
LECTURE 4: 

MIXED STRATEGIES (CONT’D), 

BIMATRIX GAMES 

Games and Decisions  Jan Zouhar 



 mixed strategy: the player decides about the probabilities of the 

alternative strategies (sum of the probabilities = 1); when the decisive 

moment comes, he/she makes a random selection of the strategy with 

the stated probabilities 

 notation: mixed strategies = column vectors x and y, ith element is the 

probability of ith row/column of matrix A being picked: 

 

 

 

 

 payoffs become random variables; decisions use expected payoffs: 
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 mathematical definition: 

 NE is a combination of (mixed) strategies x* and y* with the property 

that 

  

 for all mixed strategies x and y. 

 value of the game (v): player 1’s expected payoff at NE  (              ) 

 Basic Theorem on Matrix Games:  for any matrix A there exists a 

mixed-strategy NE. 

 finding mixed-strategy NE’s: 

 graphical solution (2 × n and m × 2 matrices only) 

 linear programming (general m × n case) 

 

* * * * x Ay x Ay x Ay
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 Step 1: If there is a negative element in the payoff matrix, make all elements of 
the matrix positive by adding the same positive number to all elements of the 
matrix. (This does changes the game, but only into a strategically equivalent 
one.) 

 Step 2: Solve the linear programming problem 

 maximize   p1 + p2 + … + pn 

 subject to  

  a11 p1 + a12 p2 + … + a1n pn ≤  1, 

  a21 p1 + a22 p2 + … + a2n pn ≤  1, 

  …………………………………… 

  am1 p1 + am2 p2 + … + amn pn ≤  1, 

                pi ≥ 0,     i = 1,…,n. 

 Step 3: Divide the primal and dual solutions by the optimal value of the objective 
function: 

 the primal solution determines the strategy of player 2. 

 the dual solution determines the strategy of player 1. 
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 note: if we use the symbol 1n to denote vector 

 

 

 

  

 

 we can simplify the LP problem from step 2 as  
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 Step 1: show that without loss of generality, we can assume that the 

elements of matrix A are all positive. 

 Step 2: show that the following conditions for NE existence are equal 

(i.e., find simpler, but equal versions of NE conditions): 

(C1 ) There exist x* and y* such that 

 for all mixed strategies x and y. 

(C2 ) There exist x*, y* and v such that 

 for all mixed strategies x and y. 

(C3 ) There exist x*, y* and v such that   

 for all pure strategies x and y. 

 Steps 3 and 4: prove the existence of x*, y* and v satisfying (C3 ) using 

the linear programming Duality Theorem. 

* * * * x Ay x Ay x Ay
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Step 1: WLOG, all elements of the payoff matrix A can be assumed to be 

positive. 

 if there’s a negative element, we can turn the game into a strategically 

equivalent one with positive elements by adding a sufficiently large 

constant c to all elements of A (thus obtaining matrix      ) 

 

 mathematically: 

 

 it’s easy to see that                                    (no matter what the strategies 

are, player 1 gets an extra payoff of c), hence  

 

 

 so if we find a mixed-strategy NE for     , it is also a mixed-strategy NE 

for A 
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Step 2: the following conditions of NE existence are equal (x* and y* denote 

mixed strategies of the two players, v is a real number): 

(C1 ) There exist x* and y* such that 

for all mixed strategies x and y. 

(C2 ) There exist x*, y* and v such that 

for all mixed strategies x and y. 

(C3 ) There exist x*, y* and v such that   

for all pure strategies x and y. 

 first, we prove                        

                      :  if (C1 ) holds, then (C2 ) holds as well with  

                      :  because the inequality in (C2 ) holds for all mixed 

strategies x and y, it has to hold for x = x*, y = y* as an instance, 

which yields:  

 next, we prove                      . Here,                       is obvious, as pure 

strategies are only a special case of mixed strategies. 

* v * x Ay x Ay
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 the most difficult part in step 2 is proving 

 the argument goes as follows:   

 Mixed strategies are convex combinations of pure strategies; therefore, 

the expected payoff for a mixed strategy is a convex combination of the 

expected payoff for pure strategies. Thus, if                      holds for all 

pure strategies x, it has to hold for all mixed strategies as well. 

 

 

 

 

 

 imagine player 1 has 3 alternative actions (Top, Middle, and Bottom 

row) → mixed strategies are in the form x = (x1, x2, x3)
T, which can be 

expressed as a convex combination of pure strategies: x = x1∙ (1,0,0)T + 

x2∙ (0,1,0)T + x3∙ (0,0,1)T 

 

( ) ( )C2 C3

* vx Ay

Convex combination of n vectors: 

1 1 2 2 ,n nc c c  v v v

Let v1,v2,…,vn be n vectors of equal size. A convex combination of 

these vectors is a vector                                          where 

c1,c2,…,cn are real numbers between 0 and 1, the sum of which is 1.    
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Strategy space of player 1: x = (x1,x2,x3)T 

such that x1 + x2 + x3 = 1. 

(x1, x2, x3) 

M: (0,1,0) 

T: (1,0,0) 

B: (0,0,1) 
Convex combination of 
T, M and B 

Graphical illustration of a mixed-strategy space of player 1: 
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 including expected payoff in the plot: x3 = 1 – x1 – x2 , so x3 needn’t be plotted; we 

plot expected payoff instead: EZ1 = (x1, x2, x3)A y*  →  linear function of (x1, x2, x3) 
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 the expected payoff for a mixed strategy (x1, x2, x3)
T is a convex combination of the 

expected payoff for the pure strategies T, M, and B: 

 

EZ1(T ) 

EZ1(M ) 

EZ1(B ) 

(x1, x2, x3)
T = x1(1,0,0)T + 

x2(0,1,0)T + 

x3(0,0,1)T 

EZ1(x1, x2, x3)  =  x1EZ1(T )  + 

                           x2EZ1(M ) +  

                           x3EZ1(B ) 
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 therefore, in order to show                       (the height of the whole of the upper 

triangle is below the level v), it’s enough to show it for the three pure strategies 

(vertices of the triangle) 
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 trying to find NE strategy for player 2 → we’re looking for y* = (y1,…,yn)T 

such that                   for all mixed strategies x  

 from the previous discussion, it suffices for the inequality to hold for all 

pure strategies x 

* vx Ay
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 trying to find NE strategy for player 2 → we’re looking for y* = (y1,…,yn)T 

such that                   for all mixed strategies x  

 from the previous discussion, it suffices for the inequality to hold for all 

pure strategies x 

 algebraically: we’re looking for  y* = (y1,…,yn)T such that 

 

 

 

  

  

 and, of course, y* is a mixed strategy:  y1 + y2 + … + yn = 1  and  0 ≤ yi ≤ 1. 
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 trying to find NE strategy for player 2 → we’re looking for y* = (y1,…,yn)T 

such that                   for all mixed strategies x  

 from the previous discussion, it suffices for the inequality to hold for all 

pure strategies x 

 algebraically: we’re looking for  y* = (y1,…,yn)T such that 

 

 

 

  

  

 and, of course, y* is a mixed strategy:  y1 + y2 + … + yn = 1  and  0 ≤ yi ≤ 1. 

 a similar approach can be used while looking for NE strategy of player 1 

 for player 1, we use the inequality: 

→  x and y swapped, A transposed, “≥” instead of “≤” (see the next step) 
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Step 3: if a combination of v, x* = (x1,…,xm)T, and y*= (y1,…,yn)T satisfies 

 

 

 

 

 

 

 

 or, in brief, 

 

 

 

 then x* and y* are the NE strategies. 
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Step 4: there exist x* and y* that satisfy the conditions from step 3 (and, 

therefore, are the NE strategies). 

 this is the crucial part of the proof; it uses the linear programming 

Duality Theorem 

Primal and Dual LP problems: 

If both the primal and the dual problem have feasible solutions (i.e., solutions 

that satisfy the constraints), both have optimal solutions as well, and the optimal 

objective values are equal (f * = z*) 

0 0

maximize minimize
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Duality Theorem: 

Primal problem : Dual problem: 
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 we gradually turn the conditions from step 4 into a primal and dual LP 

problem; first, divide all the inequalities and equations by v and 

substitute pi = yi / v and qj = xj / v : 
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 now we split the conditions for p and q into two linear programming 

problems, taking the LHS of the last row as the objectives:  
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 now we split the conditions for p and q into two linear programming 

problems, taking the LHS of the last row as the objectives:  

 

 

 

 

 

 the two LP problems are in the primal-dual relationship 

(with b = 1m an c = 1n) 

 both have feasible solutions (take p = 0 and q with sufficiently large 

elements) 
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 now we split the conditions for p and q into two linear programming 

problems, taking the LHS of the last row as the objectives:  

 

 

 

 

 

 the two LP problems are in the primal-dual relationship 

(with b = 1m an c = 1n) 

 both have feasible solutions (take p = 0 and q with sufficiently large 

elements) 

 therefore, according to the Duality Theorem, both have optimal 

solutions ( p* and q* ) with equal objective values ( f * = z* = 1 / v ). 

 it’s easy to check that then x* = v ∙ q* and y* = v ∙ p* satisfy the 

conditions from step 4, and thus are the NE strategies 
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Step 1: WLOG, all elements of the payoff matrix A can be assumed to be 

positive. 

Step 2: the following conditions of NE existence are equal : 

(C1 )                                                for all mixed strategies x and y. 

(C2 )                                     for all mixed strategies x and y. 

(C3 )                                     for all pure strategies x and y. 

Step 3: if a combination of v, x = (x1,…,xm)T, and y = (y1,…,yn)T satisfies 

 

 

 

then x and y are the NE strategies. 

Step 4: there exist x and y that satisfy the conditions from step 4 (and, 

therefore, are the NE strategies). 
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 Step 1: If there is a negative element in the payoff matrix, make all elements of 
the matrix positive by adding the same positive number to all elements of the 
matrix. (This does changes the game, but only into a strategically equivalent 
one.) 

 Step 2: Solve the linear programming problem 

 maximize   p1 + p2 + … + pn 

 subject to  

  a11 p1 + a12 p2 + … + a1n pn ≤  1, 

  a21 p1 + a22 p2 + … + a2n pn ≤  1, 

  …………………………………… 

  am1 p1 + am2 p2 + … + amn pn ≤  1, 

                pi ≥ 0,     i = 1,…,n. 

 Step 3: Divide the primal and dual solutions by the optimal value of the objective 
function: 

 the primal solution determines the strategy of player 2. 

 the dual solution determines the strategy of player 1. 
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= non-constant-sum games in normal form: 

 a finite set of agents: {1,2} 

 strategy spaces (finite): { X,Y} 

 strategy profile: (x,y) 

 payoff functions: Z1(x,y), Z2(x,y) 

 payoffs written in two matrices, typically denoted by A = (aij) and 

B = (bij) 

 aij = the payoff of player 1 for strategy profile (i,j) 

(i.e., player 1 picks ith row and player 2 picks jth column) 

 bij = the payoff of player 2 for strategy profile (i,j) 

 typically, A and B written down in a single matrix with double entries: 

 
1 2 5 6 1;5 2;6

, , ; .
3 4 7 8 3;7 4;8

     
       
     

A B A B
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1 10 1 0
, .

0 5 10 5

     
    

     
A B

 PD is a bimatrix game with matrices 

1 \ 2 Stay silent Betray 

Stay silent -1 ; -1 -10 ; 0 

Betray 0 ; -10 -5 ; -5 

Player 1 

Player 2 
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 the same Nash-Equilibrium concept as in case of matrix games 

(one can’t be better off when he/she alone deviates from NE) 

 mathematical definition (for pure strategies): 

A strategy profile (x*, y*) with the property that 

 

 

for all x  X and y  Y is a NE.   

 

1 1

2 2

( , *) ( *, *),

( *, ) ( *, *)

Z x y Z x y

Z x y Z x y




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 the same Nash-Equilibrium concept as in case of matrix games 

(one can’t be better off when he/she alone deviates from NE) 

 mathematical definition (for pure strategies): 

A strategy profile (x*, y*) with the property that 

 

 

for all x  X and y  Y is a NE.   

 finding a NE using the best-response approach: 

 player 1 plays her best response to the column selected by player 2 

→ NE has to be the maximum in the column in matrix A 

 player 2 plays her best response to the row selected by player 1 

→ NE has to be the maximum in the row in matrix B 

 

1 1

2 2

( , *) ( *, *),

( *, ) ( *, *)

Z x y Z x y

Z x y Z x y




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1 \ 2 Stay silent Betray 

Stay silent -1 ; -1 -10 ; 0 

Betray 0 ; -10 -5 ; -5 

Player 1 

Player 2 

 player 1’s best response: 

 if player 2 stays silent, player 1’s best response is to betray. 

Circle (B,S). 

 if player 2 betrays, player 1’s best response is to betray as 

well. Circle (B,B). 
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1 \ 2 Stay silent Betray 

Stay silent -1 ; -1 -10 ; 0 

Betray 0 ; -10 -5 ; -5 

Player 1 

Player 2 

 player 2’s best response: 

 if player 1 stays silent, player 2’s best response is to betray. 

Square (S,B). 

 if player 1 betrays, player 2’s best response is to betray as 

well. Square (B,B). 
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1 \ 2 Stay silent Betray 

Stay silent -1 ; -1 -10 ; 0 

Betray 0 ; -10 -5 ; -5 

Player 1 

Player 2 

 (B,B) is the unique NE 

 not Pareto efficient ((S,S) better for both players) 

 for both players, strategy S is strictly dominated by 

strategy B 
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 mathematical definition: 

 NE is a combination of (mixed) strategies x* and y* with the property 

that 

  

 

 for all mixed strategies x and y. 

 
 

 

Inequalities explained: 

*

* * * ,

* *





x Ay x Ay

x By x By

* * *x Ay x Ay
can be written as:  E Z1(x , y*) ≤ E Z1(x*, y*) , 
which means: If player 1 deviates from NE 
his/her expected payoff will not increase 

** *x By x By

can be written as:  E Z2(x* , y) ≤ E Z2(x*, y*) , 
which means: If player 2 deviates from NE 
his/her expected payoff will not increase 
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 find pure-strategy NE’s in the Battle of the Sexes game: 

 

 

 

 

 

 

 

Girl \ Boy Football Shopping 

Football 2 ; 3 0 ; 0 

Shopping 1 ; 1 3 ; 2 

Girl 

Boy 
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 find pure-strategy NE’s in the Battle of the Sexes game: 

 

 

 

 

 

 

 

 

 pure-strategy NE’s are: (F,F) and (S,S)  (note: different payoffs!) 

 in addition, there’s one mixed strategy equilibrium: 

 

Girl \ Boy Football Shopping 

Football 2 ; 3 0 ; 0 

Shopping 1 ; 1 3 ; 2 

Girl 

Boy 

1 / 4 3 / 4
* , *

3 / 4 1 / 4

   
    
   

x y
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 assume there’s a mixed solution with all elements positive 

(i.e., x1, x2, y1, y2 > 0) 

 if the girl best-responds with a mixed strategy, the boy must make her 

indifferent between F and S with his mixed strategy (why?) 

 therefore: EZ1(F,y) = 2 × y1 + 0 × (1–y1) = 1 × y1 + 3 × (1–y1)  = EZ1(S,y), 

and  y1 = 3/4 

 similarly, EZ2(x,F ) = 3 × x1 + 1 × (1–x1) = 0 × x1 + 2 × (1–x1) = EZ2(x,S ), 

and x1 = 1/4  

Girl \ Boy Football Shopping 

Football 2 ; 3 0 ; 0 

Shopping 1 ; 1 3 ; 2 

x1 

1 – x1 

1 – y1 y1 
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 find NE’s in the game of Chicken: 

 two drivers drive towards each other on a collision course 

 either at least one swerves, or both may die in the crash 

 whoever swerves is called “a chicken” (a coward) 

1 \ 2 Swerve Straight 

Swerve 0 ; 0 -1 ; 1 

Straight 1 ; -1 -10 ; -10 

Player 1 

Player 2 
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 find pure-strategy NE’s in the following game 

 which of the two NE’s would you choose if you were player 1?  

 which of the two NE’s would you choose if you were player 2? 

 

 

 

 

 

 

 

 

 the NE (B,R) is dominated by NE (T,L) → (T,L) is strategically more 

credible 

 

1 \ 2 L R 

T 7 ; 9 -2 ; -1 

B -2 ; 0 6 ; 4 
Player 1 

Player 2 
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 find out if there are any pure-strategy NE’s in the following bimatrix 

game 

 if not, find a mixed-strategy NE the way we used for the Battle of Sexes 

1 \ 2 L R 

T 3 ; 5 2 ; -1 

B 4 ; 2 -2 ; 5 
Player 1 

Player 2 
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 Nash Existence Theorem (John Nash, 1950): Every normal-form 

game with finite strategy spaces has a mixed-strategy NE. 

 possible scenarios for bimatrix games: 

 unique NE in pure strategies (prisoner’s dilemma) 

 multiple NE’s (pure and mixed), no domination (BoS) 

 multiple NE’s (pure and mixed) with domination (Ex. 3) 

 no pure NE’s, (mixed NE’s only) (Ex. 3) 

 

 note: apart from the 2×2 case, mixed NE’s are generally difficult to find 

(non-linear programming techniques) 
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 as in matrix games, dominated strategies can be eliminated to simplify 

the problem 

 however, it’s only safe to eliminate strictly dominated strategies (as 

opposed to only weakly dominated ones) 

 

Example 1: prisoner’s dilemma (yes, indeed, yet again…) 

 strategy Stay silent is strictly dominated for both players 

 it doesn’t matter whether we start eliminating rows or columns, we 

always end up with the unique NE: 

1 \ 2 Stay silent Betray 

Stay silent -1 ; -1 -10 ; 0 

Betray 0 ; -10 -5 ; -5 

Player 1 

Player 2 
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Example 2: 

 M weakly dominates T and B 

 two different elimination processes: 

 1 eliminates T,  2 eliminates L   →  (2;1) 

 1 eliminates B,  2 eliminates R   →  (1;1) 

 

1 \ 2 L R 

T 1 ; 1 0 ; 0 

M 1 ; 1 2 ; 1 

B 0 ; 0 2 ; 1 

Player 1 

Player 2 
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 so far, we assumed the players do not cooperate 

 note: in matrix games, no cooperation is possible (why?) 

 with cooperation, NE is not the relevant principle anymore; still, it can 

be used in the decision-making process as a certain bargaining tool (or 

as a benchmark describing the case the players fail to agree on 

cooperation, see below) 

 two different cooperation settings: 

 cooperation with transferable payoffs 

 cooperation with non-transferable payoffs 

→ in both cases, players cooperate only of it pays for both; i.e., both 

earn more than in the non-cooperative setting 

 what is the non-cooperative payoff? 

1.  the NE payoff (if this can be decided) 

2. the guaranteed payoff (bully-proof) 
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 the guaranteed payoff for a strategy is the worst possible result: 

 for player 1, the worst-case scenarios for the individual strategies are  

T: 3, C: –9, B: –10 → guaranteed payoff of player 1 = 3 

 for player 2, we have L: 1, M: –10, R: –2 → guaranteed payoff = 1 

 guaranteed payoff of player 1/2 is the largest row/column minimum 

 note that there’s no NE in pure strategies here 

1 \ 2 L M R 

T 3 ; 1 9 ; -10 9 ; 2 

C -9 ; 9 -5 ; 35 10 ; -2 

B -10 ; 9 13 ; 4 5 ; 4 

Player 1 

Player 2 
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 when deciding about the guaranteed payoffs, one can leave out strictly 

dominated strategies of both players (implausible bullying) 

 leaving out strategy C of player 1 increases player 2’s guaranteed profit 

to 2 

 notation: non-cooperative (i.e., NE or guaranteed) profits will be denoted 

as v(1) for player 1 and v(2) for player 2 

 

1 \ 2 L M R 

T 3 ; 1 9 ; -10 9 ; 2 

C -9 ; 9 -5 ; 35 2 ; -2 

B -10 ; 9 13 ; 4 5 ; 4 

Player 1 

Player 2 
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 switch of players focus: from individual payoffs to the total payoff 

(which can be redistributed afterwards): 

 the maximum attainable total payoff  = v(1,2) = 30 

 crucial question: how to divide the total payoff? 

1 \ 2 L M R 

T 3 ; 1 9 ; -10 9 ; 2 

C -9 ; 9 -5 ; 35 2 ; -2 

B -10 ; 9 13 ; 3 5 ; 4 

1 \ 2 L M R 

T 4 -1 11 

C 0 30 0 

B -1 16 9 
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 imputation: a potential final distribution of payoffs to both players (a1 

for player 1, a2 for player 2) 

 core of the game: the set of all imputations (a1,a2) such that: 

 

 

 

e.g., for the game from the previous slides, 

 

 

 

 superadditive effect:  v(1,2) – v(1) – v(2) = 30 – 3 – 2 = 25 

 a fair division: each player gets her guaranteed payoff + half of the 

superadditive effect: 

 

1 2

1

2

(1,2),

(1),

(2),

a a v

a v

a v

 





1 2

1

2

30,

3,

2.

a a

a

a

 





1 2* 3 25 / 2 15.5, * 2 25 / 2 14.5.a a     
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