LECTURE 5: AUCTIONS

Jan Zouhar Games and Decisions

Auctions – A Brief History

- 2
- auctions: an alternative to take-it-or-leave-it pricing, competition of potential buyers

Babylonian empire (500 BC): auctions of women for marriage

- *Roman empire*: auctions to liquidate the assets of debtors whose property had been confiscated
- $17^{th} 18^{th}$ century, Europe: auctions to sell pieces of art, the birth of many auction houses that still work today:
 - □ *1674*: Stockholm Auction House
 - **1744**: Sotheby's
 - **1766**: Christie's
 - ...

Today: online auctions for all kinds of things (*eBay*, *eBid*, *Aukro*,...)

Games and Decisions

Types of Auctions

Famous types of auctions:

English auction (a.k.a. open ascending price auction)

- the most widespread auction type (the typical art auctions)
- open bidding, bidders know the others' bids
- various rule modifications (ending rules e.g. "auction by candle")
- Dutch auction (a.k.a. open descending price auction)
 - the auctioneer cries out gradually descending price bids, the first one to accept the price is the buyer
 - **u** cut flower sales in the Netherlands, perishable goods (fish, tobacco)
- Envelope auction (a.k.a. first-price sealed-bid auctions)
 - bidders can only submit one bid each (typically, in a sealed envelope)
 - the sale of real estate and securities (used a lot in the postcummunist countries)
- Vickrey auction (a.k.a. second-price sealed-bid auctions)
 - "designed" by William Vickrey in 1961
 - used to auction off collectible stamps

Types of Auctions

Basic classification of auction rules:

- \square ascending/descending
 - the direction of bid increments
- \Box open/sealed-bid
 - open bidders submit the bids publicly and after one another
 - sealed-bid bidders submit the bids secretly and simultaneously
- □ *first-price/second-price*
 - winner pays the highest/second-highest bid
- single object/multi-object auction
 - number of objects auctioned at the same time
- □ reserve/no-reserve
 - the seller can state a reserve price the minimum price of the auctioned object
 - no-reserve auctions can attract more bidders (?)

...

(cont'd)

Types of Auctions

Some other auction types:

- All-Pay Auctions
 - used for charity auctions
 - various schemes (paying all bids or paying all increments + the whole of the winning bid)
- Auctions with Buyout Option
 - **•** the seller can state a buyout price for immediate purchase
- Combinatorial Auctions
 - multi-object auctions, bidding for bundles of objects
 - ferry lines, airport landing slots (it only makes sense to have bundles)
 - winner determination problem, preference expression problems
- Online Timeshift Auctions
 - fixed-time English type
 - aim: make bidders bid before the closing timeshift interval

Basic auction rules:

- bidders submit one bid each
- □ bids are sealed (= secret) and simultaneous
- □ first-price auction (winner pays the highest bid)

Additional assumptions (for mathematical modelling):

- two bidders only (can be relaxed easily; however, we want to use bimatrix games as the modelling tool); bidders = investor 1 and 2
- □ investors possess information about the subjective value of each of the *n* auctioned objects: $s_1, s_2, ..., s_n$
- \Box total amounts the bidders intend to invest are known: I_1, I_2
- □ there's a reserve price for each object: $d_1, d_2,...,d_n$ (we assume that $s_i \ge d_i$ for i = 1,2,...,n)
- in case of equal non-zero bids, the object in question is sold to each of the investors with a probability of ½ (a fair lottery)

(cont'd)

7

Modelling the auction as a normal-form game:

 \Box strategy spaces of the players:

$$X = \left\{ \mathbf{x} = (x_1, x_2, \dots, x_n); \ \sum_{i=1}^n x_i = I_1, \ x_i \in \left[d_i, s_i\right] \cup \{0\} \right\},$$
$$Y = \left\{ \mathbf{y} = (y_1, y_2, \dots, y_n); \ \sum_{i=1}^n y_i = I_2, \ y_i \in \left[d_i, s_i\right] \cup \{0\} \right\}.$$

(cont'd)

Modelling the auction as a normal-form game:

□ *strategy spaces* of the players:

$$X = \left\{ \boldsymbol{x} = (x_1, x_2, \dots, x_n); \sum_{i=1}^n x_i = I_1, x_i \in \left[d_i, s_i\right] \cup \{0\} \right\},$$
$$Y = \left\{ \boldsymbol{y} = (y_1, y_2, \dots, y_n); \sum_{i=1}^n y_i = I_2, y_i \in \left[d_i, s_i\right] \cup \{0\} \right\}.$$
$$\boldsymbol{y}_i = \text{player 2's bid for object } i$$

sum of the bids = the intended amount of total investment

it makes sense to bid either 0, or anything between the reserve price and the value of the object

- 9
- □ in general, these strategy spaces can be *infinite*
- □ however, it is usually required that the bids must be an integer multiple of a specified monetary unit \rightarrow *finite* strategy spaces (which enables the bimatrix approach)

Example 1:

- \Box three objects (n = 3)
- □ values: $s_1 = 40$, $s_2 = 22$, $s_3 = 20$
- □ reserve price 10 for all objects $(d_1 = d_2 = d_3 = 10)$
- $\hfill\square$ total investment: I_1 = 20, I_2 = 10
- bids must be integer multiples of 10
- □ strategy spaces (expressed in multiples of 10 for brevity):

$$\begin{split} X &= \{(2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,1,1)\} &\leftarrow \text{6 pure strategies, sum} = 2 \\ Y &= \{(1,0,0), (0,1,0), (0,0,1)\} &\leftarrow \text{3 pure strategies, sum} = 1 \end{split}$$

Games and Decisions

Jan Zouhar

(cont'd)

(cont'd)

10

- payoff functions:
 - in order to formulate the payoff functions for both players, we introduce the following functions:

$$\alpha(x, y) = \begin{cases} 1 & \text{for } x > y, \\ \frac{1}{2} & \text{for } x = y, \\ 0 & \text{for } x < y \text{ or } x = y = 0. \end{cases} \qquad \beta(x, y) = \begin{cases} 1 & \text{for } x < y, \\ \frac{1}{2} & \text{for } x = y, \\ 0 & \text{for } x > y \text{ or } x = y = 0. \end{cases}$$

- note: α(x_i, y_i) is the probability of player 1 obtaining object i
 β(x_i, y_i) is the probability of player 2 obtaining object i
- □ if player 1 obtains *i*th object, his total profit rises by $s_i x_i$
- **payoff functions express the** *expected total payoff* for the players:

$$Z_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n (s_i - x_i) \, \alpha(x_i, y_i), \quad Z_2(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n (s_i - y_i) \, \beta(x_i, y_i).$$

Games and Decisions

Jan Zouhar

Jan Zouhar

Multi-Object Sealed-Bid Auctions

Example 1 (cont'd):

- □ assume *x* = (20,0,0) and *y* = (10,0,0), then:
 - player 1 wins object 1
 - player 2 wins nothing
 - $\rightarrow Z_1(x,y) = s_1 x_1 = 40 20 = 20$ $Z_2(x,y) = 0$

using the formula for
$$Z_1$$
:
$$Z_1(x,y) = \sum (s_i - x_i) \ \alpha(x_i, y_i) = (40 - 20) \times 1 + (22 - 0) \times 0 + (20 - 0) \times 0$$
(legend: values, bids, probabilities)

in case x = (10,10,0) and y = (10,0,0): player 1 wins object 2; object 1 is decided by a toss of a coin:

$$Z_1(\mathbf{x}, \mathbf{y}) = (40 - 10) \times \frac{1}{2} + (22 - 10) \times 1 + 0 = 27$$
$$Z_2(\mathbf{x}, \mathbf{y}) = (40 - 10) \times \frac{1}{2} + 0 + 0 = 15$$

(cont'd)

 \Box game-theoretical solution to the bidding problem – NE again:

A strategy profile (x^*, y^*) with the property that

$$\begin{split} & Z_1(\pmb{x}, \pmb{y^*}) \leq Z_1(\pmb{x^*}, \pmb{y^*}), \\ & Z_2(\pmb{x^*}, \pmb{y}) \leq Z_2(\pmb{x^*}, \pmb{y^*}) \end{split}$$

for all $\mathbf{x} \in X$ and $\mathbf{y} \in Y$ is a NE.

- \Box finite strategy spaces \rightarrow the auction can be modelled as a bimatrix game
- possible outcomes:
 - unique NE in pure strategies
 - **multiple** NE's (pure and mixed), no domination
 - **multiple** NE's (pure and mixed), one dominates the others
 - no pure NE's, (mixed NE's only)

Exercise 1: Unique Pure-Strategy NE

- 1. Formulate the auction from example 1 as a bimatrix game (i.e., find the payoff matrices for both players, and write them down in a single matrix with double entries).
- 2. Find the NE of the bimatrix game.

	1 \ 2	1,0,0	0,1,0	0,0,1
Investor 1	2,0,0	20;0		
	1,1,0	27;15		
	1,0,1			
	0,2,0			
	0,1,1			
	0,0,2			

Investor 2

Exercise 1: Unique Pure-Strategy NE

- 1. Formulate the auction from example 1 as a bimatrix game (i.e., find the payoff matrices for both players, and write them down in a single matrix with double entries).
- 2. Find the NE of the bimatrix game.

	1 \ 2	1,0,0	0,1,0	0,0,1
estor 1	2,0,0	20;0	20;12	20;10
	1,1,0	27,15	36;6	(42) 10
	1,0,1	25 ;15	(40) 12	35;5
	0,2,0	2 ;30	2;0	2 ; 10
	0,1,1	22 ;30	16;6	17;5
	0,0,2	0;30	<mark>0</mark> ;12	0;0

Investor 2

Inve

Exercise 2: Multiple NE's – Solvable Case

- □ consider similar auction as in example 1, only that the values of the object are: $s_1 = 36$, $s_2 = 24$, $s_3 = 20$
- the payoff matrices are in the following table; find *all* NE's for this auction

Exercise 3: Multiple NE's

- □ consider similar auction as in example 1, only that the values of the object are: $s_1 = 26$, $s_2 = 24$, $s_3 = 22$
- find the payoff matrices and *all* NE's for this auction

	1 \ 2	1,0,0	0,1,0	0,0,1
	2,0,0	<mark>6</mark> ; 0	6;14	<mark>6</mark> ;12
	1,1,0	22 ; 8	23;7	30;12
Investor 1	1,0,1	20;8	28;14	22;6
	0,2,0	4 ; 16	4;0	4;12
	0,1,1	26;16	19;7	20; 6
	0,0,2	2;16	2 ; 14	2;0

Investor 2

Games and Decisions

Exercise 4: No Pure-Strategy NE

- □ consider similar auction as in example 1, only that the values of the object are: $s_1 = 80$, $s_2 = 24$, $s_3 = 22$
- check that there are no pure-strategy NE's for this auction

	1 \ 2	1,0,0	0,1,0	0,0,1
	2,0,0	60 ; 0	60 ; 14	60;12
	1,1,0	49 ; 35	77;7	84;12
Investor 1	1,0,1	47;35	82;14	76;6
	0,2,0	4 ; 70	4 ; 0	4;12
	0,1,1	26 ; 70	19;7	20; 6
	0,0,2	2 ; 70	2 ; 14	2;0

Investor 2

Games and Decisions

Mixed Strategies in Auctions

- □ from the Nash Existence Theorem, we know that for every bimatrix game there exists at least one NE in mixed strategies
- □ finding mixed strategies: procedure based on the Equivalence Theorem:

Equivalence Theorem. Let A and B be $m \times n$ matrices with positive elements. The vectors p^* and q^* are non-zero solution of the nonlinear programming problem

maximize
$$M(\boldsymbol{p},\boldsymbol{q}) = \boldsymbol{p}^{\top}(\boldsymbol{A}+\boldsymbol{B})\boldsymbol{q} - \boldsymbol{1}_{m}^{\top}\boldsymbol{p} - \boldsymbol{1}_{n}^{\top}\boldsymbol{q}$$
 (1)

subject to

$$Aq \leq \mathbf{1}_{m},$$

$$B^{\top} p \leq \mathbf{1}_{n},$$

$$p \geq \mathbf{0},$$

$$q \geq \mathbf{0}.$$
(2)

if and only if $x^* = bp^*$ and $y^* = aq^*$ represent a mixed-strategy NE of the bimatrix game with matrices A, B, where:

$$1/b = \mathbf{1}_m^\top \mathbf{p}^* = \sum p_i, \quad 1/a = \mathbf{1}_n^\top \mathbf{q}^* = \sum q_i, \quad M(\mathbf{p}^*, \mathbf{q}^*) = 0.$$

Games and Decisions

Jan Zouhar

Mixed Strategies in Auctions

(cont'd)

- □ although we can solve the model using *MS Excel Solver* again, there are several problems:
 - non-linear optimization problems may have multiple local extremes, it's advisable to run the algorithm from *different starting points*
 - **•** to solve the auction, we need the equilibrium to be *unique* (or dominant)
 - unfortunately, there are no efficient ways of testing the uniqueness of a mixed strategy equilibrium
- □ a "relatively reliable" procedure of finding a mixed-strategy NE:
 - **Step 1**: solve the optimization problem

maximize
$$\mathbf{1}_m^{\top} \boldsymbol{p} + \mathbf{1}_n^{\top} \boldsymbol{q} = \sum_{i=1}^m p_i + \sum_{j=1}^n q_j$$
 subject to (2),

keep the optimal solution from step 1 as the starting point for step 2 $\,$

- Step 2: solve the problem: maximize M(p,q) subject to (2); denote optimal values of p and q as p* and q*
- Step 3: normalize p* and q* from step 2 in order to get NE mixed strategies x* and y* (note: normalize a vector = divide by the sum of its elements)

Collusive Auctions

- \Box *collusion* = secret agreement, conspiracy
- aim of auctions: generate the maximum revenue for the seller; works only if the bidders compete
- \rightarrow collusion is usually not accepted by the auction rules
- modelling approach: cooperative bimatrix games with transferable payoffs

	1 \ 2	1,0,0	0,1,0	0,0,1
Investor 1	2,0,0	60 ; 0	60 ; 14	60 ; 12
	1,1,0	49 ; 35	77;7	84;12
	1,0,1	47;35	82;14	76 ; 6
	0,2,0	4 ; 70	4 ; 0	4;12
	0,1,1	26 ; 70	19;7	20; 6
	0,0,2	2;70	2 ; 14	2;0

Investor 2

Games and Decisions

Collusive Auctions

- in order to find the core of the game, we first need: v(1), v(2), and v(1,2)
- inding guaranteed payoffs: eliminate strictly dominated strategies first!
 - v(1) = 60
 - $\bullet \quad v(2) = 7$

				1
	1 \ 2	1,0,0	0,1,0	0,0,1
Investor 1	2,0,0	60 ; 0	60 ; 14	60;12
	1,1,0	49 ; 35	77;7	84;12
	1,0,1	47;35	82;14	76;6
	0,2,0	4;70	4;0	4;12
	0,1,1	26 ; 70	19;7	20; 6
	0,0,2	2;70	2;14	2;0

Investor 2

Games and Decisions

Collusive Auctions

- $\square \text{ maximum total payoff} = v(1,2) = 96$ (note: dominated strategies are included here!)
- \Box core of the game:

□ superadditive effect: v(1,2) - v(1) - v(2) = 96 - 60 - 7 = 29

 $a_1 + a_2 = 96$,

 $a_1 \ge 60$,

 $a_2 \ge 7$.

1 \ 2	1,0,0	0,1,0	0,0,1
2,0,0	60 ; 0	60 ; 14	60;12
1,1,0	49 ; 35	77;7	84;12
1,0,1	47;35	82;14	76 ; 6
0,2,0	4 ; 70	4;0	4;12
0,1,1	26 ; 70	19;7	20; 6
0,0,2	2;70	2 ;14	2;0

1 \ 2	1,0,0	0,1,0	0,0,1
2,0,0	60	74	72
1,1,0	84	84	96
1,0,1	82	96	82
0,2,0	74	4	16
0,1,1	96	26	26
0,0,2	72	16	2

LECTURE 5: AUCTIONS

Jan Zouhar Games and Decisions