LECTURE 6:
Oligopoly

Jan Zouhar Games and Decisions

Market Structures

\square the list of basic market structure types (seller-side types only):

	Number of sellers	Seller entry barriers	Deadweight loss
Perfect competition	Many	No	None
Monopolistic competition	Many	No	None
Oligopoly	Few	Yes	Medium
Monopoly	One	Yes	High

Jan Zouhar

Collusive vs. Non-Collusive Oligopolies

- note: oligopoly differs from monopoly (allocation-wise) only if there's no collusion
- collusion: a largely illegal form of cooperation amongst the sellers that includes price fixing, market division, total industry output control, profit division, etc.
- controlled by competition/anti-trust laws
- well-known collusion cases: OPEC, telecommunication, drugs, sports, chip dumping (poker)
\square game-theoretical models:
\square cooperative setting (collusive oligopoly) \rightarrow coalition theory
- games in the characteristic-function form
\square non-cooperative setting (competitive, non-collusive oligopoly) \rightarrow normal form game analysis
- NE's etc.; however, matrices can't typically be used for payoffs

Oligopoly - Model Specification

\square to make the analysis simple, we'll make several assumptions:

1. single-product model: oligopolists produce a single type of homogenous product
2. one strategic variable: firms decide about prices or output levels
3. static model: single-period analysis only

- in dynamic models, there are more diverse strategic options: elimination of competitors even with contemporary losses etc.

4. single objective: all firms maximize their individual profit

Three basic non-cooperative oligopoly models:

- Bertrand oligopoly - firms simultaneously choose prices
- Cournot oligopoly - firms simultaneously choose quantities
- Stackelberg oligopoly - firms choose quantities sequentially
- note: sequential-move games are typically not modelled as normal-form games. Instead, we use the extensive-form approach (not this lecture).

Bertrand Duopoly

\square Bertrand duopoly (2 oligopolists only) - model notation:

- market demand function: $\quad q=D(p)$
\square prices charged by the players: $\quad p_{1}, p_{2}$
- resulting quantities: $\quad q_{1}, q_{2}$
- unit costs: $\quad c_{1}, c_{2} \quad$ (for simplicity: $A C=M C=c$)
\square homogenous product \rightarrow lower price attracts all the consumers
- $p_{1}<p_{2} \rightarrow q_{1}=D\left(p_{1}\right), \quad q_{2}=0$
- $p_{1}>p_{2} \rightarrow q_{1}=0, \quad q_{2}=D\left(p_{2}\right)$
- $p_{1}=p_{2} \rightarrow$ equal market share, $q_{1}=q_{2}=1 / 2 D\left(p_{1}\right)=1 / 2 D\left(p_{2}\right)$
\square as long as the prices are higher than c_{1} and c_{2}, both oligopolists tend to push prices down (below the other player's price)
- imagine the prices are equal and above c_{1}; by lowering the price just slightly, player 1 can gain the whole market (if p_{2} stays the same)
- best response of player 1 to p_{2} is to choose $p_{1}=p_{2}-\varepsilon$ ("just below" p_{2}) (until the prices reach $c_{1} \rightarrow$ player 1 suffers a loss below)

Bertrand Duopoly

- NE depends on the $M C$ of the players:
$\square c_{1}=c_{2} \rightarrow p_{1}^{*}=p_{2}^{*}=c_{1}=c_{2}$
\rightarrow zero economic profit for both
$\square c_{1}<c_{2} \rightarrow p_{1}^{*}=c_{2}-\varepsilon$
\rightarrow player 1 wins all, positive profit
$\square c_{1}>c_{2} \rightarrow p_{2}^{*}=c_{1}-\varepsilon$
\rightarrow player 2 wins all, positive profit
\square more precisely: graphical best-response analysis - reaction curves:

Bertrand Duopoly

\rightarrow price competition leads to fairly efficient allocation
Critique of the Bertrand model (or, when Bertrand model fails to work)
\square capacity constraints of production

- e.g., consider the $c_{1}<c_{2}$ situation: if player 1 can't supply enough for the whole market, player 2 can still charge p_{2} above c_{2} and attract some customers (and achieve a positive profit)
\square if $c_{1}=c_{2}$ and neither player can supply to all customers, either player can raise the output price above c
\square lack of product homogeneity (homogeneity disputable in most cases)
\square transaction/transportation costs:
\square may differ for the specific customer-firm interactions
- e.g., shops at both ends of a street: people tend to pick the closer one
- if transportation costs are accounted for, the consumer expenditures vary even if prices are equal

Cournot Oligopoly - Formal Treatment

\square model type - normal-form game with the following elements:

- list of firms:

$$
\begin{array}{r}
1,2, \ldots, N \\
X_{1}, X_{2}, \ldots, X_{N}
\end{array}
$$

- strategy spaces:
- potential quantities: typically intervals like $[0,1000] \rightarrow$ infinite alternatives!
- the output level produced by $i^{\text {th }}$ player (the strategy adopted) is denoted x_{i}
- a strategy profile is an N-tuple: (where $x_{i} \in X_{i}$)
- cost functions:

$$
c_{1}\left(x_{1}\right), c_{2}\left(x_{2}\right), \ldots, c_{N}\left(x_{N}\right)
$$

- total cost as the function of output level
\square price function (or inverse demand function): $p=f\left(x_{1}+x_{2}+\ldots+x_{N}\right)$
- i.e., market price is the function of total industry output
\square profit of $i^{\text {th }}$ firm: $\quad \pi_{i}\left(x_{1}, \ldots, x_{N}\right)=T R_{i}-T C_{i}=x_{i} \times f\left(x_{1}+\ldots+x_{N}\right)-c_{i}\left(x_{i}\right)$

Nash Equilibrium in Cournot Oligopoly

- mathematical definition:

A strategy profile $\left(x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots, x_{N}{ }^{*}\right)$ is a NE if for all $i=1, \ldots, N$

$$
\pi_{i}\left(x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots, x_{i}, \ldots, x_{N}{ }^{*}\right) \leq \pi_{i}\left(x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots, x_{i}{ }^{*}, \ldots, x_{N}{ }^{*}\right)
$$

holds for all $x_{i} \in X_{i}$.
\square finding the NE: best-response approach (again)

- NE: the strategies have to be the best responses to one another
\square best-response functions:
- for player 1: $r_{1}\left(x_{2}, \ldots, x_{\mathrm{N}}\right)$ is the best-response x_{1} chosen by player 1 , given that the other player's quantities are $x_{2}, \ldots, x_{\mathrm{N}}$
- mathematically: $r_{1}\left(x_{2}, \ldots x_{N}\right)=\arg \max \pi_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$$
x_{1} \in X_{1}
$$

- NE: $x_{i}{ }^{*}=r_{i}\left(x_{1}{ }^{*}, \ldots, x_{i-1}{ }^{*}, x_{i+1}{ }^{*}, \ldots, x_{N}{ }^{*}\right)$ for $i=1, \ldots, N$

Example 1: Cournot Duopoly

\square price function: $p=f\left(x_{1}+x_{2}\right)=100-\left(x_{1}+x_{2}\right)$
\square other characteristics: $X_{1}=[0,+\infty) \quad c_{1}\left(x_{1}\right)=150+12 x_{1}$

$$
X_{2}=[0,+\infty) \quad c_{2}\left(x_{2}\right)=x_{2}^{2}
$$

\square profit functions: $\pi_{1}\left(x_{1}, x_{2}\right)=x_{1} \times f\left(x_{1}+x_{2}\right)-c_{1}\left(x_{1}\right)=$

$$
\begin{aligned}
& =x_{1} \times\left[100-\left(x_{1}+x_{2}\right)\right]-\left(150+12 x_{1}\right)= \\
& =100 x_{1}-x_{1}^{2}-x_{1} x_{2}-150-12 x 1= \\
& =88 x_{1}-x_{1}^{2}-x_{1} x_{2}-150 \\
\pi_{2}\left(x_{1}, x_{2}\right) & =\ldots=100 x_{2}-2 x_{2}^{2}-x_{1} x_{2}
\end{aligned}
$$

\square best response of player 1 to x_{2} : profit-maximizing (π_{1}-maximizing) value of x_{1} for the given x_{2}

Example 1: Cournot Duopoly

profit of player 1 for three different levels of x_{2} :

\square best response for an arbitrary level of x_{2} : as the function $\pi_{1}\left(x_{1}, x_{2}\right)$ is strictly concave in x_{1} for any x_{2}, we can use the first-order condition for a local extreme

$$
\frac{\partial \pi_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=88-2 x_{1}-x_{2} \stackrel{!}{=} 0
$$

Note: first order conditions are generally not sufficient for a maximum, only necessary conditions for extreme (but: concave function \rightarrow global maximum)

Example 1: Cournot Duopoly

$\square \quad$ we can also write the result in terms of the reaction function r_{1} :

$$
\frac{\partial \pi_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=88-2 x_{1}-x_{2} \stackrel{!}{=} 0 \Rightarrow x_{1}=r_{1}\left(x_{2}\right)=44-\frac{x_{2}}{2}
$$

\square similarly, for player 2, we obtain:

$$
\frac{\partial \pi_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=100-x_{1}-4 x_{2} \stackrel{!}{=} 0 \Rightarrow x_{2}=r_{2}\left(x_{1}\right)=25-\frac{x_{1}}{4}
$$

\square altogether, we have 2 linear equations; for NE strategies, both have to hold at the same time \rightarrow in order to find the NE, we just need to solve

$$
\begin{array}{r}
88-2 x_{1}{ }^{*}-x_{2}{ }^{*}=0 \\
100-x_{1}{ }^{*}-4 x_{2}{ }^{*}=0
\end{array} \quad \text { or } \quad \begin{aligned}
& x_{1}^{*}=r_{1}\left(x_{2}{ }^{*}\right) \\
& x_{2}{ }^{*}=r_{2}\left(x_{1}{ }^{*}\right)
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{1}{ }^{*}=36 \\
& x_{2}{ }^{*}=16
\end{aligned}
$$

Question:

What are the equilibrium profits and price?

Collusive Oligopoly

- model framework: as in case of Cournot oligopoly, only that players can form coalitions
\square coalition: a group of firms that coordinate output levels and redistribute profits
\square grand coalition: the coalition of all oligopolists, $Q=\{1,2, \ldots, N\}$
- other coalitions are denoted by K, L, \ldots
- a "single-firm coalition" is still called a coalition, e.g. $K=\{2\}$, and so is the "empty coalition" $\{\varnothing\}$

Question:

How many different coalitions can be formed with N firms?
$\square \quad$ characteristic function (of the oligopoly): a function $v(K)$ that assigns to any coalition K the maximum attainable total profit of K

- payoff function: single player, individual payoff, for a given strategy profile
- characteristic function: coalition, sum of members' profits, max. attainable

Collusive Oligopoly

\square characteristic function for grand coalition:

$$
v(Q)=\max _{\left(x_{1}, \ldots, x_{N}\right)} \sum_{i=1}^{N} \pi_{i}\left(x_{1}, \ldots, x_{N}\right)
$$

\square characteristic function for other coalitions: profit of coalition members depends on the quantity chosen by non-members
\rightarrow what will the other players do? (Generally, difficult to say.)

1. minimax characteristic function: assume non-members supply as much as they can (up to their capacity constraints)
2. equilibrium characteristic function: assume the other players choose the NE quantities
\square characteristic function for an arbitrary coalition:

$$
v(K)=\max _{\left(x_{i}\right)_{i \in K}} \sum_{i \in K} \pi_{i}\left(x_{1}, \ldots, x_{N}\right)
$$

Example 2: Collusive Duopoly

\square consider the same duopoly as in example 1, only with capacity constraints:
\square price function:

$$
\left.\begin{array}{rl}
p & =f\left(x_{1}+x_{2}\right)=100-\left(x_{1}+x_{2}\right) \\
X_{1} & =[0,40] \\
X_{2} & =[0,20]
\end{array} \quad c_{1}\left(x_{1}\right)=150+1\right)
$$

- other characteristics: $\quad X_{1}=[0,40] \quad c_{1}\left(x_{1}\right)=150+12 x_{1}$
\square profit functions: $\quad \pi_{1}\left(x_{1}, x_{2}\right)=88 x_{1}-x_{1}^{2}-x_{1} x_{2}-150$

$$
\pi_{2}\left(x_{1}, x_{2}\right)=100 x_{2}-2 x_{2}^{2}-x_{1} x_{2}
$$

\square first, we'll find the equilibrium characteristic function:

- we already know the NE values: $x_{1}{ }^{*}=36 \quad \pi_{1}{ }^{*}=1146$

$$
x_{2}{ }^{*}=16 \quad \pi_{2}{ }^{*}=512
$$

\square immediately, we have: $v(1)=\max _{x_{1} \in X_{1}} \pi_{1}\left(x_{1}, 16\right)=\pi_{1}(36,16)=1146$

$$
v(2)=\max _{x_{2} \in X_{2}} \pi_{2}\left(36, x_{2}\right)=\pi_{2}(36,16)=512
$$

Example 2: Collusive Duopoly

- for grand coalition $Q=\{1,2\}$, we obtain:

$$
\begin{aligned}
v(1,2) & =\max _{\left(x_{1}, x_{2}\right)} \pi_{1}\left(x_{1}, x_{2}\right)+\pi_{2}\left(x_{1}, x_{2}\right)= \\
& =\max _{\left(x_{1}, x_{2}\right)} 88 x_{1}+100 x_{2}-x_{1}^{2}-2 x_{2}^{2}-2 x_{1} x_{2}-150
\end{aligned}
$$

- function of two variables now, but still concave (see next slide)
\rightarrow first-order conditions (both partial derivatives equal zero)

$$
\left.\begin{array}{l}
\frac{\partial \pi_{1,2}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=88-2 x_{1}-2 x_{2}=0 \\
\frac{\partial \pi_{1,2}\left(x_{1}, x_{2}\right)}{\partial x_{0}}=100-2 x_{1}-4 x_{2}=0
\end{array} \quad \Rightarrow \quad \begin{array}{l}
x_{1}^{\mathrm{opt}}=38 \\
x_{2}^{\mathrm{opt}}=6
\end{array}\right\} \pi_{1,2}^{\mathrm{opt}}=1822
$$

- $v(Q)=v(1,2)=1822$

Example 2: Collusive Duopoly

first-order conditions: necessary conditions for local extremes (not sufficient, not for maxima only!)

Example 2: Collusive Duopoly

\square the complete equilibrium characteristic function is as follows:

$$
\begin{aligned}
v(\varnothing) & =0 \\
v(1) & =1146 \\
v(2) & =512 \\
v(1,2) & =1822
\end{aligned}
$$

- minimax characteristic function:
- $v(\varnothing)$ and $v(1,2)$ are the same as in the equilibrium char. function
\square for $v(1)$ and $v(2)$, we calculate the players' profits under the condition that the other player produces up to his/her capacity constraint:

$$
\begin{aligned}
& v(1)=\max _{x_{1} \in X_{1}} \pi_{1}\left(x_{1}, 20\right)=\max _{x_{1} \in X_{1}} 68 x 1-x_{1}^{2}-150=\pi_{1}(34,20)=1006 \\
& v(2)=\max _{x_{2} \in X_{2}} \pi_{2}\left(40, x_{2}\right)=\max _{x_{2} \in X_{2}} 60 x_{2}-2 x_{2}^{2}=\pi_{2}(40,15)=450
\end{aligned}
$$

Example 2: Collusive Duopoly

\square a comparison of the two characteristic functions:

	equilibrium	minimax
$v(\varnothing)$	0	0
$v(1)$	1146	1006
$v(2)$	512	450
$v(1,2)$	1822	1822
$v(1,2)-v(1)-v(2)$	164	366

\square core of the oligopoly: a division of payoffs a_{1}, a_{2} such that

$$
\begin{aligned}
& a_{1}+a_{2}=1822, \\
& a_{1}+a_{2}=1822 \text {, } \\
& a_{1} \geq 1146, \quad \text { or } \quad a_{1} \geq 1006 \text {, } \\
& a_{2} \geq 512 \text {, } \\
& a_{2} \geq 450 \text {. }
\end{aligned}
$$

LECTURE 6:
Oligopoly

Jan Zouhar Games and Decisions

