LECTURE 5:
AUCTIONS

Jan Zouhar Games and Decisions

Auctions - A Brief History

\square auctions: an alternative to take-it-or-leave-it pricing, competition of potential buyers

Babylonian empire (500 BC): auctions of women for marriage
Roman empire: auctions to liquidate the assets of debtors whose property had been confiscated
$17^{\text {th }}-18^{\text {th }}$ century, Europe: auctions to sell pieces of art, the birth of many auction houses that still work today:

- 1674: Stockholm Auction House
- 1744: Sotheby's
- 1766: Christie's
- ...

Today: online auctions for all kinds of things (eBay, eBid, Aukro,...)

Types of Auctions

Famous types of auctions:

\square English auction (a.k.a. open ascending price auction)

- the most widespread auction type (the typical art auctions)
- open bidding, bidders know the others' bids
- various rule modifications (ending rules - e.g. "auction by candle")
- Dutch auction (a.k.a. open descending price auction)
\square the auctioneer cries out gradually descending price bids, the first one to accept the price is the buyer
- cut flower sales in the Netherlands, perishable goods (fish, tobacco)
\square Envelope auction (a.k.a. first-price sealed-bid auctions)
\square bidders can only submit one bid each (typically, in a sealed envelope)
\square the sale of real estate and securities (used a lot in the postcummunist countries)
$\square \quad$ Vickrey auction (a.k.a. second-price sealed-bid auctions)
- "designed" by William Vickrey in 1961
- used to auction off collectible stamps

Basic classification of auction rules:

\square ascending/descending

- the direction of bid increments
\square open/sealed-bid
\square open - bidders submit the bids publicly and after one another
- sealed-bid - bidders submit the bids secretly and simultaneously
- first-price/second-price
- winner pays the highest/second-highest bid
\square single object / multi-object auction
\square number of objects auctioned at the same time
\square reserve/no-reserve
\square the seller can state a reserve price - the minimum price of the auctioned object
- no-reserve auctions - can attract more bidders (?)

Some other auction types:

- All-Pay Auctions
- used for charity auctions
\square various schemes (paying all bids or paying all increments + the whole of the winning bid)
- Auctions with Buyout Option
- the seller can state a buyout price - for immediate purchase
- Combinatorial Auctions
- multi-object auctions, bidding for bundles of objects
- ferry lines, airport landing slots (it only makes sense to have bundles)
- winner determination problem, preference expression problems
\square Online Timeshift Auctions
- fixed-time English type
- aim: make bidders bid before the closing timeshift interval

Multi-Object Sealed-Bid Auctions

Basic auction rules:

\square bidders submit one bid each
\square bids are sealed (= secret) and simultaneous
\square first-price auction (winner pays the highest bid)

Additional assumptions (for mathematical modelling):
\square two bidders only (can be relaxed easily; however, we want to use bimatrix games as the modelling tool); bidders = investor 1 and 2
\square investors possess information about the subjective value of each of the n auctioned objects: $s_{1}, s_{2}, \ldots, s_{n}$
\square total amounts the bidders intend to invest are known: I_{1}, I_{2}
\square there's a reserve price for each object: $d_{1}, d_{2}, \ldots, d_{n}$ (we assume that $s_{i} \geq d_{i}$ for $i=1,2, \ldots, n$)
\square in case of equal non-zero bids, the object in question is sold to each of the investors with a probability of $1 / 2$ (a fair lottery)

Multi-Object Sealed-Bid Auctions

Modelling the auction as a normal-form game:
\square strategy spaces of the players:

$$
\begin{aligned}
& X=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; \sum_{i=1}^{n} x_{i}=I_{1}, x_{i} \in\left[d_{i}, s_{i}\right] \cup\{0\}\right\} \\
& Y=\left\{\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) ; \sum_{i=1}^{n} y_{i}=I_{2}, y_{i} \in\left[d_{i}, s_{i}\right] \cup\{0\}\right\}
\end{aligned}
$$

Multi-Object Sealed-Bid Auctions

Modelling the auction as a normal-form game:

\square strategy spaces of the players:

$$
\begin{gathered}
X=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; \sum_{i=1}^{n} x_{i}=I_{1}, x_{i} \in\left[d_{i}, s_{i}\right] \cup\{0\}\right\} \\
Y=\left\{\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) ; \sum_{i=1}^{n} y_{i}=I_{2}, y_{i} \in\left[d_{i}, s_{i}\right] \cup\{0\}\right\} \\
y_{i}=\text { player } 2 \text { 's bid for object } i
\end{gathered}
$$

it makes sense to bid either 0, or anything between the reserve price and the value of the object

Multi-Object Sealed-Bid Auctions

$\square \quad$ in general, these strategy spaces can be infinite
\square however, it is usually required that the bids must be an integer multiple of a specified monetary unit \rightarrow finite strategy spaces (which enables the bimatrix approach)

Example 1:

\square three objects $(n=3)$
\square values: $s_{1}=40, s_{2}=22, s_{3}=20$

- reserve price 10 for all objects

$$
\left(d_{1}=d_{2}=d_{3}=10\right)
$$

\square total investment: $I_{1}=20, I_{2}=10$

$s_{1}=40$

$s_{2}=22$

$s_{3}=20$
\square bids must be integer multiples of 10
\square strategy spaces (expressed in multiples of 10 for brevity):

$$
\begin{array}{ll}
X=\{(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)\} & \leftarrow 6 \text { pure strategies, sum }=2 \\
Y=\{(1,0,0),(0,1,0),(0,0,1)\} & \leftarrow 3 \text { pure strategies, sum }=1
\end{array}
$$

Multi-Object Sealed-Bid Auctions

- payoff functions:
- in order to formulate the payoff functions for both players, we introduce the following functions:

$$
\alpha(x, y)= \begin{cases}1 & \text { for } x>y \\ \frac{1}{2} & \text { for } x=y \\ 0 & \text { for } x<y \text { or } x=y=0\end{cases}
$$

$$
\beta(x, y)= \begin{cases}1 & \text { for } x<y \\ \frac{1}{2} & \text { for } x=y \\ 0 & \text { for } x>y \text { or } x=y=0\end{cases}
$$

- note: $\alpha\left(x_{i}, y_{i}\right)$ is the probability of player 1 obtaining object i
$\beta\left(x_{i}, y_{i}\right)$ is the probability of player 2 obtaining object i
- if player 1 obtains i th object, his total profit rises by $s_{i}-x_{i}$
- payoff functions express the expected total payoff for the players:

$$
Z_{1}(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{n}\left(s_{i}-x_{i}\right) \alpha\left(x_{i}, y_{i}\right), \quad Z_{2}(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{n}\left(s_{i}-y_{i}\right) \beta\left(x_{i}, y_{i}\right)
$$

Multi-Object Sealed-Bid Auctions

Example 1 (cont'd):

\square assume $\boldsymbol{x}=(20,0,0)$ and $\boldsymbol{y}=(10,0,0)$, then:

- player 1 wins object 1
\square player 2 wins nothing

$$
\begin{aligned}
\rightarrow Z_{1}(\boldsymbol{x}, \boldsymbol{y}) & =s_{1}-x_{1}=40-20=20 \\
Z_{2}(\boldsymbol{x}, \boldsymbol{y}) & =0
\end{aligned}
$$

$s_{1}=40$
$s_{2}=22$

- using the formula for Z_{1} :

$$
\begin{aligned}
Z_{1}(\boldsymbol{x}, \boldsymbol{y})=\sum\left(s_{i}-x_{i}\right) \alpha\left(x_{i}, y_{i}\right)= & (40-20) \times \mathbf{1}+(22-0) \times 0+(20-0) \times \mathbf{0} \\
& \text { (legend: values, bids, probabilities) }
\end{aligned}
$$

\square in case $\boldsymbol{x}=(10,10,0)$ and $\boldsymbol{y}=(10,0,0)$: player 1 wins object 2 ; object 1 is decided by a toss of a coin:

$$
\begin{aligned}
& Z_{1}(\boldsymbol{x}, \boldsymbol{y})=(40-10) \times \frac{1}{2}+(22-10) \times 1+0=27 \\
& Z_{2}(\boldsymbol{x}, \boldsymbol{y})=(40-10) \times \frac{1}{2}+0+0=15
\end{aligned}
$$

Multi-Object Sealed-Bid Auctions

\square game-theoretical solution to the bidding problem - NE again:
A strategy profile $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ with the property that

$$
\begin{aligned}
& Z_{1}\left(\boldsymbol{x}, \boldsymbol{y}^{*}\right) \leq Z_{1}\left(x^{*}, y^{*}\right) \\
& Z_{2}\left(\boldsymbol{x}^{*}, \boldsymbol{y}\right) \leq Z_{2}\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)
\end{aligned}
$$

for all $\boldsymbol{x} \in X$ and $\boldsymbol{y} \in Y$ is a NE.
\square finite strategy spaces \rightarrow the auction can be modelled as a bimatrix game
\square possible outcomes:
\square unique NE in pure strategies

- multiple NE's (pure and mixed), no domination
- multiple NE's (pure and mixed), one dominates the others
- no pure NE's, (mixed NE's only)

Exercise 1: Unique Pure-Strategy NE

1. Formulate the auction from example 1 as a bimatrix game (i.e., find the payoff matrices for both players, and write them down in a single matrix with double entries).
2. Find the NE of the bimatrix game.

$s_{1}=40$
$s_{2}=22$
$s_{3}=20$

Investor 2

	$1 \backslash 2$	$1,0,0$	$0,1,0$	$0,0,1$
	$2,0,0$	$20 ; 0$		
Investor 1 $1,1,0$ $27 ; 15$ $1,0,1$ $0,2,0$ $0,1,1$ $0,0,2$ 				

Exercise 1: Unique Pure-Strategy NE

1. Formulate the auction from example 1 as a bimatrix game (i.e., find the payoff matrices for both players, and write them down in a single matrix with double entries).
2. Find the NE of the bimatrix game.

$s_{1}=40$
$s_{2}=22$
$s_{3}=20$

	Investor 2			
	$1 \backslash 2$	1,0,0	0,1,0	0,0,1
Investor 1	2,0,0	20 ; 0	20;12	20; 10
	1,1,0	(27):15	36 ; 6	(42) 10
	1,0,1	25;15	(40) 12	35; 5
	0,2,0	2 ; 30	2;0	2; 10
	0,1,1	22;30	16;6	17; 5
	0,0,2	0 ; 30	0; 12	0; 0

Exercise 2: Multiple NE's - Solvable Case

\square consider similar auction as in example 1 , only that the values of the object are: $s_{1}=36, s_{2}=24, s_{3}=20$
\square the payoff matrices are in the following table; find all NE's for this auction

$$
s_{1}=36 \quad s_{2}=24 \quad s_{3}=20
$$

Investor 2

Exercise 3: Multiple NE's

\square consider similar auction as in example 1 , only that the values of the object are: $s_{1}=26, s_{2}=24, s_{3}=22$
\square find the payoff matrices and all NE's for this auction

$$
s_{1}=26 \quad s_{2}=24 \quad s_{3}=22
$$

Investor 2

	$1 \backslash 2$	$1,0,0$	$0,1,0$	$0,0,1$
	$2,0,0$	$6 ; 0$	$6 ; 14$	$6 ; 12$
	$1,1,0$	$22 ; 8$	$23 ; 7$	$30 ; 12$
	$1,0,1$	$20 ; 8$	$28 ; 14$	$22 ; 6$
	$0,2,0$	$4 ; 16$	$4 ; 0$	$4 ; 12$
	$0,1,1$	$26 ; 16$	$19 ; 7$	$20 ; 6$
	$0,0,2$	$2 ; 16$	$2 ; 14$	$2 ; 0$

Exercise 4: No Pure-Strategy NE

\square consider similar auction as in example 1 , only that the values of the object are: $s_{1}=80, s_{2}=24, s_{3}=22$
\square check that there are no pure-strategy NE's for this auction

$$
s_{1}=80 \quad s_{2}=24 \quad s_{3}=22
$$

Investor 2

	$1 \backslash 2$	$1,0,0$	$0,1,0$	$0,0,1$
	$2,0,0$	$60 ; 0$	$60 ; 14$	$60 ; 12$
	$1,1,0$	$49 ; 35$	$77 ; 7$	$84 ; 12$
Investor 1	$1,0,1$	$47 ; 35$	$82 ; 14$	$76 ; 6$
	$0,2,0$	$4 ; 70$	$4 ; 0$	$4 ; 12$
	$26 ; 70$	$19 ; 7$	$20 ; 6$	
	$0,0,2$	$2 ; 70$	$2 ; 14$	$2 ; 0$

Mixed Strategies in Auctions

\square from the Nash Existence Theorem, we know that for every bimatrix game there exists at least one NE in mixed strategies
\square finding mixed strategies: procedure based on the Equivalence Theorem:
Equivalence Theorem. Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ matrices with positive elements.
The vectors p^{*} and q^{*} are non-zero solution of the nonlinear programming problem
$\operatorname{maximize} M(\boldsymbol{p}, \boldsymbol{q})=\boldsymbol{p}^{\top}(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{q}-\mathbf{1}_{m}^{\top} \boldsymbol{p}-\mathbf{1}_{n}^{\top} \boldsymbol{q}$
subject to

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{q} & \leq \mathbf{1}_{m}, \\
\boldsymbol{B}^{\top} \boldsymbol{p} & \leq \mathbf{1}_{n}, \\
\boldsymbol{p} & \geq \mathbf{0}, \tag{2}\\
\boldsymbol{q} & \geq \mathbf{0} .
\end{align*}
$$

if and only if $\boldsymbol{x}^{*}=b \boldsymbol{p}^{*}$ and $\boldsymbol{y}^{*}=a \boldsymbol{q}^{*}$ represent a mixed-strategy NE of the bimatrix game with matrices $\boldsymbol{A}, \boldsymbol{B}$, where:

$$
1 / b=\mathbf{1}_{m}^{\top} \boldsymbol{p}^{*}=\sum p_{i}, \quad 1 / a=\mathbf{1}_{n}^{\top} \boldsymbol{q}^{*}=\sum q_{i}, \quad M\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)=0 .
$$

Mixed Strategies in Auctions

$\square \quad$ although we can solve the model using MS Excel Solver again, there are several problems:

- non-linear optimization problems may have multiple local extremes, it's advisable to run the algorithm from different starting points
- to solve the auction, we need the equilibrium to be unique (or dominant)
- unfortunately, there are no efficient ways of testing the uniqueness of a mixed strategy equilibrium
\square a "relatively reliable" procedure of finding a mixed-strategy NE:
- Step 1: solve the optimization problem

$$
\operatorname{maximize} \mathbf{1}_{m}^{\top} \boldsymbol{p}+\mathbf{1}_{n}^{\top} \boldsymbol{q}=\sum_{i=1}^{m} p_{i}+\sum_{j=1}^{n} q_{j} \text { subject to }
$$

keep the optimal solution from step 1 as the starting point for step 2

- Step 2: solve the problem: maximize $\mathrm{M}(\boldsymbol{p}, \boldsymbol{q})$ subject to (2); denote optimal values of \boldsymbol{p} and \boldsymbol{q} as \boldsymbol{p}^{*} and \boldsymbol{q}^{*}
- Step 3: normalize \boldsymbol{p}^{*} and \boldsymbol{q}^{*} from step 2 in order to get NE mixed strategies \boldsymbol{x}^{*} and \boldsymbol{y}^{*} (note: normalize a vector $=$ divide by the sum of its elements)

Collusive Auctions

\square collusion $=$ secret agreement, conspiracy
\square aim of auctions: generate the maximum revenue for the seller; works only if the bidders compete
\rightarrow collusion is usually not accepted by the auction rules
\square modelling approach: cooperative bimatrix games
 with transferable payoffs

Investor 2

Investor 1	$1 \backslash 2$	1,0,0	0,1,0	0,0,1
	2,0,0	60; 0	60; 14	60; 12
	1,1,0	49; 35	77;7	84; 12
	1,0,1	47; 35	82; 14	76; 6
	0,2,0	4;70	4; 0	4; 12
	0,1,1	26; 70	19;7	20; 6
	0,0,2	2; 70	2; 14	2; 0

Collusive Auctions

$\square \quad$ in order to find the core of the game, we first need: $v(1), v(2)$, and $\mathrm{v}(1,2)$
\square finding guaranteed payoffs: eliminate strictly dominated strategies first!
$\square v(1)=60$
$\square v(2)=7$

Investor 2

Collusive Auctions

$\square \quad$ maximum total payoff $=v(1,2)=96$
(note: dominated strategies are included here!)
\square core of the game:

$$
\begin{aligned}
a_{1}+a_{2} & =96 \\
a_{1} & \geq 60 \\
a_{2} & \geq 7
\end{aligned}
$$

$\square \quad$ superadditive effect: $v(1,2)-v(1)-v(2)=96-60-7=29$

$1 \backslash 2$	$1,0,0$	$0,1,0$	$0,0,1$
$2,0,0$	$60 ; 0$	$60 ; 14$	$60 ; 12$
$1,1,0$	$49 ; 35$	$77 ; 7$	$84 ; 12$
$1,0,1$	$47 ; 35$	$82 ; 14$	$76 ; 6$
$0,2,0$	$4 ; 70$	$4 ; 0$	$4 ; 12$
$0,1,1$	$26 ; 70$	$19 ; 7$	$20 ; 6$
$0,0,2$	$2 ; 70$	$2 ; 14$	$2 ; 0$

$1 \backslash 2$	$1,0,0$	$0,1,0$	$0,0,1$
$2,0,0$	60	74	72
$1,1,0$	84	84	96
$1,0,1$	82	96	82
$0,2,0$	74	4	16
$0,1,1$	96	26	26
$0,0,2$	72	16	2

LECTURE 5:
AUCTIONS

Jan Zouhar Games and Decisions

