LECTURE 6: OLIGOPOLY

Jan Zouhar Games and Decisions

Market Structures

□ the list of basic market structure types (seller-side types only):

	Number of sellers	Seller entry barriers	Deadweight loss
Perfect competition	Many	No	None
Monopolistic competition	Many	No	None
Oligopoly	Few	Yes	Medium
Monopoly	One	Yes	High

Games and Decisions

Market quantity with price ceiling Quantity

Collusive vs. Non-Collusive Oligopolies

- note: oligopoly differs from monopoly (allocation-wise) only if there's no collusion
 - collusion: a largely illegal form of cooperation amongst the sellers that includes price fixing, market division, total industry output control, profit division, etc.
 - controlled by competition/anti-trust laws
 - well-known collusion cases: OPEC, telecommunication, drugs, sports, chip dumping (poker)
- □ game-theoretical models:
 - cooperative setting (*collusive oligopoly*) \rightarrow coalition theory
 - games in the characteristic-function form
 - non-cooperative setting (*competitive*, *non-collusive oligopoly*) → normal form game analysis
 - NE's etc.; however, matrices can't typically be used for payoffs

Oligopoly – Model Specification

- to make the analysis simple, we'll make several assumptions:
- 1. *single-product model*: oligopolists produce a single type of *homogenous* product
- 2. one strategic variable: firms decide about prices or output levels
- *3. static model*: single-period analysis only
 - in dynamic models, there are more diverse strategic options: elimination of competitors even with contemporary losses etc.
- 4. single objective: all firms maximize their individual profit

Three basic non-cooperative oligopoly models:

- *Bertrand* oligopoly firms simultaneously choose prices
- *Cournot* oligopoly firms simultaneously choose quantities
- □ *Stackelberg* oligopoly firms choose quantities sequentially
 - note: sequential-move games are typically not modelled as normal-form games. Instead, we use the extensive-form approach (not this lecture).

Bertrand Duopoly

- □ Bertrand duopoly (2 oligopolists only) model notation:
 - **•** market demand function: q = D(p)
 - $\hfill\square$ prices charged by the players: p_1, p_2
 - **\square** resulting quantities: q_1, q_2
 - unit costs: c_1, c_2 (for simplicity: AC = MC = c)
- $\hfill\square$ homogenous product \rightarrow lower price attracts all the consumers

 - $\square p_1 = p_2 \rightarrow \text{equal market share, } q_1 = q_2 = \frac{1}{2} D(p_1) = \frac{1}{2} D(p_2)$
- as long as the prices are higher than c_1 and c_2 , both oligopolists tend to push prices down (below the other player's price)
 - imagine the prices are equal and above c₁; by lowering the price just slightly, player 1 can gain the whole market (if p₂ stays the same)
 - best response of player 1 to p_2 is to choose $p_1 = p_2 \varepsilon$ ("just below" p_2) (until the prices reach $c_1 \rightarrow$ player 1 suffers a loss below)

Games and Decisions

Bertrand Duopoly

 \square NE depends on the *MC* of the players:

$$c_1 = c_2 \rightarrow p_1^* = p_2^* = c_1 = c_2$$

$$c_1 < c_2 \rightarrow p_1^* = c_2 - \varepsilon$$

$$c_1 > c_2 \rightarrow p_2^* = c_1 - \varepsilon$$

→ zero economic profit for both
→ player 1 wins all, positive profit
→ player 2 wins all, positive profit

□ more precisely: graphical best-response analysis – reaction curves:

Games and Decisions

(cont'd)

Bertrand Duopoly

(cont'd)

 \rightarrow price competition leads to fairly efficient allocation

Critique of the Bertrand model (or, when Bertrand model fails to work)

- capacity constraints of production
 - e.g., consider the $c_1 < c_2$ situation: if player 1 can't supply enough for the whole market, player 2 can still charge p_2 above c_2 and attract some customers (and achieve a positive profit)
 - if c₁ = c₂ and neither player can supply to all customers, either player can raise the output price above c
- lack of product homogeneity (homogeneity disputable in most cases)
- transaction/transportation costs:
 - may differ for the specific customer-firm interactions
 - e.g., shops at both ends of a street: people tend to pick the closer one
 - if transportation costs are accounted for, the consumer expenditures vary even if prices are equal

Games and Decisions

Cournot Oligopoly – Formal Treatment

- model type normal-form game with the following elements:
 - list of firms:
 - strategy spaces:
 - potential quantities: typically intervals like [0,1000] → *infinite* alternatives!
 - the output level produced by *i*th player (the strategy adopted) is denoted *x_i*
 - a **strategy profile** is an *N*-tuple: (where $x_i \in X_i$)
 - cost functions:
 - total cost as the function of output level
 - **price function** (or **inverse demand** function): $p = f(x_1 + x_2 + ... + x_N)$
 - i.e., market price is the function of total industry output
- **profit** of *i*th firm: $\pi_i(x_1,...,x_N) = TR_i TC_i = x_i \times f(x_1 + ... + x_N) c_i(x_i)$

Jan Zouhar

 $(x_1, x_2, ..., x_N)$

$$c_1(x_1), c_2(x_2), \dots, c_N(x_N)$$

1,2,...,N $X_1, X_2,...,X_N$

Nash Equilibrium in Cournot Oligopoly

mathematical definition:

A strategy profile $(x_1^*, x_2^*, ..., x_N^*)$ is a NE if for all i = 1, ..., N

 $\pi_i(x_1^*, x_2^*, \dots, x_i, \dots, x_N^*) \le \pi_i(x_1^*, x_2^*, \dots, x_i^*, \dots, x_N^*)$

holds for all $x_i \in X_i$.

- □ finding the NE: best-response approach (again)
 - **D** NE: the strategies have to be the best responses to one another
 - best-response functions:
 - for player 1: $r_1(x_2,...,x_N)$ is the best-response x_1 chosen by player 1, given that the other player's quantities are $x_2,...,x_N$
 - mathematically: $r_1(x_2,...x_N) = \underset{x_1 \in X_1}{\operatorname{arg\,max}} \pi_i(x_1,x_2,...,x_N)$

• NE:
$$x_i^* = r_i(x_1^*, ..., x_{i-1}^*, x_{i+1}^*, ..., x_N^*)$$
 for $i = 1, ..., N$

Example 1: Cournot Duopoly

- 10
- □ price function: $p = f(x_1 + x_2) = 100 (x_1 + x_2)$
- other characteristics: $X_1 = [0, +\infty)$ $c_1(x_1) = 150 + 12x_1$ $X_2 = [0, +\infty)$ $c_2(x_2) = x_2^2$
- □ best response of player 1 to x_2 : profit-maximizing (π_1 -maximizing) value of x_1 for the given x_2

Games and Decisions

Example 1: Cournot Duopoly

(cont'd)

□ profit of player 1 for three different levels of x_2 :

□ best response for an arbitrary level of x_2 : as the function $\pi_1(x_1, x_2)$ is *strictly concave* in x_1 for any x_2 , we can use the first-order condition for a local extreme

$$\frac{\partial \pi_1(x_1, x_2)}{\partial x_1} = 88 - 2x_1 - x_2 \stackrel{!}{=} 0$$

Games and Decisions

Note: first order conditions are generally not sufficient for a maximum, only necessary conditions for extreme (but: concave function \rightarrow global maximum)

Example 1: Cournot Duopoly

(cont'd)

- 13
- we can also write the result in terms of the *reaction function* r_1 :

$$\frac{\partial \pi_1(x_1, x_2)}{\partial x_1} = 88 - 2x_1 - x_2 \stackrel{!}{=} 0 \implies x_1 = r_1(x_2) = 44 - \frac{x_2}{2}$$

 \Box similarly, for player 2, we obtain:

$$\frac{\partial \pi_2(x_1, x_2)}{\partial x_2} = 100 - x_1 - 4x_2 = 0 \implies x_2 = r_2(x_1) = 25 - \frac{x_1}{4}$$

□ altogether, we have 2 linear equations; for NE strategies, both have to hold at the same time \rightarrow in order to find the NE, we just need to solve

$$\begin{array}{cccc} 88 - 2x_1^* - x_2^* = 0 & & x_1^* = r_1(x_2^*) \\ 100 - x_1^* - 4x_2^* = 0 & & x_2^* = r_2(x_1^*) \end{array} \implies \begin{array}{c} x_1^* = 36 \\ x_2^* = r_2(x_1^*) & & x_2^* = 16 \end{array}$$

Question: What are the equilibrium profits and price?

Games and Decisions

Collusive Oligopoly

- *model framework*: as in case of Cournot oligopoly, only that players can form coalitions
- coalition: a group of firms that coordinate output levels and redistribute profits
- **grand coalition**: the coalition of all oligopolists, $Q = \{1, 2, ..., N\}$
 - other coalitions are denoted by *K*,*L*,...
 - a "single-firm coalition" is still called a coalition, e.g. K = {2}, and so is the "empty coalition" {Ø}

Question:

How many different coalitions can be formed with N firms?

- **characteristic function** (of the oligopoly): a function v(K) that assigns to any coalition K the maximum attainable total profit of K
 - *payoff function*: single player, individual payoff, for a given strategy profile
 - *characteristic function*: coalition, sum of members' profits, max. attainable

Games and Decisions

Collusive Oligopoly

characteristic function for grand coalition:

$$v(Q) = \max_{(x_1,...,x_N)} \sum_{i=1}^N \pi_i(x_1,...,x_N)$$

- characteristic function for other coalitions: profit of coalition members depends on the quantity chosen by non-members
- \rightarrow what will the other players do? (Generally, difficult to say.)
- **1. minimax characteristic function**: assume non-members supply as much as they can (up to their capacity constraints)
- 2. equilibrium characteristic function: assume the other players choose the NE quantities
- characteristic function for an arbitrary coalition:

$$v(K) = \max_{(x_i)_{i \in K}} \sum_{i \in K} \pi_i(x_1, ..., x_N)$$

Games and Decisions

Jan Zouhar

(cont'd)

- consider the same duopoly as in example 1, only with capacity constraints:
 - □ price function: $p = f(x_1 + x_2) = 100 (x_1 + x_2)$
 - other characteristics: $X_1 = \begin{bmatrix} 0, 40 \end{bmatrix}$ $c_1(x_1) = 150 + 12x_1$ $X_2 = \begin{bmatrix} 0, 20 \end{bmatrix}$ $c_2(x_2) = x_2^2$
 - profit functions: $\pi_1(x_1, x_2) = 88x_1 x_1^2 x_1x_2 150$ $\pi_2(x_1, x_2) = 100x_2 - 2x_2^2 - x_1x_2$
- first, we'll find the *equilibrium characteristic function*:
 we already know the NE values: $x_1^* = 36$ $\pi_1^* = 1146$ $x_2^* = 16$ $\pi_2^* = 512$
 - immediately, we have: $v(1) = \max_{x_1 \in X_1} \pi_1(x_1, 16) = \pi_1(36, 16) = 1146$ $v(2) = \max_{x_2 \in X_2} \pi_2(36, x_2) = \pi_2(36, 16) = 512$

Games and Decisions

• for grand coalition $Q = \{1, 2\}$, we obtain:

$$v(1,2) = \max_{(x_1,x_2)} \pi_1(x_1,x_2) + \pi_2(x_1,x_2) =$$
$$= \max_{(x_1,x_2)} 88x_1 + 100x_2 - x_1^2 - 2x_2^2 - 2x_1x_2 - 150$$

■ function of *two variables* now, but still concave (see next slide) \rightarrow *first-order conditions* (both partial derivatives equal zero)

$$\frac{\partial \pi_{1,2}(x_1, x_2)}{\partial x_1} = 88 - 2x_1 - 2x_2 = 0$$

$$\frac{\partial \pi_{1,2}(x_1, x_2)}{\partial x_2} = 100 - 2x_1 - 4x_2 = 0$$

$$\stackrel{!}{\Rightarrow} x_1^{\text{opt}} = 38$$

$$x_2^{\text{opt}} = 6$$

$$\frac{\partial \pi_{1,2}(x_1, x_2)}{\partial x_2} = 100 - 2x_1 - 4x_2 = 0$$

•
$$v(Q) = v(1,2) = 1822$$

Games and Decisions

Games and Decisions

Jan Zouhar

(cont'd)

Games and Decisions

20

□ the complete *equilibrium characteristic function* is as follows:

 $v(\emptyset) = 0$ v(1) = 1146 v(2) = 512v(1,2) = 1822

- □ *minimax characteristic function*:
 - $v(\emptyset)$ and v(1,2) are the same as in the equilibrium char. function
 - for v(1) and v(2), we calculate the players' profits under the condition that the other player produces up to his/her capacity constraint:

$$v(1) = \max_{x_1 \in X_1} \pi_1(x_1, 20) = \max_{x_1 \in X_1} 68x1 - x_1^2 - 150 = \pi_1(34, 20) = 1006$$

$$v(2) = \max_{x_2 \in X_2} \pi_2(40, x_2) = \max_{x_2 \in X_2} 60x_2 - 2x_2^2 = \pi_2(40, 15) = 450$$

Games and Decisions

21

a comparison of the two characteristic functions:

	equilibrium	minimax
$v(\mathbf{\emptyset})$	0	0
v(1)	1146	1006
v(2)	512	450
v(1,2)	1822	1822
v(1,2) - v(1) - v(2)	164	366

 \Box core of the oligopoly: a division of payoffs a_1, a_2 such that

$$\begin{array}{ll} a_1 + a_2 = 1822, & a_1 + a_2 = 1822, \\ a_1 \geq 1146, & \text{or} & a_1 \geq 1006, \\ a_2 \geq 512, & a_2 \geq 450. \end{array}$$

(cont'd)

LECTURE 6: OLIGOPOLY

Jan Zouhar Games and Decisions