LECTURE 4: MIXED STRATEGIES (CONT'D), BIMATRIX GAMES

Jan Zouhar Games and Decisions

Mixed Strategies in Matrix Games (revision)

- mixed strategy: the player decides about the probabilities of the alternative strategies (sum of the probabilities = 1); when the decisive moment comes, he/she makes a random selection of the strategy with the stated probabilities
- *notation*: mixed strategies = column vectors x and y, *i*th element is the probability of *i*th row/column of matrix A being picked:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

payoffs become random variables; decisions use expected payoffs:

$$\mathbf{E} \mathbf{Z}_1 = \sum_{i=1}^m \sum_{j=1}^n x_i a_{ij} y_j = \mathbf{x}^\top \mathbf{A} \mathbf{y} = -\mathbf{E} \mathbf{Z}_2$$

Mixed-Strategy NE (revision)

mathematical definition:

NE is a combination of (mixed) strategies \mathbf{x}^* and \mathbf{y}^* with the property that

$$x^{\top}Ay^* \leq x^{*}Ay^* \leq x^{*}Ay$$

for all mixed strategies \mathbf{x} and \mathbf{y} .

- □ value of the game (v): player 1's expected payoff at NE $(x^* A y^*)$
- Basic Theorem on Matrix Games: for any matrix A there exists a mixed-strategy NE.
- □ finding mixed-strategy NE's:
 - **graphical solution** ($2 \times n$ and $m \times 2$ matrices only)
 - □ linear programming (general $m \times n$ case)

Finding NE – Linear Programming (revision)

- 4
- Step 1: If there is a negative element in the payoff matrix, make all elements of the matrix positive by adding the same positive number to all elements of the matrix. (This *does* changes the game, but only into a *strategically equivalent* one.)
- **Step 2**: Solve the linear programming problem maximize $p_1 + p_2 + ... + p_n$ subject to

$$\begin{aligned} a_{11}p_1 + a_{12}p_2 + \dots + a_{1n}p_n &\leq 1, \\ a_{21}p_1 + a_{22}p_2 + \dots + a_{2n}p_n &\leq 1, \\ \dots & \dots & \dots \\ a_{m1}p_1 + a_{m2}p_2 + \dots + a_{mn}p_n &\leq 1, \\ p_i &\geq 0, \quad i = 1, \dots, n. \end{aligned}$$

- Step 3: Divide the primal and dual solutions by the optimal value of the objective function:
 - the *primal solution* determines the strategy of *player 2*.
 - the *dual solution* determines the strategy of *player 1*.

Games and Decisions

Finding NE – Linear Programming

 \Box note: if we use the symbol $\mathbf{1}_n$ to denote vector

$$\mathbf{1}_{n} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \right\} n \text{ elements}$$

we can simplify the LP problem from step 2 as

maximize
$$\boldsymbol{z} = \mathbf{1}_n^\top \boldsymbol{p}$$

subject to
 $\boldsymbol{A} \boldsymbol{p} \leq \mathbf{1}_m,$

 $p \ge 0$.

(cont'd)

Proof of the Basic Theorem on Matrix Games

- **Step 1**: show that without loss of generality, we can assume that the elements of matrix A are all positive.
- Step 2: show that the following conditions for NE existence are equal (i.e., find *simpler*, *but equal* versions of NE conditions):
 - (C1) There exist x^* and y^* such that $x^T A y^* \le x^* A y^* \le x^* A y^*$ for all mixed strategies x and y.
 - (C2) There exist x^* , y^* and v such that $x^T A y^* \le v \le x^{*T} A y$ for all mixed strategies x and y.
 - (C3) There exist x^* , y^* and v such that $x^T A y^* \le v \le x^{*T} A y$ for all *pure* strategies x and y.
- Steps 3 and 4: prove the existence of x*, y* and v satisfying (C3) using the linear programming Duality Theorem.

- **Step 1**: WLOG, all elements of the payoff matrix **A** can be assumed to be positive.
- if there's a negative element, we can turn the game into a *strategically equivalent* one with positive elements by adding a sufficiently large constant c to all elements of A (thus obtaining matrix A')

$$\square mathematically: A' = A + cE, \text{ where } E = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & & 1 \\ \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

□ it's easy to see that $\mathbf{x}^{\top} \mathbf{A}' \mathbf{y} = \mathbf{x}^{\top} \mathbf{A} \mathbf{y} + c$ (no matter what the strategies are, player 1 gets an extra payoff of *c*), hence

$$\mathbf{x}^{\top} \mathbf{A}' \mathbf{y}^{*} \leq \mathbf{x}^{*\top} \mathbf{A}' \mathbf{y}^{*} \leq \mathbf{x}^{*\top} \mathbf{A}' \mathbf{y} \iff \mathbf{x}^{\top} \mathbf{A} \mathbf{y}^{*} + c \leq \mathbf{x}^{*\top} \mathbf{A} \mathbf{y}^{*} + c \leq \mathbf{x}^{*\top} \mathbf{A} \mathbf{y} + c,$$

so if we find a mixed-strategy NE for A', it is also a mixed-strategy NE for A

Games and Decisions

- Step 2: the following conditions of NE existence are equal (x* and y* denote mixed strategies of the two players, v is a real number):
- (C1) There exist \mathbf{x}^* and \mathbf{y}^* such that $\mathbf{x}^\top A \mathbf{y}^* \leq \mathbf{x}^{*\top} A \mathbf{y}^* \leq \mathbf{x}^{*\top} A \mathbf{y}^*$ for all mixed strategies \mathbf{x} and \mathbf{y} .
- (C2) There exist \mathbf{x}^* , \mathbf{y}^* and v such that $\mathbf{x}^\top A \mathbf{y}^* \leq v \leq \mathbf{x}^{*\top} A \mathbf{y}$ for all mixed strategies \mathbf{x} and \mathbf{y} .
- (C3) There exist \mathbf{x}^* , \mathbf{y}^* and v such that $\mathbf{x}^\top A \mathbf{y}^* \leq v \leq \mathbf{x}^{*\top} A \mathbf{y}$ for all pure strategies \mathbf{x} and \mathbf{y} .
- \Box first, we prove $(C1) \Leftrightarrow (C2)$
 - (C1) \Rightarrow (C2): if (C1) holds, then (C2) holds as well with $v = x^* A y^*$
 - $(C1) \leftarrow (C2)$: because the inequality in (C2) holds for *all* mixed strategies x and y, it has to hold for $x = x^*$, $y = y^*$ as an instance, which yields: $x^{*\top}Ay^* \leq v \leq x^{*\top}Ay^* \implies v = x^{*\top}Ay^*$
- □ next, we prove $(C2) \Leftrightarrow (C3)$. Here, $(C2) \Rightarrow (C3)$ is obvious, as pure strategies are only a special case of mixed strategies.

Games and Decisions

Jan Zouhar

- the most difficult part in step 2 is proving $(C2) \leftarrow (C3)$
- $\hfill\square$ the argument goes as follows:

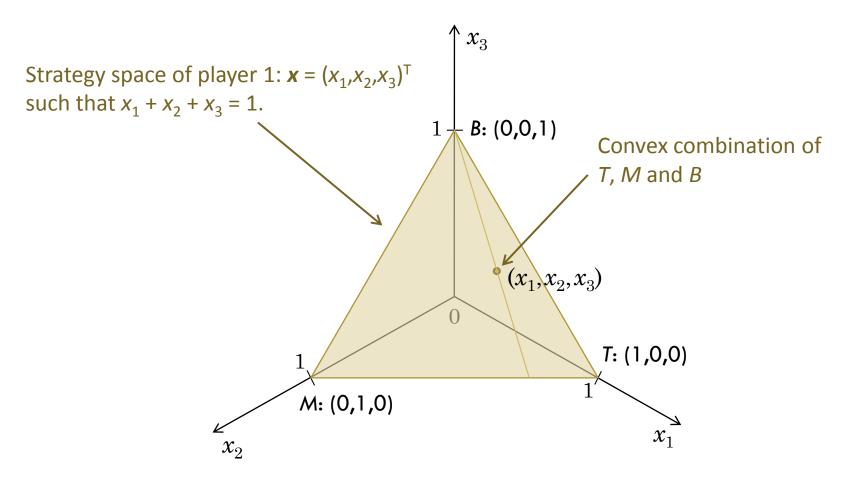
Mixed strategies are convex combinations of pure strategies; therefore, the expected payoff for a mixed strategy is a convex combination of the expected payoff for pure strategies. Thus, if $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}^* \leq v$ holds for all pure strategies \mathbf{x} , it has to hold for all mixed strategies as well.

Convex combination of *n* vectors:

Let $v_1, v_2, ..., v_n$ be *n* vectors of equal size. A *convex combination* of these vectors is a vector $c_1v_1 + c_2v_2 + ... + c_nv_n$, where $c_1, c_2, ..., c_n$ are real numbers between 0 and 1, the sum of which is 1.

□ imagine player 1 has 3 alternative actions (*Top*, *Middle*, and *Bottom* row) → mixed strategies are in the form $\mathbf{x} = (x_1, x_2, x_3)^T$, which can be expressed as a convex combination of pure strategies: $\mathbf{x} = x_1 \cdot (1,0,0)^T + x_2 \cdot (0,1,0)^T + x_3 \cdot (0,0,1)^T$

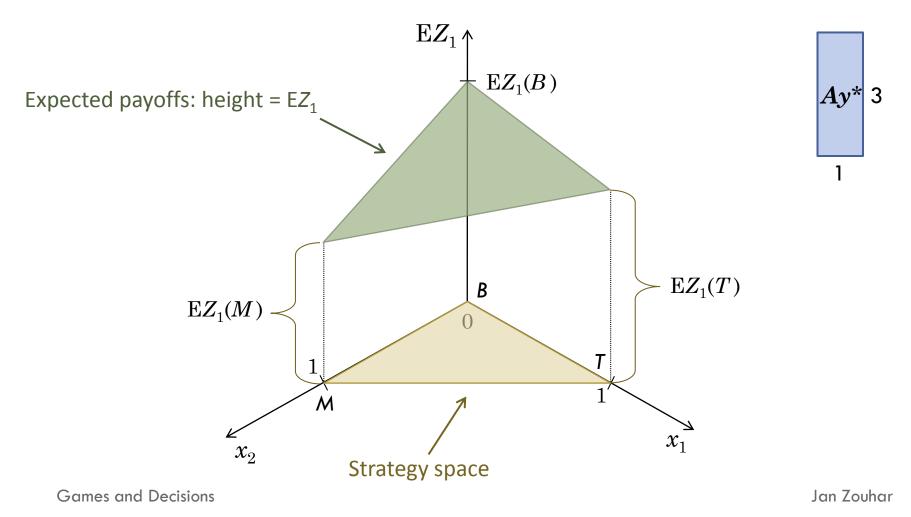
Graphical illustration of a mixed-strategy space of player 1:



Jan Zouhar

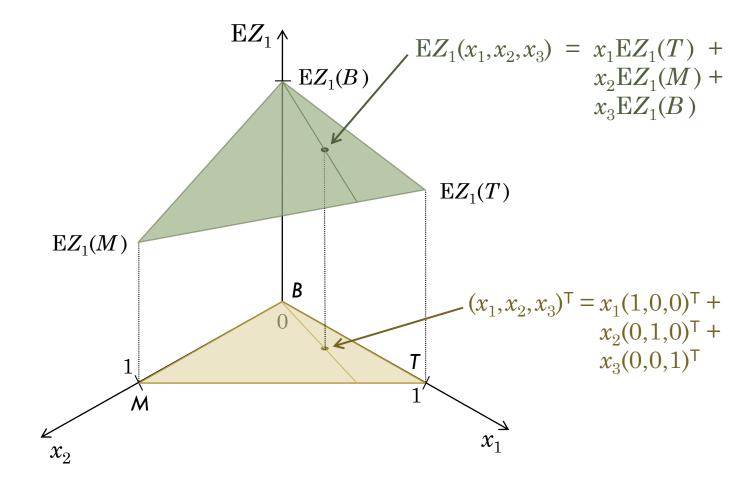
(cont'd)

including expected payoff in the plot: $x_3 = 1 - x_1 - x_2$, so x_3 needn't be plotted; we plot expected payoff instead: $EZ_1 = (x_1, x_2, x_3)Ay^* \rightarrow \text{linear function of } (x_1, x_2, x_3)$



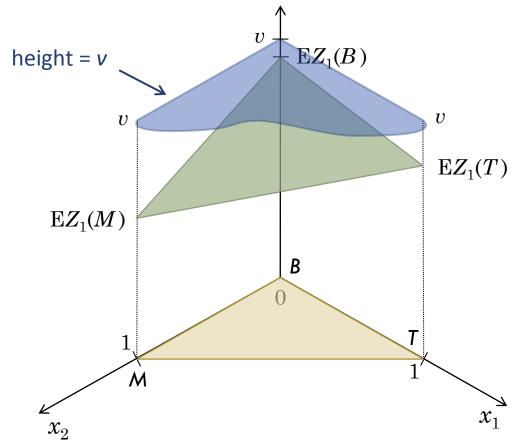
(cont'd)

□ the expected payoff for a mixed strategy $(x_1, x_2, x_3)^T$ is a convex combination of the expected payoff for the pure strategies *T*, *M*, and *B*:



(cont'd)

therefore, in order to show $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}^* \leq v$ (the height of the whole of the upper triangle is below the level v), it's enough to show it for the three pure strategies (vertices of the triangle)



(cont'd)

- □ trying to find NE strategy for player 2 → we're looking for $y^* = (y_1, ..., y_n)^T$ such that $x^T A y^* \le v$ for all mixed strategies x
- from the previous discussion, it suffices for the inequality to hold for all *pure strategies* x

(cont'd)

- □ trying to find NE strategy for player 2 → we're looking for $y^* = (y_1, ..., y_n)^T$ such that $x^T A y^* \le v$ for all mixed strategies x
- \Box from the previous discussion, it suffices for the inequality to hold for all *pure strategies* **x**
- □ algebraically: we're looking for $y^* = (y_1, ..., y_n)^T$ such that

and, of course, y^* is a mixed strategy: $y_1 + y_2 + \ldots + y_n = 1$ and $0 \le y_i \le 1$.

(cont'd)

- □ trying to find NE strategy for player 2 → we're looking for $y^* = (y_1, ..., y_n)^T$ such that $x^T A y^* \le v$ for all mixed strategies x
- \Box from the previous discussion, it suffices for the inequality to hold for all *pure strategies* **x**
- □ algebraically: we're looking for $y^* = (y_1, ..., y_n)^T$ such that

and, of course, y* is a mixed strategy: y₁+y₂+...+y_n = 1 and 0 ≤ y_i ≤ 1.
a similar approach can be used while looking for NE strategy of player 1
for player 1, we use the inequality: v ≤ x*^TAy = y^TA^Tx*

 \rightarrow *x* and *y* swapped, *A* transposed, " \geq " instead of " \leq " (see the next step)

Step 3: if a combination of v, $\mathbf{x}^* = (x_1, \dots, x_m)^T$, and $\mathbf{y}^* = (y_1, \dots, y_n)^T$ satisfies

$$\begin{array}{ll} a_{11}y_1 + a_{12}y_2 + \ldots a_{1n}y_n \leq v, & a_{11}x_1 + a_{21}x_2 + \ldots a_{m1}x_m \geq v, \\ a_{21}y_1 + a_{22}y_2 + \ldots a_{2n}y_n \leq v, & a_{12}x_1 + a_{22}x_2 + \ldots a_{m2}x_m \geq v, \\ & \vdots & & \vdots \\ a_{m1}y_1 + a_{m2}y_2 + \ldots a_{mn}y_n \leq v, & a_{1n}x_1 + a_{2n}x_2 + \ldots a_{mn}x_m \geq v, \\ & y_1, y_2, \ldots y_n \geq 0, & x_1, x_2, \ldots x_m \geq 0, \\ & y_1 + y_2 + \ldots y_n = 1, & x_1 + x_2 + \ldots x_m = 1, \end{array}$$

or, in brief,

$$A \mathbf{y}^* \leq v \cdot \mathbf{1}_m, \qquad A^\top \mathbf{x}^* \geq v \cdot \mathbf{1}_n,$$

 $\mathbf{y}^* \geq \mathbf{0}, \qquad \mathbf{x}^* \geq \mathbf{0},$
 $\mathbf{1}_n^\top \mathbf{y}^* = 1, \qquad \mathbf{1}_m^\top \mathbf{x}^* = 1,$

then \mathbf{x}^* and \mathbf{y}^* are the NE strategies.

Games and Decisions

- **Step 4**: there exist **x**^{*} and **y**^{*} that satisfy the conditions from step 3 (and, therefore, are the NE strategies).
- this is the crucial part of the proof; it uses the linear programming Duality Theorem

Primal and Duc	al LP problems:
Primal problem : maximize $m{z} = m{c}^ op m{x}$	Dual problem: minimize $f = \boldsymbol{b}^{\top} \boldsymbol{y}$
subject to	subject to
$Ax \leq b$,	$oldsymbol{A}^{ op}oldsymbol{y} \geq oldsymbol{c},$
$oldsymbol{x} \geq oldsymbol{0}.$	$oldsymbol{y} \ge oldsymbol{0}.$

Duality Theorem:

If both the primal and the dual problem have *feasible solutions* (i.e., solutions that satisfy the constraints), both have *optimal solutions* as well, and the optimal objective values are equal $(f^* = z^*)$

(cont'd)

- 19
- □ we gradually turn the conditions from step 4 into a primal and dual LP problem; first, divide all the inequalities and equations by *v* and substitute $p_i = y_i / v$ and $q_j = x_j / v$:

$$\begin{array}{lll} a_{11}p_1 + a_{12}p_2 + \ldots a_{1n}p_n \leq 1, & a_{11}q_1 + a_{21}q_2 + \ldots a_{m1}q_m \geq 1, \\ a_{21}p_1 + a_{22}p_2 + \ldots a_{2n}p_n \leq 1, & a_{12}q_1 + a_{22}q_2 + \ldots a_{m2}q_m \geq 1, \\ \vdots & & \vdots & \vdots \\ a_{m1}p_1 + a_{m2}p_2 + \ldots a_{mn}p_n \leq 1 & a_{1n}q_1 + a_{2n}q_2 + \ldots a_{mn}q_m \geq 1, \\ p_1, p_2, \ldots p_n \geq 0, & q_1, q_2, \ldots q_m \geq 0, \\ p_1 + p_2 + \ldots p_n = 1/v, & q_1 + q_2 + \ldots q_m = 1/v, \end{array}$$

or, in brief,

- 20
- now we split the conditions for *p* and *q* into two linear programming problems, taking the LHS of the last row as the objectives:

maximize $z = \mathbf{1}_n^\top \boldsymbol{p}$ minimize $f = \mathbf{1}_m^\top \boldsymbol{q}$ subject tosubject to $A \boldsymbol{p} \leq \mathbf{1}_m,$ $A^\top \boldsymbol{q} \geq \mathbf{1}_n,$ $\boldsymbol{p} \geq \mathbf{0}.$ $\boldsymbol{q} \geq \mathbf{0}.$

- 21
- now we split the conditions for *p* and *q* into two linear programming problems, taking the LHS of the last row as the objectives:
 - $\begin{array}{ll} \text{maximize } \boldsymbol{z} = \boldsymbol{1}_n^\top \boldsymbol{p} & \text{minimize } \boldsymbol{f} = \boldsymbol{1}_m^\top \boldsymbol{q} \\ \text{subject to} & \text{subject to} \\ \boldsymbol{A} \boldsymbol{p} \leq \boldsymbol{1}_m, & \boldsymbol{A}^\top \boldsymbol{q} \geq \boldsymbol{1}_n, \\ \boldsymbol{p} \geq \boldsymbol{0}. & \boldsymbol{q} \geq \boldsymbol{0}. \end{array}$
- the two LP problems are in the primal-dual relationship (with $b = 1_m$ an $c = 1_n$)
- both have feasible solutions (take p = 0 and q with sufficiently large elements)

 \square now we split the conditions for p and q into two linear programming

problems, taking the LHS of the last row as the objectives:

maximize $\boldsymbol{z} = \boldsymbol{1}_n^\top \boldsymbol{p}$	minimize $f = 1_m^\top \boldsymbol{q}$
subject to	subject to
$Ap \leq 1_m$,	$\boldsymbol{A}^{\top} \boldsymbol{q} \ge \boldsymbol{1}_n,$
$oldsymbol{p} \geq oldsymbol{0}.$	$oldsymbol{q} \geq oldsymbol{0}.$

- the two LP problems are in the primal-dual relationship (with $b = 1_m$ an $c = 1_n$)
- both have feasible solutions (take p = 0 and q with sufficiently large elements)
- therefore, according to the Duality Theorem, both have optimal solutions (p^* and q^*) with equal objective values ($f^* = z^* = 1 / v$).
- □ it's easy to check that then $x^* = v \cdot q^*$ and $y^* = v \cdot p^*$ satisfy the conditions from step 4, and thus are the NE strategies

Step 1: WLOG, all elements of the payoff matrix **A** can be assumed to be positive.

Step 2: the following conditions of NE existence are equal :

(C1) $\mathbf{x}^{\top} A \mathbf{y}^* \leq \mathbf{x}^{*\top} A \mathbf{y}^* \leq \mathbf{x}^{*\top} A \mathbf{y}$ for all mixed strategies \mathbf{x} and \mathbf{y} . (C2) $\mathbf{x}^{\top} A \mathbf{y}^* \leq v \leq \mathbf{x}^{*\top} A \mathbf{y}$ for all mixed strategies \mathbf{x} and \mathbf{y} . (C3) $\mathbf{x}^{\top} A \mathbf{y}^* \leq v \leq \mathbf{x}^{*\top} A \mathbf{y}$ for all pure strategies \mathbf{x} and \mathbf{y} .

Step 3: if a combination of v, $\mathbf{x} = (x_1, \dots, x_m)^T$, and $\mathbf{y} = (y_1, \dots, y_n)^T$ satisfies

$Ay \leq v \cdot 1_m,$	$\boldsymbol{A}^{\!\!\top}\boldsymbol{x} \geq \boldsymbol{v} \cdot \boldsymbol{1}_n,$
$y \ge 0$,	$x \ge 0$,
$1_{n}^{ op} \mathbf{y} = 1,$	$1_m^{\top} \mathbf{x} = 1,$

then **x** and **y** are the NE strategies.

Step 4: there exist **x** and **y** that satisfy the conditions from step 4 (and, therefore, are the NE strategies).

Games and Decisions

Jan Zouhar

Finding NE – Linear Programming (revision)

- □ **Step 1**: If there is a negative element in the payoff matrix, make all elements of the matrix positive by adding the same positive number to all elements of the matrix. (This *does* changes the game, but only into a *strategically equivalent* one.)
- □ **Step 2**: Solve the linear programming problem maximize $p_1 + p_2 + ... + p_n$ subject to

$$\begin{aligned} a_{11}p_1 + a_{12}p_2 + \dots + a_{1n}p_n &\leq 1, \\ a_{21}p_1 + a_{22}p_2 + \dots + a_{2n}p_n &\leq 1, \\ \dots & \dots & \dots \\ a_{m1}p_1 + a_{m2}p_2 + \dots + a_{mn}p_n &\leq 1, \\ p_i &\geq 0, \quad i = 1, \dots, n. \end{aligned}$$

- □ **Step 3**: Divide the primal and dual solutions by the optimal value of the objective function:
 - the *primal solution* determines the strategy of *player 2*.
 - the *dual solution* determines the strategy of *player 1*.

Games and Decisions

24

Bimatrix Games

- = non-constant-sum games in normal form:
 - a finite set of agents: {1,2}
 strategy spaces (*finite*): {X,Y}
 strategy profile: (x,y)
 payoff functions: Z₁(x,y), Z₂(x,y)
- payoffs written in two matrices, typically denoted by $A = (a_{ij})$ and $B = (b_{ij})$
 - *a_{ij}* = *the payoff of player* 1 for strategy profile (*i*,*j*) (i.e., player 1 picks *i*th row and player 2 picks *j*th column)
 - $b_{ij} = the payoff of player 2$ for strategy profile (i,j)
- \Box typically, *A* and *B* written down in a single matrix with double entries:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, \quad \boldsymbol{A}; \boldsymbol{B} = \begin{bmatrix} 1; 5 & 2; 6 \\ 3; 7 & 4; 8 \end{bmatrix}.$$

Games and Decisions

Prisoner's Dilemma (again...)

26

□ PD is a bimatrix game with matrices

$$\boldsymbol{A} = \begin{bmatrix} -1 & -10 \\ 0 & -5 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} -1 & 0 \\ -10 & -5 \end{bmatrix}.$$

Player 2

	1 \ 2	Stay silent	Betray
Player 1	Stay silent	-1;-1	-10 ; 0
	Betray	0;-10	-5;-5

NE's in Non-Constant-Sum Games

- 27
- the same Nash-Equilibrium concept as in case of matrix games (one can't be better off when he/she alone deviates from NE)
- **mathematical definition** (for pure strategies):

A strategy profile (x^*, y^*) with the property that

$$\begin{split} & Z_1(x,y^{*}) \leq Z_1(x^{*},y^{*}), \\ & Z_2(x^{*},y) \leq Z_2(x^{*},y^{*}) \end{split}$$

for all $x \in X$ and $y \in Y$ is a NE.

NE's in Non-Constant-Sum Games

- 28
- the same Nash-Equilibrium concept as in case of matrix games (one can't be better off when he/she alone deviates from NE)
- **mathematical definition** (for pure strategies):

A strategy profile (x^*, y^*) with the property that

$$\begin{split} & Z_1(x,y^{*}) \leq Z_1(x^{*},y^{*}), \\ & Z_2(x^{*},y) \leq Z_2(x^{*},y^{*}) \end{split}$$

for all $x \in X$ and $y \in Y$ is a NE.

- □ finding a NE using the *best-response approach*:
 - □ player 1 plays her best response to the *column* selected by player 2
 - \rightarrow NE has to be the maximum in the column in matrix A
 - □ player 2 plays her best response to the *row* selected by player 1
 - ightarrow NE has to be the maximum in the row in matrix $oldsymbol{B}$

Prisoner's Dilemma (yet again...)

- 29
- player 1's best response:
 - □ if player 2 stays silent, player 1's best response is to betray. Circle (*B*,*S*).
 - if player 2 betrays, player 1's best response is to betray as well. Circle (*B*,*B*).

	1 \ 2	Stay silent	Betray	
Player 1	Stay silent	-1;-1	-10 ; 0	
	Betray	0-10	-5 -5	

Prisoner's Dilemma (yet again...)

- 30
- player 2's best response:
 - □ if player 1 stays silent, player 2's best response is to betray. Square (*S*,*B*).
 - if player 1 betrays, player 2's best response is to betray as well. Square (*B*,*B*).

		Тау	
	1 \ 2	Stay silent	Betray
Player 1	Stay silent	-1;-1	-10;0
	Betray	0-10	-5 -5

Prisoner's Dilemma (yet again...)

- \square (*B*,*B*) is the unique NE
- \Box not Pareto efficient ((*S*,*S*) better for both players)
- $\hfill\square$ for both players, strategy S is strictly dominated by strategy B

		Пау	
	1 \ 2	Stay silent	Betray
Player 1	Stay silent	-1;-1	-10;0
	Betray	0-10	-5 -5

Mixed-Strategy NE's in Bimatrix Games

32

mathematical definition:

NE is a combination of (mixed) strategies \mathbf{x}^* and \mathbf{y}^* with the property that $x^{\top}Ay^* \leq x^{*\top}Ay^*,$

$$x^{*}By \leq x^{*}By^{*}$$

for all mixed strategies x and y.

Inequalities explained:

$$x^{\top}Ay^* \leq x^{*}Ay^*$$

can be written as: $EZ_1(x, y^*) \le EZ_1(x^*, y^*)$, which means: If player 1 deviates from NE his/her expected payoff will not increase

$$x^{\star \top} B y \leq x^{\star \top} B y^{\star}$$

can be written as: $EZ_2(\mathbf{x}^*, \mathbf{y}) \leq EZ_2(\mathbf{x}^*, \mathbf{y}^*)$, which means: If player 2 deviates from NE his/her expected payoff will not increase

Exercise 1: Battle of the Sexes (again)

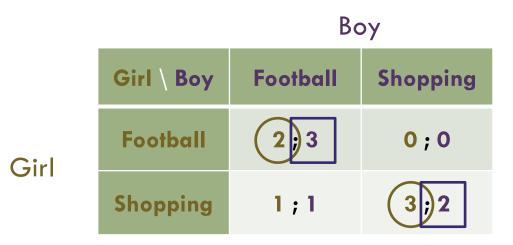
□ find pure-strategy NE's in the Battle of the Sexes game:

	Воу		
	Girl \ Boy	Football	Shopping
Girl	Football	2 ; 3	0;0
	Shopping	1;1	3;2

33

Exercise 1: Battle of the Sexes (again)

□ find pure-strategy NE's in the Battle of the Sexes game:



- \Box pure-strategy NE's are: (*F*,*F*) and (*S*,*S*) (*note: different payoffs!*)
- □ in addition, there's one mixed strategy equilibrium:

$$\boldsymbol{x^*} = \begin{bmatrix} 1/4 \\ 3/4 \end{bmatrix}, \quad \boldsymbol{y^*} = \begin{bmatrix} 3/4 \\ 1/4 \end{bmatrix}$$

Games and Decisions

Jan Zouhar

Exercise 1: Battle of the Sexes

- □ assume there's a mixed solution with all elements positive (i.e., x_1 , x_2 , y_1 , $y_2 > 0$)
- \Box if the girl best-responds with a mixed strategy, the boy must make her indifferent between *F* and *S* with his mixed strategy (why?)
- □ therefore: $EZ_1(F,y) = 2 \times y_1 + 0 \times (1-y_1) = 1 \times y_1 + 3 \times (1-y_1) = EZ_1(S,y)$, and $y_1 = 3/4$
- □ similarly, $EZ_2(x,F) = 3 \times x_1 + 1 \times (1-x_1) = 0 \times x_1 + 2 \times (1-x_1) = EZ_2(x,S)$, and $x_1 = 1/4$

	Football	Shopping	
Football	2;3	0;0	x_1
Shopping	1;1	3;2	$1 - x_1$
	${\mathcal Y}_1$	$1 - y_1$	

Exercise 2: Game of Chicken

- □ find NE's in the game of Chicken:
 - **•** two drivers drive towards each other on a collision course

Player 2

- either at least one swerves, or both may die in the crash
- whoever swerves is called "a chicken" (a coward)

	1 \ 2SwerveStraightSwerve0;0-1;1		
	1 \ 2	Swerve	Straight
Player 1	Swerve	0;0	-1;1
ridyer i	Straight	1;-1	-10 ; -10

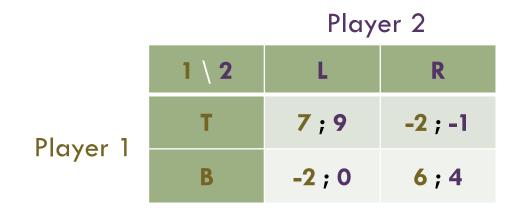


Games and Decisions

Jan Zouhar

Exercise 3: Dominated NE's

- 37
- find pure-strategy NE's in the following game
- □ which of the two NE's would you choose if you were player 1?
- □ which of the two NE's would you choose if you were player 2?

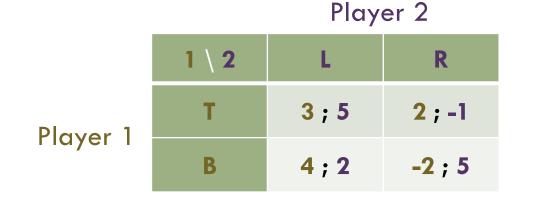


□ the NE (*B*,*R*) is dominated by NE (*T*,*L*) \rightarrow (*T*,*L*) is strategically more credible

Games and Decisions

Exercise 4: Only Mixed NE's

- 38
- find out if there are any pure-strategy NE's in the following bimatrix game
- if not, find a mixed-strategy NE the way we used for the Battle of Sexes



NE Existence in Bimatrix Games

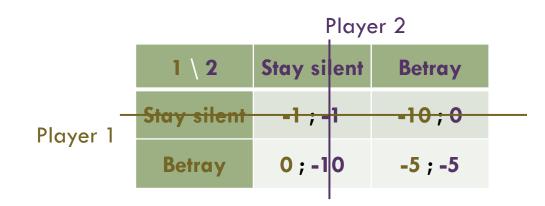
- 39
- Nash Existence Theorem (John Nash, 1950): Every normal-form game with finite strategy spaces has a mixed-strategy NE.
- possible scenarios for bimatrix games:
 - unique NE in pure strategies (prisoner's dilemma)
 - □ multiple NE's (pure and mixed), no domination (*BoS*)
 - □ multiple NE's (pure and mixed) with domination (*Ex. 3*)
 - □ no pure NE's, (mixed NE's only) (*Ex. 3*)
- note: apart from the 2×2 case, mixed NE's are generally difficult to find (non-linear programming techniques)

Dominated strategies in Bimatrix Games

- 40
- as in matrix games, dominated strategies can be eliminated to simplify the problem
- however, it's only safe to eliminate *strictly* dominated strategies (as opposed to only *weakly* dominated ones)

Example 1: *prisoner's dilemma* (yes, indeed, yet again...)

- strategy *Stay silent* is *strictly dominated* for both players
- it doesn't matter whether we start eliminating rows or columns, we always end up with the unique NE:



Dominated strategies in Bimatrix Games (cont'd)

Example 2:

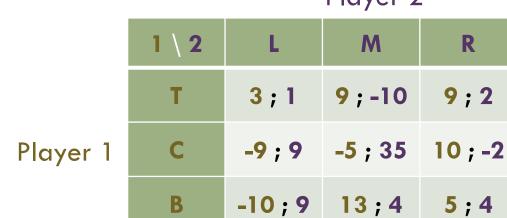
- \Box *M* weakly dominates *T* and *B*
- two different elimination processes:
 - **1** eliminates T, **2** eliminates $L \rightarrow (2;1)$
 - **1** eliminates B, 2 eliminates $R \rightarrow (1;1)$

		1107	
	1 \ 2	1 \ 2 L R	
	т	1;1	0;0
Player 1	Μ	1;1	2 ;1
	В	0;0	2 ;1

Cooperation in Bimatrix Games

- **42**
- □ so far, we assumed the players do not cooperate
- note: in matrix games, no cooperation is possible (why?)
- with cooperation, NE is not the relevant principle anymore; still, it can be used in the decision-making process as a certain bargaining tool (or as a benchmark describing the case the players fail to agree on cooperation, see below)
- two different cooperation settings:
 - cooperation with transferable payoffs
 - cooperation with non-transferable payoffs
 - → in both cases, players cooperate only of it pays for both; i.e., both earn more than in the non-cooperative setting
 - what is the non-cooperative payoff?
 - 1. the NE payoff (if this can be decided)
 - 2. the guaranteed payoff (bully-proof)

Guaranteed Payoff: An Example



Player 2

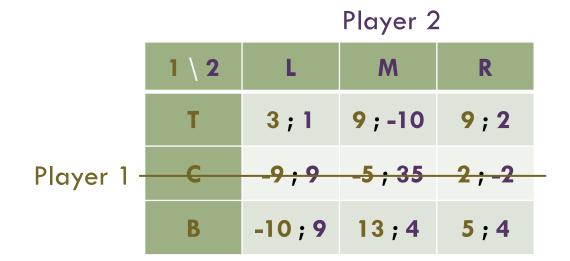
- □ the *guaranteed payoff for a strategy* is the worst possible result:
 - for player 1, the worst-case scenarios for the individual strategies are *T*: **3**, *C*: -9, *B*: $-10 \rightarrow$ *guaranteed payoff of player* 1 = 3

• for player 2, we have *L*: **1**, *M*: -10, *R*: $-2 \rightarrow$ guaranteed payoff = **1**

- □ guaranteed payoff of player 1/2 is the largest row/column minimum
- note that there's no NE in pure strategies here

Games and Decisions

Guaranteed Payoff: Another Example



- when deciding about the guaranteed payoffs, one can leave out strictly dominated strategies of both players (*implausible bullying*)
- $\hfill\square$ leaving out strategy C of player 1 increases player 2's guaranteed profit to 2
- □ *notation*: non-cooperative (i.e., NE or guaranteed) profits will be denoted as v(1) for player 1 and v(2) for player 2

44

Cooperation with Transferable Payoffs

- 45
- switch of players focus: from individual payoffs to the total payoff (which can be redistributed afterwards):

1 \ 2	L	М	R		1 \ 2	L.	Μ	R
т	3;1	9;-10	9;2		т	4	-1	1
С	-9;9	-5 ; 35	2 ; -2		С	0	30	C
В	-10 ; 9	13;3	5;4	Ÿ	В	-1	16	9

• the maximum attainable total payoff = v(1,2) = 30

□ crucial question: how to divide the total payoff?

Jan Zouhar

Games and Decisions

Distribution of Payoffs

- imputation: a potential final distribution of payoffs to both players (a₁ for player 1, a₂ for player 2)
- **core of the game**: the set of all imputations (a_1, a_2) such that:

$$a_1 + a_2 = v(1,2),$$

 $a_1 \ge v(1),$
 $a_2 \ge v(2),$

e.g., for the game from the previous slides,

$$a_1 + a_2 = 30,$$

 $a_1 \ge 3,$
 $a_2 \ge 2.$

- □ superadditive effect: v(1,2) v(1) v(2) = 30 3 2 = 25
- a fair division: each player gets her guaranteed payoff + half of the superadditive effect:

$$a_1^* = 3 + 25 / 2 = 15.5, \quad a_2^* = 2 + 25 / 2 = 14.5.$$

Games and Decisions

Jan Zouhar

LECTURE 4: MIXED STRATEGIES (CONT'D), BIMATRIX GAMES

Jan Zouhar Games and Decisions