LECTURE 4:
MIXED STRATEGIES (CONTD), Bimatrix Games

Jan Zouhar Games and Decisions

Mixed Strategies in Matrix Games (revision)

\square mixed strategy: the player decides about the probabilities of the alternative strategies (sum of the probabilities $=1$); when the decisive moment comes, he/she makes a random selection of the strategy with the stated probabilities
\square notation: mixed strategies $=$ column vectors \boldsymbol{x} and \boldsymbol{y}, i th element is the probability of i th row/column of matrix \boldsymbol{A} being picked:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

\square payoffs become random variables; decisions use expected payoffs:

$$
\mathrm{E} Z_{1}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} a_{i j} y_{j}=\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}=-\mathrm{E} Z_{2}
$$

Mixed-Strategy NE (revision)

- mathematical definition:

NE is a combination of (mixed) strategies \boldsymbol{x}^{*} and \boldsymbol{y}^{*} with the property that

$$
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}
$$

for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.
\square value of the game (v): player 1's expected payoff at NE ($\left.\boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}^{*}\right)$
\square Basic Theorem on Matrix Games: for any matrix A there exists a mixed-strategy NE.
\square finding mixed-strategy NE's:

- graphical solution ($2 \times n$ and $m \times 2$ matrices only)
- linear programming (general $m \times n$ case)

Finding NE - Linear Programming (revision)

- Step 1: If there is a negative element in the payoff matrix, make all elements of the matrix positive by adding the same positive number to all elements of the matrix. (This does changes the game, but only into a strategically equivalent one.)
- Step 2: Solve the linear programming problem
maximize $p_{1}+p_{2}+\ldots+p_{n}$
subject to

$$
\begin{aligned}
& a_{11} p_{1}+a_{12} p_{2}+\ldots+a_{1 n} p_{n} \leq 1, \\
& a_{21} p_{1}+a_{22} p_{2}+\ldots+a_{2 n} p_{n} \leq 1, \\
& \ldots \\
& a_{m 1} p_{1}+a_{m 2} p_{2}+\ldots+a_{m n} p_{n} \leq 1, \\
& \quad p_{i} \geq 0, \quad i=1, \ldots, n .
\end{aligned}
$$

- Step 3: Divide the primal and dual solutions by the optimal value of the objective function:
- the primal solution determines the strategy of player 2.
\square the dual solution determines the strategy of player 1 .

Finding NE - Linear Programming

\square note: if we use the symbol $\mathbf{1}_{n}$ to denote vector

$$
\left.\mathbf{1}_{n}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]\right\} n \text { elements }
$$

we can simplify the LP problem from step 2 as

$$
\begin{aligned}
& \operatorname{maximize} z=\mathbf{1}_{n}^{\top} \boldsymbol{p} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{p} & \leq \mathbf{1}_{m}, \\
\boldsymbol{p} & \geq \mathbf{0} .
\end{aligned}
$$

Proof of the Basic Theorem on Matrix Games

\square Step 1: show that without loss of generality, we can assume that the elements of matrix \boldsymbol{A} are all positive.
\square Step 2: show that the following conditions for NE existence are equal (i.e., find simpler, but equal versions of NE conditions):
(C1) There exist \boldsymbol{x}^{*} and \boldsymbol{y}^{*} such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}$ for all mixed strategies \boldsymbol{x} and \boldsymbol{y}. \downarrow
(C2) There exist $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ and v such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{y}$ for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.
凹
(C3) There exist $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ and v such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}$ for all pure strategies \boldsymbol{x} and \boldsymbol{y}.
\square Steps 3 and 4: prove the existence of $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ and v satisfying (C3) using the linear programming Duality Theorem.

Proof of the Basic Theorem

Step 1: WLOG, all elements of the payoff matrix \boldsymbol{A} can be assumed to be positive.
\square if there's a negative element, we can turn the game into a strategically equivalent one with positive elements by adding a sufficiently large constant c to all elements of \boldsymbol{A} (thus obtaining matrix \boldsymbol{A}^{\prime})
\square mathematically: $\quad \boldsymbol{A}^{\prime}=\boldsymbol{A}+$ c \boldsymbol{E}, \quad where $\quad \boldsymbol{E}=\left[\begin{array}{cccc}1 & 1 & \ldots & 1 \\ 1 & 1 & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & 1 & \ldots & 1\end{array}\right]$
\square it's easy to see that $\boldsymbol{x}^{\top} \boldsymbol{A}^{\prime} \boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}+c$ (no matter what the strategies are, player 1 gets an extra payoff of c), hence

$$
\boldsymbol{x}^{\top} \boldsymbol{A}^{\prime} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{* \top} \boldsymbol{A}^{\prime} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{* \top} \boldsymbol{A}^{\prime} \boldsymbol{y} \Leftrightarrow \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*}+c \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}^{*}+c \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}+c,
$$

so if we find a mixed-strategy NE for \boldsymbol{A}^{\prime}, it is also a mixed-strategy NE for A

Proof of the Basic Theorem

Step 2: the following conditions of NE existence are equal (\boldsymbol{x}^{*} and \boldsymbol{y}^{*} denote mixed strategies of the two players, v is a real number):
(C1) There exist \boldsymbol{x}^{*} and \boldsymbol{y}^{*} such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}$ for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.
(C2) There exist $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ and v such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{*^{\top} \boldsymbol{A} \boldsymbol{y}}$ for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.
(C3) There exist $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$ and v such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}$ for all pure strategies \boldsymbol{x} and \boldsymbol{y}.
\square first, we prove $(C 1) \Leftrightarrow(C 2)$

- $(C 1) \Rightarrow(C 2):$ if (C1) holds, then (C2) holds as well with $v=\boldsymbol{x}^{\star \top} \boldsymbol{A} \boldsymbol{y}^{*}$
$\square(C 1) \Leftarrow(C 2):$ because the inequality in (C2) holds for all mixed strategies \boldsymbol{x} and \boldsymbol{y}, it has to hold for $\boldsymbol{x}=\boldsymbol{x}^{*}, \boldsymbol{y}=\boldsymbol{y}^{*}$ as an instance, which yields: $\boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{\boldsymbol{*}^{\top}} \boldsymbol{A} \boldsymbol{y}^{*} \quad \Rightarrow \quad v=\boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}^{*}$
\square next, we prove $(C 2) \Leftrightarrow(C 3)$. Here, $(C 2) \Rightarrow(C 3)$ is obvious, as pure strategies are only a special case of mixed strategies.

Proof of the Basic Theorem

\square the most difficult part in step 2 is proving $(C 2) \Leftarrow(C 3)$
\square the argument goes as follows:
Mixed strategies are convex combinations of pure strategies; therefore, the expected payoff for a mixed strategy is a convex combination of the expected payoff for pure strategies. Thus, if $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v$ holds for all pure strategies \boldsymbol{x}, it has to hold for all mixed strategies as well.

Convex combination of n vectors:

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be n vectors of equal size. A convex combination of these vectors is a vector $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{n} \boldsymbol{v}_{n}$, where $c_{1}, c_{2}, \ldots, c_{n}$ are real numbers between 0 and 1 , the sum of which is 1 .
\square imagine player 1 has 3 alternative actions (Top, Middle, and Bottom row) \rightarrow mixed strategies are in the form $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$, which can be expressed as a convex combination of pure strategies: $\boldsymbol{x}=x_{1} \cdot(1,0,0)^{\top}+$ $x_{2} \cdot(0,1,0)^{\top}+x_{3} \cdot(0,0,1)^{\top}$

Proof of the Basic Theorem

Graphical illustration of a mixed-strategy space of player 1:

Strategy space of player $1: x=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$
such that $x_{1}+x_{2}+x_{3}=1$.

Proof of the Basic Theorem

\square including expected payoff in the plot: $x_{3}=1-x_{1}-x_{2}$, so x_{3} needn't be plotted; we plot expected payoff instead: $\mathrm{E} Z_{1}=\left(x_{1}, x_{2}, x_{3}\right) \boldsymbol{A} \boldsymbol{y}^{*} \rightarrow$ linear function of $\left(x_{1}, x_{2}, x_{3}\right)$

Proof of the Basic Theorem

\square the expected payoff for a mixed strategy $\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ is a convex combination of the expected payoff for the pure strategies T, M, and B :

Proof of the Basic Theorem

\square therefore, in order to show $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{\boldsymbol{*}} \leq v$ (the height of the whole of the upper triangle is below the level v), it's enough to show it for the three pure strategies (vertices of the triangle)

Proof of the Basic Theorem

\square trying to find NE strategy for player $2 \rightarrow$ we're looking for $\boldsymbol{y}^{*}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v$ for all mixed strategies \boldsymbol{x}
\square from the previous discussion, it suffices for the inequality to hold for all pure strategies \boldsymbol{x}

Proof of the Basic Theorem

\square trying to find NE strategy for player $2 \rightarrow$ we're looking for $\boldsymbol{y}^{*}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v$ for all mixed strategies \boldsymbol{x}
\square from the previous discussion, it suffices for the inequality to hold for all pure strategies \boldsymbol{x}
\square algebraically: we're looking for $\boldsymbol{y}^{*}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ such that

$(1,0,0, \ldots, 0) \boldsymbol{A} \boldsymbol{y}^{*} \leq v$			
$(0,1,0, \ldots, 0) \boldsymbol{A} \boldsymbol{y}^{*} \leq v$			
\vdots			
$(0,0,0, \ldots, 1) \boldsymbol{A} \boldsymbol{y}^{*} \leq v$			
$a_{m 1} y_{1}+a_{m 2} y_{2}+\ldots a_{m n} y_{n} \leq v$		\quad	$a_{11} y_{1}+a_{12} y_{2}+\ldots a_{1 n} y_{n} \leq v$,
:---:			
$a_{21} y_{1}+a_{22} y_{2}+\ldots a_{2 n} y_{n} \leq v$,			
\vdots	\(\Leftrightarrow \boldsymbol{A} \boldsymbol{y}^{*} \leq\left[\begin{array}{c}v 		

v

\vdots

v\end{array}\right]=v \cdot \mathbf{1}_{m}\)
and, of course, \boldsymbol{y}^{*} is a mixed strategy: $y_{1}+y_{2}+\ldots+y_{n}=1$ and $0 \leq y_{i} \leq 1$.

Proof of the Basic Theorem

\square trying to find NE strategy for player $2 \rightarrow$ we're looking for $\boldsymbol{y}^{*}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v$ for all mixed strategies \boldsymbol{x}
\square from the previous discussion, it suffices for the inequality to hold for all pure strategies \boldsymbol{x}
\square algebraically: we're looking for $\boldsymbol{y}^{*}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ such that

$(1,0,0, \ldots, 0) \boldsymbol{A} \boldsymbol{y}^{*} \leq v$				
$(0,1,0, \ldots, 0) \boldsymbol{A} \boldsymbol{y}^{*} \leq v$				
\vdots				
$(0,0,0, \ldots, 1) \boldsymbol{A} \boldsymbol{y}^{*} \leq v$		$a_{m 1} y_{1}+a_{m 2} y_{2}+\ldots a_{m n} y_{n} \leq v$	\quad	$a_{11} y_{1}+a_{12} y_{2}+\ldots a_{1 n} y_{n} \leq v$,
:---:				
$a_{21} y_{1}+a_{22} y_{2}+\ldots a_{2 n} y_{n} \leq v$,				
\vdots	\(\Leftrightarrow \boldsymbol{A} \boldsymbol{y}^{*} \leq\left[\begin{array}{c}v 			

v

\vdots

v\end{array}\right]=v \cdot \mathbf{1}_{m}\) and, of course, \boldsymbol{y}^{*} is a mixed strategy: $y_{1}+y_{2}+\ldots+y_{n}=1$ and $0 \leq y_{i} \leq 1$.
\square a similar approach can be used while looking for NE strategy of player 1
\square for player 1, we use the inequality: $v \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}=\boldsymbol{y}^{\top} \boldsymbol{A}^{\top} \boldsymbol{x}^{*}$
$\rightarrow \boldsymbol{x}$ and \boldsymbol{y} swapped, \boldsymbol{A} transposed, " \geq " instead of " \leq " (see the next step)

Proof of the Basic Theorem

Step 3: if a combination of $v, \boldsymbol{x}^{*}=\left(x_{1}, \ldots, x_{m}\right)^{\top}$, and $\boldsymbol{y}^{*}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ satisfies

$$
\begin{array}{rlr}
a_{11} y_{1}+a_{12} y_{2}+\ldots a_{1 n} y_{n} \leq v, & a_{11} x_{1}+a_{21} x_{2}+\ldots a_{m 1} x_{m} \geq v, \\
a_{21} y_{1}+a_{22} y_{2}+\ldots a_{2 n} y_{n} \leq v, & a_{12} x_{1}+a_{22} x_{2}+\ldots a_{m 2} x_{m} \geq v, \\
\vdots & & \vdots \\
a_{m 1} y_{1}+a_{m 2} y_{2}+\ldots a_{m n} y_{n} \leq v, & a_{1 n} x_{1}+a_{2 n} x_{2}+\ldots a_{m n} x_{m} \geq v, \\
y_{1}, y_{2}, \ldots y_{n} \geq 0, & x_{1}, x_{2}, \ldots x_{m} \geq 0, \\
y_{1}+y_{2}+\ldots y_{n}=1, & x_{1}+x_{2}+\ldots x_{m}=1,
\end{array}
$$

or, in brief,

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{y}^{*} & \leq v \cdot \mathbf{1}_{m}, & \boldsymbol{A}^{\top} \boldsymbol{x}^{*} & \geq v \cdot \mathbf{1}_{n}, \\
\boldsymbol{y}^{*} & \geq \mathbf{0}, & \boldsymbol{x}^{*} & \geq \mathbf{0}, \\
\mathbf{1}_{n}^{\top} \boldsymbol{y}^{*} & =1, & \mathbf{1}_{m}^{\top} \boldsymbol{x}^{*} & =1,
\end{aligned}
$$

then \boldsymbol{x}^{*} and \boldsymbol{y}^{*} are the NE strategies.

Proof of the Basic Theorem

Step 4: there exist \boldsymbol{x}^{*} and \boldsymbol{y}^{*} that satisfy the conditions from step 3 (and, therefore, are the NE strategies).
\square this is the crucial part of the proof; it uses the linear programming Duality Theorem

Primal and Dual LP problems:

$$
\begin{aligned}
& \text { Primal problem : maximize } z=\boldsymbol{c}^{\top} \boldsymbol{x} \quad \text { Dual problem: minimize } f=\boldsymbol{b}^{\top} \boldsymbol{y} \\
& \text { subject to } \\
& \text { subject to }
\end{aligned}
$$

Duality Theorem:

If both the primal and the dual problem have feasible solutions (i.e., solutions that satisfy the constraints), both have optimal solutions as well, and the optimal objective values are equal $\left(f^{*}=z^{*}\right)$

Proof of the Basic Theorem

- we gradually turn the conditions from step 4 into a primal and dual LP problem; first, divide all the inequalities and equations by v and substitute $p_{i}=y_{i} / v$ and $q_{j}=x_{j} / v$:

$$
\begin{array}{rlrl}
a_{11} p_{1}+a_{12} p_{2}+\ldots a_{1 n} p_{n} \leq 1, & a_{11} q_{1}+a_{21} q_{2}+\ldots a_{m 1} q_{m} & \geq 1, \\
a_{21} p_{1}+a_{22} p_{2}+\ldots a_{2 n} p_{n} \leq 1, & a_{12} q_{1}+a_{22} q_{2}+\ldots a_{m 2} q_{m} \geq 1, \\
\vdots & & \vdots \\
a_{m 1} p_{1}+a_{m 2} p_{2}+\ldots a_{m n} p_{n} \leq 1 & a_{1 n} q_{1}+a_{2 n} q_{2}+\ldots a_{m n} q_{m} \geq 1, \\
p_{1}, p_{2}, \ldots p_{n} \geq 0, & q_{1}, q_{2}, \ldots q_{m} \geq 0, \\
p_{1}+p_{2}+\ldots p_{n} & =1 / v, & q_{1}+q_{2}+\ldots q_{m} & =1 / v,
\end{array}
$$

or, in brief,

$$
\begin{aligned}
\boldsymbol{A p} & \leq \mathbf{1}_{m}, & \boldsymbol{A}^{\top} \boldsymbol{q} & \geq \mathbf{1}_{n}, \\
\boldsymbol{p} & \geq \mathbf{0}, & \boldsymbol{q} & \geq \mathbf{0}, \\
\mathbf{1}_{n}^{\top} \boldsymbol{p} & =1 / v, & \mathbf{1}_{m}^{\top} \boldsymbol{q} & =1 / v .
\end{aligned}
$$

Proof of the Basic Theorem

\square now we split the conditions for \boldsymbol{p} and \boldsymbol{q} into two linear programming problems, taking the LHS of the last row as the objectives:

$$
\begin{array}{rlrl}
\operatorname{maximize} z & =\mathbf{1}_{n}^{\top} \boldsymbol{p} & & \text { minimize } f=\mathbf{1}_{m}^{\top} \boldsymbol{q} \\
\text { subject to } & & \text { subject to } \\
\boldsymbol{A} \boldsymbol{p} \leq \mathbf{1}_{m}, & \boldsymbol{A}^{\top} \boldsymbol{q} \geq \mathbf{1}_{n}, \\
\boldsymbol{p} & \geq \mathbf{0} . & \boldsymbol{q} \geq \mathbf{0} .
\end{array}
$$

Proof of the Basic Theorem

\square now we split the conditions for \boldsymbol{p} and \boldsymbol{q} into two linear programming problems, taking the LHS of the last row as the objectives:

maximize z	$=\mathbf{1}_{n}^{\top} \boldsymbol{p}$		minimize $f=\mathbf{1}_{m}^{\top} \boldsymbol{q}$
subject to	subject to		
$\boldsymbol{A p} \leq \mathbf{1}_{m}$,	$\boldsymbol{A}^{\top} \boldsymbol{q} \geq \mathbf{1}_{n}$,		
\boldsymbol{p}	$\geq \mathbf{0}$.	$\boldsymbol{q} \geq \mathbf{0}$.	

\square the two LP problems are in the primal-dual relationship (with $\boldsymbol{b}=\mathbf{1}_{m}$ an $\boldsymbol{c}=\mathbf{1}_{n}$)
\square both have feasible solutions (take $\boldsymbol{p}=\mathbf{0}$ and \boldsymbol{q} with sufficiently large elements)

Proof of the Basic Theorem

\square now we split the conditions for \boldsymbol{p} and \boldsymbol{q} into two linear programming problems, taking the LHS of the last row as the objectives:

$$
\begin{array}{rlr}
\operatorname{maximize} z=\mathbf{1}_{n}^{\top} \boldsymbol{p} & \text { minimize } f=\mathbf{1}_{m}^{\top} \boldsymbol{q} \\
\text { subject to } & \text { subject to } \\
\boldsymbol{A} \boldsymbol{p} \leq \mathbf{1}_{m}, & \boldsymbol{A}^{\top} \boldsymbol{q} \geq \mathbf{1}_{n}, \\
\boldsymbol{p} \geq \mathbf{0} . & \boldsymbol{q} \geq \mathbf{0} .
\end{array}
$$

- the two LP problems are in the primal-dual relationship (with $\boldsymbol{b}=\mathbf{1}_{m}$ an $\boldsymbol{c}=\mathbf{1}_{n}$)
\square both have feasible solutions (take $\boldsymbol{p}=\mathbf{0}$ and \boldsymbol{q} with sufficiently large elements)
\square therefore, according to the Duality Theorem, both have optimal solutions (\boldsymbol{p}^{*} and \boldsymbol{q}^{*}) with equal objective values ($f^{*}=z^{*}=1 / v$).
\square it's easy to check that then $\boldsymbol{x}^{*}=v \cdot \boldsymbol{q}^{*}$ and $\boldsymbol{y}^{*}=v \cdot \boldsymbol{p}^{*}$ satisfy the conditions from step 4, and thus are the NE strategies

Proof of the Basic Theorem

Step 1: WLOG, all elements of the payoff matrix \boldsymbol{A} can be assumed to be positive.

Step 2: the following conditions of NE existence are equal:
(C1) $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{*^{\top}} \boldsymbol{A} \boldsymbol{y}$ for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.
(C2) $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}$ for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.
(C3) $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq v \leq \boldsymbol{x}^{\star^{\top}} \boldsymbol{A} \boldsymbol{y}$ for all pure strategies \boldsymbol{x} and \boldsymbol{y}.
Step 3: if a combination of $v, \boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)^{\top}$, and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ satisfies

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{y} & \leq v \cdot \mathbf{1}_{m}, & \boldsymbol{A}^{\top} \boldsymbol{x} & \geq v \cdot \mathbf{1}_{n}, \\
\boldsymbol{y} & \geq \mathbf{0}, & \boldsymbol{x} & \geq \mathbf{0}, \\
\mathbf{1}_{n}^{\top} \boldsymbol{y} & =1, & \mathbf{1}_{m}^{\top} \boldsymbol{x} & =1,
\end{aligned}
$$

then \boldsymbol{x} and \boldsymbol{y} are the NE strategies.
Step 4: there exist \boldsymbol{x} and \boldsymbol{y} that satisfy the conditions from step 4 (and, therefore, are the NE strategies).

Finding NE - Linear Programming (revision)

- Step 1: If there is a negative element in the payoff matrix, make all elements of the matrix positive by adding the same positive number to all elements of the matrix. (This does changes the game, but only into a strategically equivalent one.)
- Step 2: Solve the linear programming problem
maximize $p_{1}+p_{2}+\ldots+p_{n}$
subject to

$$
\begin{aligned}
& a_{11} p_{1}+a_{12} p_{2}+\ldots+a_{1 n} p_{n} \leq 1, \\
& a_{21} p_{1}+a_{22} p_{2}+\ldots+a_{2 n} p_{n} \leq 1, \\
& \ldots \\
& a_{m 1} p_{1}+a_{m 2} p_{2}+\ldots+a_{m n} p_{n} \leq 1, \\
& \quad p_{i} \geq 0, \quad i=1, \ldots, n .
\end{aligned}
$$

- Step 3: Divide the primal and dual solutions by the optimal value of the objective function:
- the primal solution determines the strategy of player 2.
\square the dual solution determines the strategy of player 1 .

Bimatrix Games

$=$ non-constant-sum games in normal form:

- a finite set of agents:
- strategy spaces (finite):
- strategy profile:
- payoff functions:
$Z_{1}(x, y), Z_{2}(x, y)$
\square payoffs written in two matrices, typically denoted by $\boldsymbol{A}=\left(a_{i j}\right)$ and $\boldsymbol{B}=\left(b_{i j}\right)$
- $a_{i j}=$ the payoff of player 1 for strategy profile (i, j)
(i.e., player 1 picks $i^{\text {th }}$ row and player 2 picks $j^{\text {th }}$ column)
- $b_{i j}=$ the payoff of player 2 for strategy profile (i, j)
\square typically, \boldsymbol{A} and \boldsymbol{B} written down in a single matrix with double entries:

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right], \quad \boldsymbol{A} ; \boldsymbol{B}=\left[\begin{array}{cc}
1 ; 5 & 2 ; 6 \\
3 ; 7 & 4 ; 8
\end{array}\right]
$$

Prisoner's Dilemma (again...)

$\square \quad \mathrm{PD}$ is a bimatrix game with matrices

$$
\boldsymbol{A}=\left[\begin{array}{cc}
-1 & -10 \\
0 & -5
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{cc}
-1 & 0 \\
-10 & -5
\end{array}\right]
$$

Player 2

NE's in Non-Constant-Sum Games

\square the same Nash-Equilibrium concept as in case of matrix games (one can't be better off when he/she alone deviates from NE)
\square mathematical definition (for pure strategies):
A strategy profile (x^{*}, y^{*}) with the property that

$$
\begin{aligned}
& Z_{1}\left(x, y^{*}\right) \leq Z_{1}\left(x^{*}, y^{*}\right) \\
& Z_{2}\left(x^{*}, y\right) \leq Z_{2}\left(x^{*}, y^{*}\right)
\end{aligned}
$$

for all $x \in X$ and $y \in Y$ is a NE.

NE's in Non-Constant-Sum Games

\square the same Nash-Equilibrium concept as in case of matrix games (one can't be better off when he/she alone deviates from NE)
\square mathematical definition (for pure strategies):
A strategy profile $\left(x^{*}, y^{*}\right)$ with the property that

$$
\begin{aligned}
& Z_{1}\left(x, y^{*}\right) \leq Z_{1}\left(x^{*}, y^{*}\right) \\
& Z_{2}\left(x^{*}, y\right) \leq Z_{2}\left(x^{*}, y^{*}\right)
\end{aligned}
$$

for all $x \in X$ and $y \in Y$ is a NE.
\square finding a NE using the best-response approach:

- player 1 plays her best response to the column selected by player 2
\rightarrow NE has to be the maximum in the column in matrix \boldsymbol{A}
\square player 2 plays her best response to the row selected by player 1
\rightarrow NE has to be the maximum in the row in matrix \boldsymbol{B}

Prisoner's Dilemma (yet again...)

player 1's best response:

- if player 2 stays silent, player 1's best response is to betray. Circle (B, S).
- if player 2 betrays, player 1's best response is to betray as well. Circle (B, B).

Player 2

	$1 \backslash 2$	Stay silent	Betray
Player 1	Stay silent	$-1 ;-1$	$-10 ; 0$
	Betray	$0-10$	$-5-5$

Prisoner's Dilemma (yet again...)

player 2's best response:

- if player 1 stays silent, player 2's best response is to betray. Square ($(, B, B$).
- if player 1 betrays, player 2 's best response is to betray as well. Square (B, B).

Prisoner's Dilemma (yet again...)

$\square(B, B)$ is the unique NE
\square not Pareto efficient $((S, S)$ better for both players)
\square for both players, strategy S is strictly dominated by strategy B

Player 2

Mixed-Strategy NE's in Bimatrix Games

mathematical definition:

NE is a combination of (mixed) strategies \boldsymbol{x}^{*} and \boldsymbol{y}^{*} with the property that

$$
\begin{aligned}
& \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}^{*} \\
& \boldsymbol{x}^{* \top} \boldsymbol{B} \boldsymbol{y} \leq \boldsymbol{x}^{* \top} \boldsymbol{B} \boldsymbol{y}^{*}
\end{aligned}
$$

for all mixed strategies \boldsymbol{x} and \boldsymbol{y}.

> Inequalities explained: $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}^{*} \leq \boldsymbol{x}^{* \top} \boldsymbol{A} \boldsymbol{y}^{*} \longrightarrow \begin{aligned} & \text { can be written as: } \mathrm{E} Z_{1}\left(\boldsymbol{x}, \boldsymbol{y}^{*}\right) \leq \mathrm{E} Z_{1}\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right), \\ & \text { which means: If player } 1 \text { deviates from NE } \\ & \text { his/her expected payoff will not increase }\end{aligned}$ $\boldsymbol{x}^{* \top} \boldsymbol{B} \boldsymbol{y} \leq \boldsymbol{x}^{* \top} \boldsymbol{B} \boldsymbol{y}^{*} \longrightarrow \begin{aligned} & \text { can be written as: } \mathrm{EZ} Z_{2}\left(\boldsymbol{x}^{*}, \boldsymbol{y}\right) \leq \mathrm{EZ} Z_{2}\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right),\end{aligned}$ $\begin{aligned} & \text { which means: If player } 2 \text { deviates from NE } \\ & \text { his/her expected payoff will not increase }\end{aligned}$

Exercise 1: Battle of the Sexes (again)

\square find pure-strategy NE's in the Battle of the Sexes game:

Boy			
	Girl \backslash Boy	Football	Shopping
Firl	Football	$2 ; 3$	$0 ; 0$
	Shopping	$1 ; 1$	$3 ; 2$

Exercise 1: Battle of the Sexes (again)

\square find pure-strategy NE's in the Battle of the Sexes game:

Boy			
	Girl \backslash Boy	Football	Shopping
Firl	Football	$2 ; 3$	$0 ; 0$
Shopping	$1 ; 1$	$3 i^{2}$	

\square pure-strategy NE's are: (F, F) and (S, S) (note: different payoffs!)
\square in addition, there's one mixed strategy equilibrium:

$$
\boldsymbol{x}^{*}=\left[\begin{array}{l}
1 / 4 \\
3 / 4
\end{array}\right], \quad \boldsymbol{y}^{*}=\left[\begin{array}{l}
3 / 4 \\
1 / 4
\end{array}\right]
$$

Exercise 1: Battle of the Sexes

\square assume there's a mixed solution with all elements positive (i.e., $x_{1}, x_{2}, y_{1}, y_{2}>0$)
$\square \quad$ if the girl best-responds with a mixed strategy, the boy must make her indifferent between F and S with his mixed strategy (why?)
$\square \quad$ therefore: $\mathrm{E} Z_{1}(F, y)=2 \times y_{1}+0 \times\left(1-y_{1}\right)=1 \times y_{1}+3 \times\left(1-y_{1}\right)=\mathrm{E} Z_{1}(S, y)$, and $y_{1}=3 / 4$
\square similarly, $\mathrm{E} Z_{2}(\boldsymbol{x}, F)=3 \times x_{1}+1 \times\left(1-x_{1}\right)=0 \times x_{1}+2 \times\left(1-x_{1}\right)=\mathrm{E} Z_{2}(\boldsymbol{x}, S)$, and $x_{1}=1 / 4$

	Girl \backslash Boy	Football	Shopping
Football	$2 ; 3$	$0 ; 0$	x_{1}
Shopping	$1 ; 1$	$3 ; 2$	$1-x_{1}$
	y_{1}	$1-y_{1}$	

Exercise 2: Game of Chicken

\square find NE's in the game of Chicken:
\square two drivers drive towards each other on a collision course

- either at least one swerves, or both may die in the crash
- whoever swerves is called "a chicken" (a coward)

Player 2

	$1 \backslash 2$	Swerve	Straight
Player 1	Swerve	$0 ; 0$	$-1 ; 1$
	Straight	$1 ;-1$	$-10 ;-10$

Exercise 3: Dominated NE's

\square find pure-strategy NE's in the following game
$\square \quad$ which of the two NE's would you choose if you were player $1 ?$
$\square \quad$ which of the two NE's would you choose if you were player 2 ?

$\square \quad$ the NE (B, R) is dominated by NE $(T, L) \rightarrow(T, L)$ is strategically more credible

Exercise 4: Only Mixed NE's

\square find out if there are any pure-strategy NE's in the following bimatrix game
\square if not, find a mixed-strategy NE the way we used for the Battle of Sexes

	Player 2		
	1 $\backslash 2$	L	R
Player 1	T	$3 ; 5$	$2 ;-1$
	B	$\mathbf{4 ; 2}$	$-2 ; 5$

NE Existence in Bimatrix Games

- Nash Existence Theorem (John Nash, 1950): Every normal-form game with finite strategy spaces has a mixed-strategy NE.
\square possible scenarios for bimatrix games:
- unique NE in pure strategies (prisoner's dilemma)
- multiple NE's (pure and mixed), no domination (BoS)
\square multiple NE's (pure and mixed) with domination (Ex. 3)
- no pure NE's, (mixed NE's only) (Ex.3)
\square note: apart from the 2×2 case, mixed NE's are generally difficult to find (non-linear programming techniques)

Dominated strategies in Bimatrix Games

\square as in matrix games, dominated strategies can be eliminated to simplify the problem
\square however, it's only safe to eliminate strictly dominated strategies (as opposed to only weakly dominated ones)

Example 1: prisoner's dilemma (yes, indeed, yet again...)

- strategy Stay silent is strictly dominated for both players
- it doesn't matter whether we start eliminating rows or columns, we always end up with the unique NE:

Dominated strategies in Bimatrix Games

Example 2:

- $\quad M$ weakly dominates T and B
\square two different elimination processes:
$\square 1$ eliminates $T, 2$ eliminates $\mathrm{L} \rightarrow(2 ; 1)$
$\square 1$ eliminates $B, 2$ eliminates $\mathrm{R} \rightarrow(1 ; \mathbf{1})$

	Player 2		
	$1 \backslash 2$	L	R
	T	1; 1	0 ; 0
Player 1	M	1; 1	2; 1
	B	0 ; 0	2; 1

Cooperation in Bimatrix Games

\square so far, we assumed the players do not cooperate
\square note: in matrix games, no cooperation is possible (why?)
$\square \quad$ with cooperation, NE is not the relevant principle anymore; still, it can be used in the decision-making process as a certain bargaining tool (or as a benchmark describing the case the players fail to agree on cooperation, see below)
\square two different cooperation settings:

- cooperation with transferable payoffs
- cooperation with non-transferable payoffs
\rightarrow in both cases, players cooperate only of it pays for both; i.e., both earn more than in the non-cooperative setting
- what is the non-cooperative payoff?

1. the NE payoff (if this can be decided)
2. the guaranteed payoff (bully-proof)

Guaranteed Payoff: An Example

Player 2

	$1 \backslash 2$	L	M	R
	T	$3 ; 1$	$9 ;-10$	$9 ; 2$
	C	$-9 ; 9$	$-5 ; 35$	$10 ;-2$
	B	$-10 ; 9$	$13 ; 4$	$5 ; 4$

\square the guaranteed payoff for a strategy is the worst possible result:

- for player 1, the worst-case scenarios for the individual strategies are $T: 3, C:-9, B:-10 \rightarrow$ guaranteed payoff of player $1=3$
- for player 2 , we have $L: 1, M:-10, R:-2 \rightarrow$ guaranteed payoff $=1$
\square guaranteed payoff of player $1 / 2$ is the largest row/column minimum
\square note that there's no NE in pure strategies here

Guaranteed Payoff: Another Example

Player 2

	$1 \backslash 2$	L	M	R
	T	3; 1	9;-10	9;2
Player 1	C	-9;9	-5;35	2;-2
	B	-10; 9	13; 4	5; 4

\square when deciding about the guaranteed payoffs, one can leave out strictly dominated strategies of both players (implausible bullying)
\square leaving out strategy C of player 1 increases player 2's guaranteed profit to 2
\square notation: non-cooperative (i.e., NE or guaranteed) profits will be denoted as $v(1)$ for player 1 and $v(2)$ for player 2

Cooperation with Transferable Payoffs

\square switch of players focus: from individual payoffs to the total payoff (which can be redistributed afterwards):

$1 \backslash 2$	L	M	R
T	$3 ; 1$	$9 ;-10$	$9 ; 2$
C	$-9 ; 9$	$-5 ; 35$	$2 ;-2$
B	$-10 ; 9$	$13 ; 3$	$5 ; 4$

$1 \backslash 2$	L	M	R
T	4	-1	11
\mathbf{T}	0	30	0
B	-1	16	9

\square the maximum attainable total payoff $=v(1,2)=30$
\square crucial question: how to divide the total payoff?

Distribution of Payoffs

\square imputation: a potential final distribution of payoffs to both players (a_{1} for player $1, a_{2}$ for player 2)
\square core of the game: the set of all imputations (a_{1}, a_{2}) such that:

$$
\begin{aligned}
a_{1}+a_{2} & =v(1,2) \\
a_{1} & \geq v(1) \\
a_{2} & \geq v(2)
\end{aligned}
$$

e.g., for the game from the previous slides,

$$
\begin{aligned}
a_{1}+a_{2} & =30 \\
a_{1} & \geq 3 \\
a_{2} & \geq 2
\end{aligned}
$$

\square superadditive effect: $v(1,2)-v(1)-v(2)=30-3-2=25$
\square a fair division: each player gets her guaranteed payoff + half of the superadditive effect:

$$
a_{1}^{*}=3+25 / 2=15.5, \quad a_{2}^{*}=2+25 / 2=14.5
$$

LECTURE 4:
MIXED STRATEGIES (CONTD), Bimatrix Games

Jan Zouhar Games and Decisions

