LECTURE 9:

RISK AND UNCERTAINTY (CONT’D), UTILITY THEORY p-INTELLIGENT PLAYERS

Jan Zouhar Games and Decisions

Decisions under Risk

\square risk: the opponent is a random mechanism that chooses the strategies according to a known probability distribution
\rightarrow for each strategy, payoff is a random variable with a known distribution
\square expected value principle: it's rational to maximize the expected payoff (i.e., choose the strategy that yields the maximum expected value of payoffs)
\square however, such strategies are often not picked in practice (expected value principle is not normative) - see the following exercise

Exercise 1: Three Lotteries

\square you were given the opportunity to take part in one of the following lotteries (A, B, or C, see table below); the result all the lotteries is determined by rolling a die

Die roll - result

$1 \backslash 2$	1	2	3	4	5	6	
	A	2	6	2	6	2	6
	B	-60	0	0	0	0	120
	C	3	3	3	3	3	3

1. Which of the lotteries would you choose?
2. What is the expected payoff for each of the lotteries?
3. If you wouldn't take part in the lottery with the highest payoff, explain why.
4. Calculate the variances of each of the lotteries' outcome.

Exercise 1: Three Lotteries

Variance of a discrete-valued random variable:

Let X be a discrete-valued random variable. Variance of X is given
by

$$
\operatorname{var} X=\sum_{x}(x-\mathrm{E} X)^{2} \cdot \operatorname{Pr}(X=x)
$$

	Expectation	Variance
Lottery A	4	4
Lottery B	10	2,900
Lottery C	3	0

\square the reluctance to enter risky lotteries is natural (risk aversion)

- here: risk level expressed in terms of variance of payoffs.
\square risk aversion can be explained from the strictly rational standpoint using utility theory

Exercise 2: St. Petersburg Paradox

\square described by Daniel Bernoulli in 1738, a.k.a. St. Petersburg Lottery, Bernoulli's Paradox
\square rules of the lottery:
\square a fair coin is tossed repeatedly, until a tail appears, ending the game
\square the pot starts at $€ 1$ and is doubled each time a head appears; after the game ends, you'll win whatever is in the pot

- example: T.............. €1

H-T €2
H-H-T €4

1. Imagine you have a ticket to play the game (once). For how much would you be willing to sell it (i.e., what price would you ask for it)?
2. What is the expected payoff of the lottery?

Exercise 2: St. Petersburg Paradox

\square this is an example of a game where nobody follows the expected payoff principle
\square possible outcomes are not limited (in theory, heads can appear any number of times in a row) \rightarrow average payoff is a weighted sum of infinite number of values:

\square Bernoulli's explanation: utility theory

Utility Theory

\square people do not compare money amounts, but the resulting utility (= level of satisfaction)
\square monthly wages of both Peter (a teacher) and Paul (a company's CEO) have increased by $€ 500$

- Peter's wage: from $€ 1,000$ to $€ 1,500$
- Paul's wage: from $€ 20,000$ to $€ 20,500$
\rightarrow which one of them did the change make happier?
- utility expressed as a function of monetary amounts
\square units of utility sometimes called utils
- Bernoulli's suggestion:
- if a person's wealth changes, the increments of utility correspond to a relative change of wealth (rather than absolute)
(Peter's wage went up by 50%, while Paul's only by $2,5 \%$)
\rightarrow repeated doubling of one's wealth yields constant utility increments

Utility Theory

- the only function with such a property is the logarithmic function

$$
u(x)=a \ln (x)+c
$$

Utility Theory

- the only function with such a property is the logarithmic function

Utility Theory

- the only function with such a property is the logarithmic function

$$
\begin{gathered}
\text { utility } \longrightarrow u(x)=a \ln (x)+c \quad \text { money amount } \\
\text { parameters (person-specific) }
\end{gathered}
$$

Bernoulli's Paradox Vs. Utility Theory

\square if we use Bernoulli's logarithmic utility function, and watch expected utility instead of expected payoffs, Bernoulli's paradox ceases to be a paradox
\square consider a utility function $u(x)=\ln (x)$

Bernoulli's Paradox Vs. Utility Theory

$\square \quad$ if we use Bernoulli's logarithmic utility function, and watch expected utility instead of expected payoffs, Bernoulli's paradox ceases to be a paradox
\square consider a utility function $u(x)=\ln (x)$; expected utility is

$$
\begin{array}{rlrl}
\mathrm{E}(u) & =\sum_{x} u(x) \operatorname{Pr}(X=x)= \\
& =\ln (1) \cdot \frac{1}{2}+\ln (2) \cdot\left(\frac{1}{2}\right)^{2}+\ldots+\ln \left(2^{n}\right) \cdot\left(\frac{1}{2}\right)^{n+1}+\ldots=(T+H-T+\ldots+n \times H-T+\ldots) \\
& =\sum_{n=0}^{\infty} \ln \left(2^{n}\right) \cdot\left(\frac{1}{2}\right)^{n+1}= & & \\
& =\ln (2) \sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n+1}= & \text { (rememember: } \left.\ln \left(2^{n}\right)=n \cdot \ln (2)\right) \\
& =\ln (2)=0.69 \quad & \text { (the sum equals } 1 \text { - rather difficult to show) }
\end{array}
$$

Bernoulli's Paradox Vs. Utility Theory

$\square \quad$ if we use Bernoulli's logarithmic utility function, and watch expected utility instead of expected payoffs, Bernoulli's paradox ceases to be a paradox
\square consider a utility function $u(x)=\ln (x)$; expected utility is

$$
\begin{array}{rlrl}
\mathrm{E}(u) & =\sum_{x} u(x) \operatorname{Pr}(X=x)= \\
& =\ln (1) \cdot \frac{1}{2}+\ln (2) \cdot\left(\frac{1}{2}\right)^{2}+\ldots+\ln \left(2^{n}\right) \cdot\left(\frac{1}{2}\right)^{n+1}+\ldots=\quad(T+H-T+\ldots+n \times H-T+\ldots) \\
& =\sum_{n=0}^{\infty} \ln \left(2^{n}\right) \cdot\left(\frac{1}{2}\right)^{n+1}= & & \\
& =\ln (2) \sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n+1}= & \text { (rememember: } \left.\ln \left(2^{n}\right)=n \cdot \ln (2)\right) \\
& =\ln (2)=0.69 & \text { (the sum equals } 1-\text { rather difficult to show) }
\end{array}
$$

\rightarrow a rational decision is to sell the ticket for any amount of money that yields greater utility than $\ln (2) \rightarrow \ln (2)<\ln ($ price $) \rightarrow$ e.g. for $€ 2.5$

Bernoulli's Paradox Vs. Utility Theory

\square however, imagine we change the rules in the following way: if a tail first appears after n tosses, the payoff is $\exp \left(2^{n}\right)$
\square the expected utility is:

$$
\begin{aligned}
\mathrm{E}(u) & =\sum_{x} u(x) \operatorname{Pr}(X=x)= \\
& =\sum_{n=0}^{\infty} \ln \left[\exp \left(2^{n}\right)\right] \cdot\left(\frac{1}{2}\right)^{n}= \\
& =\sum_{n=0}^{\infty} 2^{n}\left(\frac{1}{2}\right)^{n}=\sum_{n=0}^{\infty} 1=\infty
\end{aligned}
$$

\square note: for any kind of unbounded and increasing utility function, one can find a modified version of Bernoulli's lottery with infinite expected utility

Criticism of Bernoulli's Paradox

1. people simply do not believe in extremely improbable possibilities (however, they are willing to take part in real lotteries!)
2. the maximum payoff cannot be unlimited - "casino ruining" (no infinite sum = no problem)

payoff limit	expected payoff
$€ 10$	2
$€ 100$	3.5
$€ 1,000$	5
$€ 1,000,000$	10
$1,000,000,000,000,000,000$	20

3. utility cannot be unbounded, as there is a limited amount of scarce resources money can buy (?)

Properties of Typical Utility Functions

\square typically, we assume a utility function $u(x)$ is a smooth function such that...

1. positivity: $\quad u(x)>0$ for $x>0$ (or, sometimes, for $x>1$)
2. non-satiation: $u^{\prime}(x)>0$

- "the more money, the more utility"
- sometimes, this assumption is made even stronger by assuming unboundedness

3. risk aversion: $u^{\prime \prime}(x)<0$

- (for explanation, see next slide)
$\square \quad$ logarithmic utility function: $u(x)=a \ln (x)+c, \quad a>0, c>0$
- positivity: $\quad u(x)$ crosses 0 at x between 0 and 1
- non-satiation: $u^{\prime}(x)=a / x>0$ for $x>0$
- risk aversion: $u^{\prime \prime}(x)=-a / x^{2}<0$

Properties of Typical Utility Functions

Risk aversion

\square risk aversion property merely states that $u(x)$ is concave
\square to see why this results in risk aversion, consider the following situation:
\square Peter, whose utility function is

$$
u(x)=\frac{\ln (x)}{\ln 2}+1
$$

was given a lottery ticket with the following lottery rules:

- a fair coin is flipped:
- heads: player wins $\$ 2$
- tails: player wins $\$ 8$
- the ticket itself can be sold back for $\$ 5$

Properties of Typical Utility Functions (cont'd)

Risk aversion

\square risk aversion property merely states that $u(x)$ is concave
\square to see why this results in risk aversion, consider the following situation:

- Peter, whose utility function is

$$
u(x)=\frac{\ln (x)}{\ln 2}+1
$$

was given a lottery ticket with the following lottery rules:

- a fair coin is flipped:
- heads: player wins $\$ 2$
$(u(2)=2)$
- tails: player wins $\$ 8$
- the ticket itself can be sold back for $\$ 5$
($u(8)=4)$
$(u(5)=3.32)$
- if Peter doesn't sell the ticket:
\square expected payoff: $0.5 \times 2+0.5 \times 8=\$ 5 \quad \rightarrow$ fair lottery
- expected utility: $0.5 \times u(2)+0.5 \times u(8)=\mathbf{3} \rightarrow$ Peter sells

Games against p-Intelligent Players

- real-life players do not often decide the way game theory suggests (i.e., game-theoretical result are not 100\% normative)
\square possible reasons:
\square different levels of information and/or decision skills
- lack of time to analyze and decide
- ...
\square mathematical model that counts in decision-making errors: games with p-intelligent players
\square definition: a player behaving with a probability of p like a normatively intelligent player and with a probability of $1-p$ like a random mechanism will be called a p-intelligent player ($p \in[0,1]$).
- $p=$ the degree of deviation from rationality:
- $p=0 \rightarrow$ a random mechanism
- $p=1 \rightarrow$ a completely rational player
- note: your opponent's p needs to be estimated in advance!

p-Intelligent Players in Matrix Games

\square consider the following matrix game
\square player 1 is normatively intelligent

- player 2 is p-intelligent
- the game's matrix is an $m \times n$ matrix $\boldsymbol{A}=\left(a_{i j}\right)$
- there exist NE strategies $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$
- NE's may be pure or mixed, in either case the strategies $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ will be expressed as vectors (for pure strategies, the vectors look something like $(0,1,0,0,0)^{\top}$)

p-Intelligent Players in Matrix Games

\square consider the following matrix game
\square player 1 is normatively intelligent

- player 2 is p-intelligent
- the game's matrix is an $m \times n$ matrix $\boldsymbol{A}=\left(a_{i j}\right)$
- there exist NE strategies $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$
- NE's may be pure or mixed, in either case the strategies $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ will be expressed as vectors (for pure strategies, the vectors look something like $(0,1,0,0,0)^{\top}$)
\square by definition, player 2 plays a mixed strategy:
- with a probability of p, he/she plays \boldsymbol{y}^{*}
- with a probability of $1-p$, he/she plays $\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)^{\top}$ (random)
- the resulting mixed strategy is

$$
\boldsymbol{s}(p)=p \boldsymbol{y}^{*}+(1-p)\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)^{\top}
$$

p-Intelligent Players in Matrix Games (cont'd)

\square optimal strategy for the intelligent player: pick the row in \boldsymbol{A} that maximizes the expected payoff, given that player 2 uses strategy $\boldsymbol{s}(p)$
\square mathematically: find the maximum element in vector $\boldsymbol{A} \boldsymbol{s}(p)$

Example:

\square NE: $\boldsymbol{x}^{*}=(1,0,0,0)^{\top}, \boldsymbol{y}^{*}=(0,1,0,0)^{\top}$
$\square \boldsymbol{s}(p)=p \boldsymbol{y}^{*}+(1-p)\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{\top}=$

$$
=p\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+(1-p)\left(\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
1-p \\
1+3 p \\
1-p \\
1-p
\end{array}\right)
$$

$1 \backslash 2$	W	X	Y	Z
A	3	3	3	3
B	7	1	7	7
C	3	1	-1	2
D	8	0	8	8

What is the expected payoff of the first-row strategy with $p=0.5$?

p-Intelligent Players in Matrix Games

\square expected $\boldsymbol{A} \boldsymbol{s}(p)$ for different levels of p :

Row	$p=0$	$p=0.2$	$p=0.4$	$p=0.6$	$p=0.8$	$p=1$
A	3	3	3	3	3	3
B	5.5	4.6	3.7	2.8	1.9	1
C	1.25	1.20	1.15	1.10	1.05	1
D	6	4.8	3.6	2.4	1.2	0

\square depending on p, different rows can be optimal:
口 $p \in[0,3 / 9]=[0,0.33] \quad \rightarrow$ row \mathbf{D} is optimal

- $p \in[3 / 9,5 / 9]=[0.33,0.56] \rightarrow$ row \mathbf{B} is optimal
- $p \in[5 / 9,1]=[0.56,1] \quad \rightarrow$ row A is optimal

Excess Function

\square excess function is a function that expresses the average additional player 1's profit due to his deviation from \boldsymbol{x}^{*} (= NE strategy)

Row	$p=0$	$p=0.2$	$p=0.4$	$p=0.6$	$p=0.8$	$p=1$
A	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$
B	5.5	4.6	$\mathbf{3 . 7}$	2.8	1.9	1
C	1.25	1.20	1.15	1.10	1.05	1
D	$\mathbf{6}$	$\mathbf{4 . 8}$	3.6	2.4	1.2	0
excess	$\mathbf{6 - 3}=\mathbf{3}$	$\mathbf{1 . 8}$	$\mathbf{0 . 7}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

\square mathematically: $\quad f(p)=\max [\boldsymbol{A} \boldsymbol{s}(p)]-\boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{s}(p)$

LECTURE 9:

RISK AND UNCERTAINTY (CONT’D), UTILITY THEORY p-INTELLIGENT PLAYERS

Jan Zouhar Games and Decisions

