LECTURE 7:
 COLlUSIVE OLIGOPOLY (CONT’D), COALITION GAMES

Principle of Group Stability

\square imputation: a potential final distribution of payoffs to all players $\left(a_{1}\right.$, $\left.a_{2}, \ldots, a_{N}\right)$
\square a coalition of 2 players is formed only if the total profit can be distributed so that both are better off: $v(1,2) \geq v(1)+v(2)$, or, in other words, there exist a_{1}, a_{2} such that

$$
\begin{aligned}
a_{1}+a_{2} & =v(1,2) \\
a_{1} & \geq v(1) \\
a_{2} & \geq v(2)
\end{aligned}
$$

Principle of Group Stability

\square imputation: a potential final distribution of payoffs to all players $\left(a_{1}\right.$, $\left.a_{2}, \ldots, a_{N}\right)$
\square a coalition of 2 players is formed only if the total profit can be distributed so that both are better off: $v(1,2) \geq v(1)+v(2)$, or, in other words, there exist a_{1}, a_{2} such that

$$
\begin{aligned}
a_{1}+a_{2} & =v(1,2), \\
a_{1} & \geq v(1), \\
a_{2} & \geq v(2)
\end{aligned}
$$

$\square \quad$ similarly, a coalition of m players can be formed only if it pays for all its subcoalitions to take part
\rightarrow principle of group stability: coalition K can be formed only if there exists an imputation that satisfies

$$
\begin{aligned}
& \sum_{i \in K} a_{i}=v(K) \\
& \sum_{i \in L} a_{i} \geq v(L) \quad \text { for all subcoalitions } L \subset K
\end{aligned}
$$

Exercise 1: Group Stability

\square Consider an oligopoly with three firms and the following characteristic function

$$
\begin{aligned}
v(\varnothing) & =0, & v(1,2) & =5.5, \\
v(1) & =2, & v(1,3) & =4, \\
v(2) & =3, & v(2,3) & =5.5, \\
v(3) & =2.5, & v(1,2,3) & =8 .
\end{aligned}
$$

\square which of the four multiplayer coalitions are stable?

- write down the stability conditions explicitly for each of the four coalitions:

$$
\sum_{i \in K} a_{i}=v(K), \quad \sum_{i \in L} a_{i} \geq v(L) \quad \text { for all subcoalitions } L \subset K
$$

- find feasible outcomes a_{i} for the stable coalitions, find colliding inequalities for the unstable ones

Core of the Oligopoly

\square a straightforward extension of the core of a cooperative bimatrix game:
\square definition: a set of all imputations that satisfy

$$
\begin{aligned}
& \sum_{i=1}^{N} a_{i}=v(Q) \\
& \sum_{i \in K} a_{i} \geq v(K) \quad \text { for all coalitions } K
\end{aligned}
$$

\square i.e., core is the set of all imputations that satisfy the principles of:
\square group stability for the grand coalition

- collective rationality - maximum profit is generated
\rightarrow this assumes that the grand coalition generates the maximum total profit
- sometimes defined in a different way for the case where the grand coalition doesn't generate the total profit (complicated) (note: there's always a winning coalition, one that is stable and generates the maximum profit amongst the stable coalitions)

Exercise 2: Core of the Oligopoly

\square Consider an oligopoly with three firms and the following characteristic function

$$
\begin{aligned}
v(\varnothing) & =0, & v(1,2) & =5.5, \\
v(1) & =2, & v(1,3) & =4, \\
v(2) & =3, & v(2,3) & =5.5, \\
v(3) & =2.5, & v(1,2,3) & =x .
\end{aligned}
$$

\square How many imputations are there in the core of the game, given that
a) $x=10$?
b) $x=8$?
c) $x=7.5$?

Note: if there's no imputation in the core, there's an empty core.

Blocking effect

\square consider an oligopoly with three firms:
\square price function

$$
p=f\left(x_{1}+x_{2}+x_{3}\right)=6-\frac{1}{2}\left(x_{1}+x_{2}+x_{3}\right)
$$

- capacities \& costs:

$$
\begin{array}{ll}
X_{1}=[0,6] & c_{1}\left(x_{1}\right)=\frac{1}{2} x_{1}+3 \\
X_{2}=[0,3] & c_{2}\left(x_{2}\right)=\frac{3}{4} x_{2}+2 \\
X_{3}=[0,2] & c_{3}\left(x_{3}\right)=\frac{5}{2} x_{3}+1
\end{array}
$$

\square in the competitive oligopoly setting, the NE is:

- $x_{1}{ }^{*}=4, x_{2}{ }^{*}=3, x_{3}{ }^{*}=0$.
- $\pi_{1}{ }^{*}=5, \pi_{2}{ }^{*}=3.25, \pi_{3}{ }^{*}=-1$.
- 7 units sold at 2.5
\square equilibrium characteristic function:

$$
\begin{array}{lll}
v(1,2,3)=9.125, & x_{1}=5.5, x_{2}=0, x_{3}=0, & 5.5 \text { units sold at } 3.25 \\
v(1,2)=10.125, & x_{1}=5.5, x_{2}=0, x_{3}^{*}=0, & 5.5 \text { units sold at } 3.25
\end{array}
$$

\square on itself, firm 3 always makes a loss \rightarrow typically, leaves the market
\square blocking effect: imagine there are two scenarios

1. firm 3 leaves, firms 1 and 2 collude

- firms 1,2 choose the output of $(1,2)$ coalition, 5.5 units sold at 3.25

2. firm 3 is subsidized, remains in the market, creates competitive environment

- firms 1,2 choose the NE output, 7 units sold at 2.5
\square the difference in consumer surplus is at least

$$
5.5 \times(3.25-2.5)=4.125
$$

- a subsidy of 1 is enough to keep firm 3 on the market
\rightarrow subsidizing firm 3 yields greater consumer surplus, even if the subsidy is paid by the consumers (the increase in consumer surplus is at least $4.125-1=3.125$)
\square blocking effect subsidies are a form of a state regulation

Shapley Value

- a measure of players' negotiating power in making coalitions
- introduced by Lloyd Shapley in 1953
\square the formula is quite nasty, but the idea is quite simple, and so is the calculation for small N
\square imagine that the grand coalition is formed in such a way that players come in random order and gradually form the grand coalition (each newcomer joining the existing coalition)
\square the contribution of player i joining coalition K is defined as

$$
v(K \cup\{i\})-v(K)
$$

\square the Shapley value of player i is the average i 's contribution, the Shapley value is a vector of such average contributions for all players. We are averaging across all possible ways the grand coalition can be formed, i.e. across all possible orderings of players
\square as the players come at random, each ordering of the players is equally likely; therefore, the result can be viewed as the expected contribution of player i

Shapley Value

Example:

$$
\begin{aligned}
v(\varnothing) & =0, & v(1,2) & =5.5, \\
v(1) & =2, & v(1,3) & =4, \\
v(2) & =3, & v(2,3) & =5.5, \\
v(3) & =2.5, & v(1,2,3) & =8 .
\end{aligned}
$$

order	contribution of player $\mathbf{1}$	
$\mathbf{1} 23$	$v(1)-v(\emptyset)=2-0=$	$\mathbf{2}$
132	$v(1)-v(\emptyset)=2-0=$	$\mathbf{2}$
213	$v(1,2)-v(2)=5.5-3=$	$\mathbf{2 . 5}$
$3 \mathbf{1 2}$	$v(1,3)-v(3)=4-2.5=$	$\mathbf{1 . 5}$
$23 \mathbf{1}$	$v(1,2,3)-v(2,3)=8-5.5=$	$\mathbf{2 . 5}$
$32 \mathbf{1}$	$v(1,2,3)-v(2,3)=8-5.5=$	$\mathbf{2 . 5}$
	Shapley value of player $\mathbf{1}=\sum / \mathbf{6}=$	$\mathbf{1 3 / 6}$

Shapley Value

- Mathematically,

$$
\text { Shapley value of } i=\sum_{K \subseteq Q \backslash\{i\}} \frac{|K|!(N-|K|-1)!}{N!}(v(K \cup\{i\})-v(K))
$$

$\|K\|$ positions,	$N-\|K\|-1$ positions,
$\|K\|!$ possible orders	$(N-\|K\|-1)!$ possible orders

N positions,
N ! possible orders

Exercise 3: Shapley values

\square again, consider the oligopoly from exercise 1
\square calculate the Shapley values of player 2 and 3

$$
\begin{aligned}
v(\varnothing) & =0, & v(1,2) & =5.5 \\
v(1) & =2, & v(1,3) & =4, \\
v(2) & =3, & v(2,3) & =5.5 \\
v(3) & =2.5, & v(1,2,3) & =8 .
\end{aligned}
$$

Coalition Games

\square the approach we used for collusive oligopolies can easily be extended to a wider framework of coalition games

- deal with cooperative conflicts
- typically modelled as games in characteristic function form
\square with coalition games, the typical task is to...

1. ... express the characteristic function explicitly

- sometimes, we have only a verbal description (rule) for the coalitions' payoffs

2. ... find the core of the game (defined as in case of oligopolies)
3. ... calculate the Shapley value

Question:

Consider a coalition game with n players. How many different coalitions can player 1 join?
(Remember: we treat the empty and single-member groups as coalitions, too)

Exercise 4: Miners

\square consider a group of n miners who have discovered large bars of gold
\square two miners can carry one piece of gold, so the payoff of coalition K is

$$
v(K)= \begin{cases}|K| / 2, & \text { if }|K| \text { is even } \\ (|K|-1) / 2, & \text { if }|K| \text { is odd }\end{cases}
$$

where $|K|$ denotes the number of members of K.

- what is the core of the game? Assume that...
- n is even
- n is odd

$\square \quad$ what's the Shapley value of a miner in the game?

Exercise 4: Miners

Core of the game:
$\square \quad n$ is even
$\square n=2$: the core is made up by all couples of non-negative a_{1}, a_{2} with the total of 1 (\rightarrow infinite number of imputations)

- a "fair" imputation: $a_{1}=a_{2}=1 / 2$
- $n>2$: core $=$ a single imputation $a_{1}=a_{2}=\ldots=a_{n}=1 / 2$
- first of all, if an imputation is in the core, it has to satisfy

$$
a_{1}+a_{2}+\ldots+a_{n}=\sum_{i=1}^{n} a_{i}=v(Q)=\frac{n}{2}
$$

- second, the stability conditions have to hold for all subcoalitions of the grand coalition (how many subcoalitions exist?)
- we don't have to write down all the conditions, as most of them are quite similar - players have identical conditions

Exercise 4: Miners

- stability conditions for the pairs of player $1+$ player i :

$\left.\begin{array}{rl}a_{1}+a_{2} & \geq 1 \\ a_{1}+a_{3} & \geq 1 \\ \vdots \\ a_{1}+a_{n} & \geq 1\end{array}\right\} n-1$ inequalities

$$
\begin{aligned}
(n-1) a_{1}+a_{2}+\ldots+a_{n} & \geq n-1 \\
(n-2) a_{1}+\sum_{n=1}^{n} a_{i} & \geq n-1 \\
(n-2) a_{1}+v(Q) & \geq n-1 \\
a_{1} & \geq \frac{n-1-v(Q)}{n-2}=\frac{n-1-\frac{n}{2}}{n-2}=\frac{1}{2}
\end{aligned}
$$

\rightarrow the same holds for players $2,3, \ldots, n \rightarrow$ all players get $1 / 2$

Exercise 4: Miners

$\square \quad n$ is odd: the core is empty (!)
\square using the same approach as for even number of players, we obtain:

$$
(n-2) a_{i}+v(Q) \geq n-1
$$

- now $v(Q)=(n-1) / 2$, which yields

$$
a_{i} \geq \frac{1}{n-2} \cdot \frac{n-1}{2}
$$

- if all players receive this amount, the total is

$$
a_{1}+a_{2}+\ldots a_{n}=\frac{n}{n-2} \cdot \frac{n-1}{2}=\frac{n}{n-2} \cdot v(Q)
$$

\square an imputation that satisfies both $a_{1}+a_{2}+\ldots a_{n}=v(Q)$ and the stability conditions doesn't exist

Exercise 5: Shoes

\square for the moment ignore shoe sizes: a pair consists of a left and a right shoe, which can then be sold for $€ 10$ (a single shoe on itself is worthless)
\square consider a coalition game with 2001 players:

- 1000 of them have 1 left shoe
- 1001 of them have 1 right shoe

1. Would you prefer to be a right- or left shoe owner in this game?

- what ratio of profit shares would you expect for a pair of right- and left shoe owners who combine their shoes and sell the pair?

2. Find the characteristic function for a coalition of n left-shoe owners and m right-shoe owners
3. Find the core of the game
\square Is the core empty? If not, are there multiple imputations in the core, or is there just one?

Exercise 5: Shoes

$\square \quad$ characteristic function for a coalition of n left-shoe owners and m rightshoe owners:

$$
v(K)=10 \times \min (m, n)
$$

\square grand coalition: $v(Q)=10,000$
\square stability conditions for pairs: each pair of a right- and left shoe owner must obtain at least $€ 10$ (no requirements for other kinds of pairs)
\square this is only possible when all left shoe owners get $€ 10$, right shoe owners get nothing (!)
\rightarrow criticism of the core concept

LECTURE 7:
 COLlUSIVE OLIGOPOLY (CONT’D), COALITION GAMES

