LECTURE 9: RISK AND UNCERTAINTY (CONT'D), UTILITY THEORY p-INTELLIGENT PLAYERS

Jan Zouhar Games and Decisions

Decisions under Risk

- 2
- *risk*: the opponent is a random mechanism that chooses the strategies according to a known probability distribution

 \rightarrow for each strategy, payoff is a random variable with a known distribution

- expected value principle: it's rational to maximize the expected payoff (i.e., choose the strategy that yields the maximum expected value of payoffs)
- however, such strategies are often not picked in practice (expected value principle is not *normative*) – see the following exercise

Exercise 1: Three Lotteries

 \Box you were given the opportunity to take part in one of the following lotteries (*A*,*B*, or *C*, see table below); the result all the lotteries is determined by rolling a die

	1 \ 2	1	2	3	4	5	6
Lottery	Α	2	6	2	6	2	6
	В	-60	0	0	0	0	120
	С	3	3	3	3	3	3

Die roll – result

- 1. Which of the lotteries would you choose?
- 2. What is the *expected payoff* for each of the lotteries?
- 3. If you wouldn't take part in the lottery with the highest payoff, explain why.
- 4. Calculate the *variances* of each of the lotteries' outcome.

Exercise 1: Three Lotteries

4

Variance of a discrete-valued random variable:Let X be a discrete-valued random variable. Variance of X is givenby $var X = \sum_{x} (x - EX)^2 \cdot \Pr(X = x)$

	Expectation	Variance
Lottery A	4	4
Lottery B	10	2,900
Lottery C	3	0

- □ the reluctance to enter risky lotteries is natural (*risk aversion*)
 - here: risk level expressed in terms of *variance of payoffs*.
- risk aversion can be explained from the strictly rational standpoint using *utility theory*

Exercise 2: St. Petersburg Paradox

- described by Daniel Bernoulli in 1738, a.k.a. St. Petersburg Lottery, Bernoulli's Paradox
- \Box rules of the lottery:
 - a fair coin is tossed repeatedly, until a *tail* appears, ending the game
 - the pot starts at €1 and is doubled each time a *head* appears; after the game ends, you'll win whatever is in the pot

■ example: $T \dots \in 1$ $H \cdot T \dots \in 2$ $H \cdot H \cdot T \dots \in 4$ $H \cdot \dots \cdot H \cdot T \dots \in 2^n$ $n \cdot times H$

- 1. Imagine you have a ticket to play the game (once). For how much would you be willing to sell it (i.e., what price would you ask for it)?
- 2. What is the expected payoff of the lottery?

Exercise 2: St. Petersburg Paradox (cont'd)

- this is an example of a game where nobody follows the expected payoff principle
- □ possible outcomes are not limited (in theory, heads can appear any number of times in a row) → average payoff is a weighted sum of infinite number of values:

□ Bernoulli's explanation: *utility theory*

- people do not compare money amounts, but the resulting utility (= level of satisfaction)
- monthly wages of both Peter (a teacher) and Paul (a company's CEO) have increased by €500
 - **D** Peter's wage: from $\notin 1,000$ to $\notin 1,500$
 - □ Paul's wage: from €20,000 to €20,500
 - \rightarrow which one of them did the change make happier?
- utility expressed as a *function of monetary amounts*
- units of utility sometimes called utils
- Bernoulli's suggestion:
 - if a person's wealth changes, the increments of utility correspond to a *relative change of wealth* (rather than absolute)
 (Peter's wage went up by 50%, while Paul's only by 2,5%)
 - \rightarrow repeated doubling of one's wealth yields constant utility increments

(cont'd)

• the only function with such a property is the *logarithmic function*

 $u(x) = a\ln(x) + c$

(cont'd)

• the only function with such a property is the *logarithmic function*

parameters (person-specific)

(cont'd)

• the only function with such a property is the *logarithmic function*

Games and Decisions

Jan Zouhar

- 11
- if we use Bernoulli's logarithmic utility function, and watch *expected utility* instead of expected payoffs, Bernoulli's paradox ceases to be a paradox
- □ consider a utility function $u(x) = \ln(x)$

- 12
- if we use Bernoulli's logarithmic utility function, and watch *expected utility* instead of expected payoffs, Bernoulli's paradox ceases to be a paradox
- □ consider a utility function $u(x) = \ln(x)$; expected utility is

$$E(u) = \sum_{x} u(x) \Pr(X = x) =$$

$$= \ln(1) \cdot \frac{1}{2} + \ln(2) \cdot \left(\frac{1}{2}\right)^{2} + \dots + \ln(2^{n}) \cdot \left(\frac{1}{2}\right)^{n+1} + \dots = (T + H - T + \dots + n \times H - T + \dots)$$

$$= \sum_{n=0}^{\infty} \ln(2^{n}) \cdot \left(\frac{1}{2}\right)^{n+1} = (\text{only expressed as an infinite sum})$$

$$= \ln(2) \sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n+1} = (\text{remember: } \ln(2^{n}) = n \cdot \ln(2))$$

$$= \ln(2) = 0.69 \qquad (\text{the sum equals } 1 - rather difficult to show})$$

- 13
- if we use Bernoulli's logarithmic utility function, and watch *expected utility* instead of expected payoffs, Bernoulli's paradox ceases to be a paradox
- □ consider a utility function $u(x) = \ln(x)$; expected utility is

$$E(u) = \sum_{x} u(x) \Pr(X = x) =$$

$$= \ln(1) \cdot \frac{1}{2} + \ln(2) \cdot \left(\frac{1}{2}\right)^{2} + \dots + \ln(2^{n}) \cdot \left(\frac{1}{2}\right)^{n+1} + \dots = (T + H - T + \dots + n \times H - T + \dots)$$

$$= \sum_{n=0}^{\infty} \ln(2^{n}) \cdot \left(\frac{1}{2}\right)^{n+1} = (\text{only expressed as an infinite sum})$$

$$= \ln(2) \sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n+1} = (\text{remember: } \ln(2^{n}) = n \cdot \ln(2))$$

$$= \ln(2) = 0.69 (\text{the sum equals } 1 - \text{rather difficult to show})$$

→ a rational decision is to sell the ticket for any amount of money that yields greater utility than $\ln(2) \rightarrow \ln(2) < \ln(price) \rightarrow e.g.$ for $\notin 2.5$

(cont'd)

- 14
- □ however, imagine we change the rules in the following way: if a tail first appears after n tosses, the payoff is $exp(2^n)$
- □ the expected utility is:

$$E(u) = \sum_{x} u(x) \operatorname{Pr}(X = x) =$$
$$= \sum_{n=0}^{\infty} \ln\left[\exp(2^{n})\right] \cdot \left(\frac{1}{2}\right)^{n} =$$
$$= \sum_{n=0}^{\infty} 2^{n} \left(\frac{1}{2}\right)^{n} = \sum_{n=0}^{\infty} 1 = \infty$$

note: for any kind of *unbounded* and *increasing* utility function, one can find a modified version of Bernoulli's lottery with infinite expected utility

Criticism of Bernoulli's Paradox

- 15
- 1. people simply do not believe in extremely improbable possibilities (however, they are willing to take part in real lotteries!)
- the maximum payoff cannot be unlimited "casino ruining" (no infinite sum = no problem)

payoff limit	expected payoff
€10	2
€100	3.5
€1,000	5
€1,000,000	10
€1,000,000,000,000	20
€1,000,000,000,000,000,000	30

3. utility cannot be unbounded, as there is a limited amount of scarce resources money can buy (?)

Properties of Typical Utility Functions

16_

- □ typically, we assume a utility function u(x) is a smooth function such that...
 - **1. positivity:** u(x) > 0 for x > 0 (or, sometimes, for x > 1)
 - **2.** non-satiation: u'(x) > 0
 - "the more money, the more utility"
 - sometimes, this assumption is made even stronger by assuming unboundedness
 - **3. risk aversion**: u''(x) < 0
 - (for explanation, see next slide)
- □ logarithmic utility function: $u(x) = a \ln(x) + c$, a > 0, c > 0
 - *positivity*: u(x) crosses 0 at x between 0 and 1
 - non-satiation: u'(x) = a/x > 0 for x > 0
 - risk aversion: $u''(x) = -a/x^2 < 0$

Properties of Typical Utility Functions

(cont'd)

17

Risk aversion

- \Box risk aversion property merely states that u(x) is *concave*
- □ to see why this results in risk aversion, consider the following situation:
 - Peter, whose utility function is

$$u(x)=\frac{\ln(x)}{\ln 2}+1,$$

was given a lottery ticket with the following lottery rules:

- a fair coin is flipped:
 - heads: player wins \$2
 - *tails*: player wins \$8
- the ticket itself can be sold back for \$5

Properties of Typical Utility Functions (cont'd)

Risk aversion

- □ risk aversion property merely states that u(x) is *concave*
- □ to see why this results in risk aversion, consider the following situation:
 - Peter, whose utility function is

$$u(x)=\frac{\ln(x)}{\ln 2}+1,$$

was given a lottery ticket with the following lottery rules:

heads:	player wins \$2	(u(2) = 2)
■ tails:	player wins \$8	(u(8) = 4)

- the ticket itself can be sold back for \$5
- if Peter doesn't sell the ticket:
 - expected payoff: $0.5 \times 2 + 0.5 \times 8 = $5 \rightarrow \text{fair lottery}$
 - expected utility: $0.5 \times u(2) + 0.5 \times u(8) = 3 \rightarrow$ Peter sells

(u(5) = 3.32)

Games against p-Intelligent Players

- real-life players do not often decide the way game theory suggests (i.e., game-theoretical result are not 100% *normative*)
- possible reasons:
 - different levels of information and/or decision skills
 - lack of time to analyze and decide

• ...

- mathematical model that counts in decision-making errors: games with p-intelligent players
 - **definition:** a player behaving with a probability of *p* like a normatively intelligent player and with a probability of 1-p like a random mechanism will be called a *p*-intelligent player ($p \in [0,1]$).
 - **\square** *p* = the degree of deviation from rationality:
 - $p = 0 \rightarrow$ a random mechanism
 - $p = 1 \rightarrow$ a completely rational player
 - *note*: your opponent's *p* needs to be estimated in advance!

p-Intelligent Players in Matrix Games

22

- consider the following matrix game
 - player 1 is normatively intelligent
 - **\square** player 2 is *p*-intelligent
 - the game's matrix is an $m \times n$ matrix $\mathbf{A} = (a_{ij})$
 - there exist NE strategies x^* , y^*
 - NE's may be *pure* or *mixed*, in either case the strategies x*, y* will be expressed as vectors (for pure strategies, the vectors look something like (0,1,0,0,0)^T)

p-Intelligent Players in Matrix Games

- 23
- consider the following matrix game
 - player 1 is normatively intelligent
 - **\square** player 2 is *p*-intelligent
 - the game's matrix is an $m \times n$ matrix $\mathbf{A} = (a_{ij})$
 - there exist NE strategies x^* , y^*
 - NE's may be *pure* or *mixed*, in either case the strategies x*, y* will be expressed as vectors (for pure strategies, the vectors look something like (0,1,0,0,0)^T)
- □ by definition, player 2 plays a mixed strategy:
 - with a probability of p, he/she plays y^*
 - with a probability of 1-p, he/she plays $\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)^{\top}$
 - the resulting mixed strategy is

$$\boldsymbol{s}(p) = p \boldsymbol{y}^* + (1-p) \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)^\top$$

(rational) (random)

p-Intelligent Players in Matrix Games (cont'd)

- optimal strategy for the intelligent player: pick the row in A that maximizes the expected payoff, given that player 2 uses strategy s(p)
- \square mathematically: find the maximum element in vector As(p)

Example:

D NE:
$$\mathbf{x}^* = (1,0,0,0)^{\mathsf{T}}, \mathbf{y}^* = (0,1,0,0)^{\mathsf{T}}$$

$$\mathbf{s}(p) = p \mathbf{y}^{*} + (1-p) \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{\top} = \left(\begin{array}{c} 0\\1\\0\\0\end{array}\right) + (1-p) \left(\begin{array}{c}\frac{1}{4}\\\frac{1}{4}\\\frac{1}{4}\\\frac{1}{4}\\\frac{1}{4}\end{array}\right) = \frac{1}{4} \left(\begin{array}{c}1-p\\1+3p\\1-p\\1-p\\1-p\end{array}\right)$$

1 \ 2	W	X	Y	Z
Α	3	3	3	3
В	7	1	7	7
С	3	1	-1	2
D	8	0	8	8

What is the expected payoff of the first-row strategy with p = 0.5?

p-Intelligent Players in Matrix Games

- 25
- \Box expected As(p) for different levels of p:

Row	р = 0	p = 0.2	p = 0.4	p = 0.6	p = 0.8	р = 1
Α	3	3	3	3	3	3
В	5.5	4.6	3.7	2.8	1.9	1
С	1.25	1.20	1.15	1.10	1.05	1
D	6	4.8	3.6	2.4	1.2	0

 \Box depending on *p*, different rows can be optimal:

p ∈ [0, 3/9] = [0, 0.33] → row **D** is optimal *p* ∈ [3/9, 5/9] = [0.33, 0.56] → row **B** is optimal *p* ∈ [5/9, 1] = [0.56, 1] → row **A** is optimal

Excess Function

- 26
- excess function is a function that expresses the average additional player 1's profit due to his deviation from x^* (= NE strategy)

Row	р = 0	p = 0.2	p = 0.4	p = 0.6	p = 0.8	p = 1
Α	3	3	3	3	3	3
В	5.5	4.6	3.7	2.8	1.9	1
С	1.25	1.20	1.15	1.10	1.05	1
D	6	4.8	3.6	2.4	1.2	0
excess	6-3 = 3	1.8	0.7	0	0	0

 $\square mathematically: f(p) = \max[\mathbf{A}\mathbf{s}(p)] - \mathbf{x}^* \mathbf{A}\mathbf{s}(p)$

LECTURE 9: RISK AND UNCERTAINTY (CONT'D), UTILITY THEORY p-INTELLIGENT PLAYERS

Jan Zouhar Games and Decisions