is there an adequate description of the study 
context?  
Q3: Is there a clear statement of findings/achieved 
results? 
Q4: Are the findings/achieved results based on 
multiple projects? That means, whether the solution 
proposed by the authors was successfully verified by 
its application to at least two cases in a particular 
context (e.g. multiple web applications)   
Q5: Do the researchers discuss the validity/reliability 
of their results?  

Answers to the stated questions were binary, with 
the answer being either “yes” or “no”. For each 
affirmative answer, the paper was given a point, in 
other case the point was not granted. The overall 
score for the paper is based on the count of points 
gained. The maximum achievable score was 5 points, 
and with that in mind, if the score was lower than 3, 
the paper was excluded from the final set. Table 2 
summarizes the results of the quality assessment for 
the papers included during the previous phase. The 
lines marked in light grey represent the publications 
excluded due to their low score. Each publication has 
an identifier assigned to it, being used further in this 
paper.   

Table 2: Quality assessment. Lines marked grey represent the excluded publications. 

Identifier Publication Q1 Q2 Q3 Q4 Q5 Score 

R1 Méndez-Porras et al. (2015) yes yes no no no 2 

R2 Sharifipour et al. (2018) yes yes yes yes yes 5 

R3 Shahamiriet al. (2011) yes yes yes no yes 4 

R4 Papadopoulos and Walkinshaw (2015) yes yes yes yes yes 5 

R5 Wotawa (2016) yes yes no no no 2 

R6 Lu et al. (2008) yes yes no no no 2 

R7 King et al. (2018) yes yes yes yes yes 5 

R8 Srivastava and Baby (2010) no yes yes no yes 3 

R9 Paradkar et al. (2007) yes yes yes no no 3 

R10 Wang et al. (2007) yes yes no no no 2 

R11 Jin et al. (2008) yes yes yes no no 3 

R12 Mariani et al. (2012) yes yes yes yes yes 5 

R13 Liu et al. (2017) yes yes yes yes yes 5 

R14 Li et al. (2011) yes yes yes no no 3 

R15 Li et al. (2009) yes yes yes no yes 4 

R16 Shen et al. (2009) yes yes yes no yes 4 

R17 Li and Lam (2005) yes yes yes no no 3 

R18 Souza et al. (2011) yes yes yes yes yes 5 

R19 Rosenfeld et al. (2018) yes yes yes yes yes 5 

R20 Gu et al. (2017) yes yes yes yes yes 5 

R21 Bhattacharyya and Amza (2018) yes yes yes no no 3 

R22 Carino and Andrews (2015) yes yes yes yes yes 5 

R23 Santiago et al. (2018) yes yes yes yes yes 5 

R24 Stocco et al. (2018) yes yes yes yes yes 5 

R25 Thummalapenta et al. (2012) yes yes yes no no 3 

R26 Bozic and Wotawa (2018) yes yes yes no no 3 



R27 Hewett and Kijsanayothin (2009) yes yes yes no yes 4 

R28 Hillah et al. (2016) yes yes yes yes yes 5 

R29 White et al. (2019) yes yes yes yes yes 5 

R30 Moghadam (2019) yes yes yes yes no 4 

R31 Sant et al. (2005) yes yes yes no yes 4 

R32 Chen et al. (2017) yes yes yes yes yes 5 

R33 Braga et al. (2018) yes yes yes yes yes 5 

R34 Vieira et al. (2006) yes yes no no no 2 

R35 Chang et al. (2010) yes yes yes yes yes 5 

R36 Fard et al. (2014) yes yes yes yes yes 5 

R37 Pan et al. (2019) yes yes yes yes no 4 

R38 Hu et al. (2018) yes yes yes yes yes 5 

R39 Choi et al. (2013) yes yes yes yes yes 5 

After the quality assessment was performed, the 
final set of selected publications included 34 
publications. 

3 SLR RESULTS 

This section presents the outcomes of the Systematic 
Literature Review and provides the answers to the 
research questions posed (RQ1, RQ2, RQ3, RQ4). 

3.1 RQ1: Which Software Testing 
Activities Can Be Improved by 
Applying AI Techniques? 

In the course of this literature study, 9 distinct 
activities were identified. These activities constitute 
software testing activities which have a potential to 
be automated and improved by applying AI 
techniques. The activities were identified and 
analysed based on the resulting set of 34 papers. A 
brief summary of the activities is presented in Table 
3. 

Some of the papers proposed approaches 
applicable across several testing activities. Hence, 
based on that fact, the publications were mentioned 
multiple times in all the activities they impact.  
Figure 2 shows the count of papers that mentioned 
individual testing activities. Based on that count, it is 

possible to make an assumption that even the AI 
techniques are reportedly suitable to be used all 
across the testing process, some of the activities (e.g.   
test case or test oracle generation) attract more 
attention than the others.   

As mentioned earlier, several software testing 
activities were identified during the SLR process. 
These are described below in more detail as they are 
important for the remaining research questions.  

Test case generation. Test case generation can be 
defined as a process of creation of a sequence of test 
operations or test steps for the particular system under 
test (Hu et al., 2018; Li & Lam, 2005; Mariani et al., 
2012; Papadopoulos & Walkinshaw, 2015; 
Srivastava & Baby, 2010).  

Test oracle generation. This activity can also be 
titled test evaluation. Test oracles provide the 
feedback on the obtained outputs from the system 
under test. They determine whether the outputs 
correspond with the expected ones (Braga et al., 
2018; Jin et al., 2008; Shahamiri et al., 2011). 

Test execution. The core of this activity is 
represented by the execution of test cases and by 
recording the results of those test runs. In certain 
cases, test execution and some other activities such as 
data generation are performed together 
(Bhattacharyya & Amza, 2018; Chang et al., 2010; 
Gu et al., 2017; Hillah et al., 2016).  

Test data generation. Test data generation is a 
process of creation of the data for test cases. As an 

Figure 2: Number of publications by testing activity. 
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example, input values that should be relevant to each 
particular test can be mentioned (Liu et al., 2017; 
Sharifipour et al., 2018; White et al., 2019).  

 
Table 3: Software testing activities that can be improved by 

applying the AI techniques. 

Testing 

Activity 

Publication identifier 

Test case 

generation 

R4, R8, R9, R12, R15, R16, R17, R19, 

R22, R23, R25, R26, R28, R29, R30, 

R31, R36, R38 

Test 

oracle 

generation 

R3, R4, R9, R11, R12, R19, R26, R28, 

R29, R32, R33, R35, R36 

Test 

execution 

R12, R19, R20, R21, R26, R28, R30, 

R32, R35, R37, R39 

Test data 

generation 

R2, R13, R14, R28, R29, R39 

Test 

results 

reporting 

R19, R20, R32 

Test repair R24, R25, R37 

Test case 

selection  

R18, R28 

Flaky test 

prediction 

R7 

Test order 

generation 

R27 

 
Test results reporting. Test results reporting is 

the collection of test outputs in the form of a report. 
This activity is performed after test execution and test 
evaluation activities have been finished. Such reports 
can possibly contain the following information: 
executed steps, execution status, occurred failures 
identification, defect reports, etc. (Chen et al., 2017; 
Gu et al., 2017; Rosenfeld et al., 2018).  

Test repair. Test repair is, in essence, a 
maintenance activity. Within the course of this 
activity, test scripts are adjusted to changed 
conditions. The need for it lays in a fact that test 
scripts are fragile and vulnerable to the changes 
introduced by developers in a newer version of the 
tested software (Pan et al., 2019; Stocco et al., 2018).  

Test case selection. This activity focuses on the 
selection of test cases from a test suite. The selection 
is made based on criteria individually defined for 
each test case execution. Test case selection also 
involves removal of the duplicate, redundant or 
inexecutable test cases from the test set, which is 
typically generated by the tools (Souza et al., 2011).   

Flaky test prediction. Flaky test is characterized 
as such when it reports false positive or false negative 
test result, when adjustment was made to the test 
scripts and/or to the code of the system under test 
(King et al., 2018). If the tests expressing similar 

characteristics could be identified and repaired, the 
overall stability and reliability of the tests can be 
significantly improved.  

Test order generation. This activity is 
concentrated on determination of the number and 
order of the components under test during the 
component integration testing. The aim is to 
minimize the number of mocked components 
required for testing, and to select their appropriate 
orchestration (Hewett & Kijsanayothin, 2009).  

3.2 RQ2: What AI Techniques can 

be Applied for Improving Testing 

Activities Identified during 

Answering the RQ1? 

During the SLR process, several promising AI 
techniques were identified. The findings are 
presented in Table 4, where the identified techniques 
are introduced together with the publications, 
mentioning and using the technique. Figure 3 
summarizes all identified artificial intelligence 
techniques and the publications where usage of those 
techniques was reported. The mentioned artificial 
intelligence techniques are ordered according to the 
count of publications where these techniques were 
used. For the sake of readability of the diagram, a few 
algorithms and methods from Table 4 were 
aggregated. Specifically, those belonging to the 
computer vision (CV) field were combined into the 
group labelled as “CV techniques” by grouping 
namely: non-maximum suppression method (NMS), 
Scale Invariant Feature Transform (SIFT), Features 
from Accelerated Segment Test (FAST), Fast 
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Figure 4. Count of publications by AI techniques 



Normalized Cross Correlation (FNCC) algorithms, 
contour detection, Scale-Invariant Feature Transform 
(SIFT), Optical Character Recognition (OCR).  

The visible trend from Figure 3 is that more than 
half of the reported AI techniques was reported only 
by a single publication. However, if the individual 
techniques were grouped by AI subfields, it would be 
apparent that most used techniques are from the 
machine learning and computer vision fields.  From 
the machine learning field, the most popular 
techniques were different types of networks (e.g. 
Artificial Neural Network, Convolutional Neural 
Networks, Recurrent neural network, Bayesian 
Network) and Q-learning (Mariani et al., 2012), 
which were used in 23% and 8% of the publications 
respectively. The application of computer vision 
techniques was reported by 11% of the publications 
in the final set, where the individual techniques from 
these field include template matching algorithms, 
contour detection and OCR.  

Table 4 maps the identified AI techniques to 
testing activities that were identified in RQ1. 
Unfortunately, it was not possible to identify the exact 

AI technique used in the Thummalapenta et al. (2012) 
publication. Therefore, in Table 4 it is mentioned as 
“Algorithm from NLP field”. 

3.3 RQ3: What Are the Reported 

Benefits of AI Techniques Usage in 

Software Test Automation? 

This section describes the benefits of AI techniques 
usage in the field of software test automation. The 
identified benefits may be perceived as a main 
motivation for applying artificial intelligence in 
software test automation. To answer the research 
question, it was important to differentiate the research 
contributions of the selected publications to software 
engineering field in general from the practical value 
AI techniques can bring to the testing activities. The 
reported benefits were grouped into larger categories 
and are shown in Table 5 together with their short 
description.  

 

Table 4: Mapping AI techniques and testing activities (x = technique is applicable). 
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Non-maximum suppression method (NMS) R32     x     

SIFT, FAST, and FNCC algorithms R24, R37      x    

Contour detection, OCR R37      x    

Bayesian Network R7, R28 x      x x  

Particle swarm optimization (PSO) R18       x   

Hybrid genetic algorithms R14, R16 x   x      

Ant colony optimization (ACO) R2, R8 x   x      

Artificial Neural Network (ANN) R3, R11, R22, R23 x x        

Graphplan algorithm R9, R26 x x        

Support vector machine (SVM) R36, R38 x x        

AdaBoostM1 and Incremental Reduced Error 

Pruning (IREP) algorithms 
R33  x        

Convolutional Neural Networks (CNN) R29  x  x      

Template-matching algorithm  R32, R35  x        

Decision tree algorithm (C4.5)  R4 x         

Markov model R31 x         

MF-IPP (Multiple Fact Files Interference 

Progression Planner) 
R15 x         

Algorithm from NLP field R25 x         

Q-learning R12, R17, R30 x         

Recurrent neural network (RNN) R13    x      

L* R39   x x      

Fuzzing algorithm R20   x       

k-means R21   x       

KStar classifier R19   x       

Heuristics algorithms R27         x 



It is pertinent to note that the relationship between 
the AI techniques and the benefits can be described as 
many-to-many relationship type. Taking this fact into 
consideration, in more than 70% of all papers at least 
one of the first tree benefits from the table below 
(Table 5) was observed. 

3.4 RQ4: What AI-enhanced Software 
Tools Can Be Pragmatically Used 
by Practitioners for Software Test 
Automation Activities?   

During the review, 14 software tools presented in 
Table 6 were discovered. As it is obvious from the 

table, only half of them is publicly accessible on the 
web. Information regarding the year of relevant 
research publication, in which the tool was used, and 
the year of last tool update are presented in Table 6 as 
well. The latter information is presented only for 
those tools that are publicly accessible.  

The table also shows that only a few tools (3) have 
been under active development after the papers, 
which reported on the tools, were published. These 
are as follows: AutoBlackTest, Sikuli Test and 
SwiftHand.  

In total, seven publicly accessible tools were 
identified and are shown in Table 6. A detailed 
description for each of them is presented below. 

 

Table 5: Reported benefits of using AI techniques. 

Benefit Benefit description Publications 

identifier 

Manual effort 

reduction 

Some of the testing activities are already automated but still require user 

guidance, some of them are only semi-automatic, with more human 

interventions. Application of AI techniques saves the manual effort in 

terms of reduction of time and cost required for the creation of the tests, 

execution and their maintenance.  

R7 R9, R20, R24, 

R25, R27, R28, R30, 

R32, R33, R35, R37, 

R38, R39 

Improved code 

coverage 

Reported benefits regarding the coverage can be described as an ability 

to cover either a significant part of the statements, branches, transitions 

or to fully cover them. In the publications, the improvement in coverage 

was measured against the already existing approaches. 

R2, R8, R12, R22, 

R29, R31, R36, R39 

Improved fault and 

vulnerability 

detection 

effectiveness 

Generally speaking, generated test cases or oracles are more efficient 

and effective at identifying flaws in software in comparison with the 

existing approaches. 

R4, R9, R12, R22, 

R26, R32, R36, R38 

Reusability of created 

test cases and test 

oracles 

Reusability of generated test cases and oracles in the context of the 

publication could be perceived as an independence of one or more 

conditions: specific GUI library, application, operating system, source 

code, system model. 

R23, R29, R30, R35, 

R38 

Test breakage repair Papers were reporting the effectiveness of breakage repair capabilities 

by correcting the significant amount of breakages, outperforming 

existing solutions. 

R24, R25, R37 

Avoidance of 

redundant actions 

during the test 

execution 

To improve the execution time and accuracy of the test, the AI 

techniques contribute to avoidance of system under test restarts and of 

unnecessary activity transitions. 

R8, R20, R39 

Improvement of 

existing solutions  

Some of them are improvements that AI-based approach can bring to 

existing test case generation, selection and data generation techniques: 

generated text inputs are depending on the context of the system under 

test and not generated randomly; avoidance of the combinatorial 

explosion during the generation; selection of test cases based not on one 

but multiple objectives. 

R13, R15, R18 

Improved test 

adequacy of the 

generated test cases 

Generated test cases are able to achieve the required test adequacy, 

which exceeds equivalent test adequacy for other non-AI approaches. 

The adequacy is based on the states covered, practicability and non-

redundancy of the generated test cases. 

R4, R17 



Model-Inference driven Testing (MINTest) can 
be used for the test case generation using the C4.5 
algorithm (Papadopoulos & Walkinshaw, 2015). At 
its webpage (“MIN Test Framework”, 2012), it is 
described as a test framework for unit and integration 
levels of testing. Its implementation is intended for 
Linux operating system (OS).   

Automatic Black-Box Testing (AutoBlackTest) 
implements the reinforcement learning, namely Q-
Learning. The tool serves for the automatic graphical 
user interface (GUI) test case generation (Mariani et 
al., 2012). According to the AutoBlackTest GitHub 
repository (Shekhar, Murphy-Hill, & Oliviero, 2016), 
it runs only with IBM Rational Functional Tester on 
Windows OS. Based on available information, it is 
not possible to say whether the tool is usable on a 
higher version of Windows OS than 8.1 and JRE 
above 1.6. 

AimDroid is a tool that was designed for the GUI 
testing of Android applications. The automated 
testing of the application is made by the exploration 
of its activities. The tool handles test execution and 
test results reporting back to the user. As an AI-
enhancement, the fuzzing algorithm was used (Gu et 
al., 2017). One of the limitations and a concern 
regarding the usage of AimDroid is the fact that the 
device should be rooted: the user of the device is 
granted root privileges (Institute of Computer 
Software of Nanjing University, 2017).  

Vista leverages the computer vision techniques 
for the purpose of GUI test breakage repair. It records 
a successfully running test in its web-based GUI. 
Once the test starts to fail on a later version of the 
application, Vista is able to compare the current state 

of the application with the recorded one and can 
perform the repair of the test scripts (Stocco et al., 
2018). The tool currently supports the repair of the 
scripts written in Java, in particular Selenium scripts 
(Stocco, 2018). 

Sikuli Test is an automated tool that enables 
usage of visual notation (e.g. by using a picture of an 
element for the sake of element identification on the 
screen) while writing the GUI test. The tool uses 
computer vision in order to make automated testing 
easier for the user. Sikuli Test is designed to be 
platform independent. So, it can be used for testing of 
not only desktop applications, but also web and 
mobile (Android) applications (Chang et al., 2010). It 
seems that the tool is currently under active 
development as SikuliX (Hocke, n.d).  

Testilizer is capable of generating test cases from 
existing Selenium test scripts for web applications 
using SVM (Vapnik, 2013). The Selenium tests are 
the starting point for the tool, which is able to 
generate new test cases for the previously not reached 
states of the application (Fard et al., 2014). Crawljax 
is required as a prerequisite installed on the machine, 
where the tests should run (Fard & Mesbah, 2014).   

SwiftHand supports the GUI test automation of 
Android applications. It uses L* algorithm (Irfan, 
Oriat, & Groz, 2010) for exploration of the model of 
the application-under-test’s GUI. Subsequently, 
SwiftHand uses it to generate needed inputs in order 
to examine the previously not visited states of the 
application (Choi et al., 2013). SwiftHand can be run 
on Linux OS or OSX (Choi, 2015). The GitHub 
repository (Choi, 2015) of the tool provides a detailed 
information on how to install and run the tool.  

Table 6: AI-enhanced software tools, their public accessibility with years of publication and tool update. 

Tool name Publication 

identifier 

Is tool publicly 

available? 

Publication 

year 

Last update 

year 

MINTest - Model-Inference driven Testing R4 yes 2015 2012 

AutoBlackTest - Automatic Black-Box Testing  R12 yes 2012 2016 

DAS - Dynamic Ant Simulator R17 no 2005 - 

ACAT - Activities Classification for Application Testing R19 no 2018 - 

AimDroid R20 yes 2017 2017 

Vista R24 yes 2018 2018 

ATA - Automating Test Automation R25 no 2012 - 

MIDAS R28 no 2016 - 

UI X-RAY R32 no 2017 - 

Sikuli Test R35 yes 2010 2019 

Testilizer R36 yes 2014 2014 

METER - Mobile Test Repair R37 no 2019 - 

AppFlow R38 no 2018 - 

SwiftHand R39 yes 2013 2015 



4 DISCUSSION AND 

CONCLUSION 

The overall goal of this paper was to raise awareness 
regarding the potential benefits that AI could bring 
into the software test automation field. A Systematic 
Literature Review (SLR) study was conducted for the 
purpose of fulfilling the goal. As the main outcome of 
the SLR process, 34 resulting publications were 
closely analysed and found relevant to the stated 
research questions. 

Based on the discovered publications, nine 
software testing activities were identified as activities 
which could be improved by the application of AI 
techniques. The testing activities are as follows: test 
case generation, test oracle generation, test execution, 
test data generation, test results reporting, test repair, 
test case selection, flaky test prediction, test order 
generation. The analysed papers addressed mostly 
test case generation. 

According to the collected data, most commonly 
used AI techniques appears to be from the field of 
machine learning, specifically different types of 
neural networks: Artificial Neural Network, 
Recurrent Neural Network, Bayesian Network; Q-
learning; L* etc. Bayesian Network and techniques 
from the Computer Vision field belong among the 
techniques that were used across more testing 
activities more frequently than others. 

Eight benefits of AI usage in software test 
automation were discovered during the SLR. With 
respect to the fact that the artificial intelligence 
techniques described in the publications can 
contribute to multiple benefits, 73% of all papers 
reported at least one of the following benefits: manual 
effort reduction, improved coverage, improved fault 
and vulnerability detection. 

In order to provide test practitioners with practical 
examples of AI application in the test automation 
field, several AI-enhanced tools were identified. 
From these tools, only the publicly accessible ones 
were described here in more details: MINTest, 
AutoBlackTest, AimDroid, Vista, Sikuli Test, 
Testilizer and SwiftHand. Importantly, some of the 
tools mentioned above appear to be already outdated. 
Therefore, pragmatically speaking, they may not be 
practically usable as the software engineering field 
and artificial intelligence techniques evolve quickly. 
As two examples, we mention MINTest and 
Testilizer, which have not been updated for seven and 
five years respectively.  

During the review process, an observation was 
made that most of the publications included in our 

SLR were concentrated on solving one or two 
particular problems that can arise during software test 
automation activities. That means, an integrative and 
simply-to-use toolset for test automation practitioners 
starving for AI-driven test automation does not seem 
to be readily available yet. However, one should note 
that this review was concentrated on predominantly 
academic sources. Therefore, it did not include much 
grey-literature, which may be perceived as its main 
limitations. In fact, probing into commercial AI-
powered tools by means of multivocal literature 
reviewing (Garousi, Felderer, & Mäntylä, 2016) 
might bring additional insights. 

Furthermore, as the paper focused mostly on the 
benefits of AI usage in software test automation, 
future work should also consider limitations and risks 
that AI might bring into this context. As an example, 
it is reasonable to expect that high initial investments 
into AI technologies, together with a need for special 
training, may significantly hinder the AI adoption 
process in the software industry. To cope with these 
dilemmas, future empirical work should ideally take 
a practice-based view. Notably, mapping specific 
motives and approaches driving the deployment and 
usage of AI-powered test automation tools in real-
world companies appears to be an ideal way forward. 
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