LECTURE 2:
MATRIX GAMES

Jan Zouhar Games and Decisions

Normal (Strategic) Form Games

Main traits:
\square simultaneous moves

- players have to make their strategy choices simultaneously, without knowing the strategies that have been chosen by the other player(s)
\square common knowledge of available strategies
\square while there is no information about what other players will actually choose, we assume that the strategic choices available to each player are known by all players
\square rationality \& interdependence
- players must think not only about their own best strategic choice but also the best strategic choice of the other player(s)

Normal (Strategic) Form Games

- mathematical notation of a game's elements:
- a finite set of agents:
$\{1,2, \ldots, n\}$
- strategy spaces (finite or infinite):
- after selection: a strategy profile:
$\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- payoff functions:
$Z_{1}(\boldsymbol{x}), Z_{2}(\boldsymbol{x}), \ldots, Z_{n}(\boldsymbol{x})$
(or: $\left.\quad Z_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), Z_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, Z_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$
\square infinite strategy spaces: payoff functions typically expressed as mathematical formulas:

$$
\begin{aligned}
& Z_{1}\left(x_{1}, x_{2}\right)=100-\left(x_{1}+2 x_{2}\right) \\
& Z_{2}\left(x_{1}, x_{2}\right)=150-\left(2 x_{1}+x_{2}\right) .
\end{aligned}
$$

\square example: Cournot oligopoly, strategies = quantities supplied

Normal (Strategic) Form Games

\square finite strategy spaces: payoffs specified in tables (or matrices)

- Prisoner's dilemma revisited:
- payoffs in two matrices \rightarrow a bimatrix game

Player B

A $\backslash B$	Stay silent	Betray
Player A	Stay silent	$-1,-1$
$-10,0$		
Betray	$0,-10$	$-5,-5$

Game 1: A Bimatrix Game

\square choose a strategy for player 1 in the following bimatrix game:

Player 2

	$1 \backslash 2$	W	X	Y	Z
	A	5,2	2,6	1,4	1,4
Player 1	B	9,5	1,3	0,2	4,8
	C	7,0	2,2	1,5	5,1
	D	0,0	3,2	2,1	1,1

Game 1: A Bimatrix Game

\square comments on individual strategies:
\square A: no matter what player 2 (opponent) plays, this strategy is worse than or equal to \mathbf{C} (i.e., \mathbf{C} weakly dominates \mathbf{A})
\rightarrow no rational player would ever play A!
$\square \mathbf{B}$: high payoff combinations (\mathbf{B}, \mathbf{W}) and (\mathbf{B}, \mathbf{Z})
\rightarrow works only in case players cooperate!
$\square \mathbf{B}$ and \mathbf{C} : highest sum of possible payoffs (i.e., row sums)
\rightarrow best only if the opponent picks her strategy at random!
$\square \mathbf{C}$: looks safe - always gives the highest or second-highest payoff
\rightarrow doesn't take the opponents rationality into account!
\square game-theoretic approach: both players rational, aware of the other player's rationality

- optimal strategy: D (we'll be explaining why in the following lectures)

Battle of the Networks: A Constant-Sum Game

\square suppose there are just two television networks. Both are battling for shares of viewers ($0-100 \%$). Higher shares are preferred
(= higher advertising revenues).

- sum of shares $=100 \%$, i.e. for two players

$$
Z_{1}\left(x_{1}, x_{2}\right)+Z_{2}\left(x_{1}, x_{2}\right)=\text { const. for all }\left(x_{1}, x_{2}\right)
$$

\square network 1 has an advantage in sitcoms. If it runs a sitcom, it always gets a higher share than if it runs a game show.
\square network 2 has an advantage in game shows. If it runs a game show it always gets a higher share than if it runs a sitcom.

Network 2

Zero-Sum Games

\square zero-sum game: a special case of constant-sum games

$$
\text { sum of payoffs }=Z_{1}+Z_{1}+\ldots+Z_{n}=0
$$

\square every constant-sum game has a strategically equivalent counterpart in zero-sum games

- example: zero-sum version of battle of the networks
- payoffs expressed as the difference from the 50/50 share
\rightarrow differences in outcomes unchanged \rightarrow strategic equivalence
Network 2

Network 1 $1 \backslash 2$	Sitcom	Game show	
	Sitcom	$5 \%,-5 \%$	$2 \%,-2 \%$
	Game show	$0 \%, 0 \%$	$-5 \%, 5 \%$

Note: entries for 1 and 2 always opposite $\left(Z_{1}=-Z_{2}\right) \rightarrow$ no need to write both!

Matrix Games

\square a special case of zero-sum games:

- a finite set of agents:
- strategy spaces (finite):
- strategy profile:
- payoff functions:
$Z_{1}(x, y), Z_{2}(x, y)$
zero-sum payoffs: $Z_{1}(x, y)+Z_{2}(x, y)=0$
\square payoffs written in a matrix, typically denoted by \boldsymbol{A} :

$$
\boldsymbol{A}=\left(a_{i j}\right)_{\substack{i=1, \ldots, m \\
j=1, \ldots, n}}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

$\square a_{i j}=$ the payoff of player 1 for strategy profile (i, j)
(i.e., player 1 picks i th strategy and player 2 picks j th)

Matrix Games

\square example: battle of the networks (zero-sum version)

- a matrix game with

$$
\mathbf{A}=\left[\begin{array}{cc}
5 & 2 \\
0 & -5
\end{array}\right]
$$

- note: in order to know the strategic nature of the game, nothing else needs to be specified (the payoffs and number of strategies of both players are determined by A)

Network 2

	$1 \backslash 2$	Sitcom	Game show
Network 1	Sitcom	5	2
	Game show	0	-5

Nash Equilibrium

\square one of the most widely used game-theoretical concepts (not only for matrix games)
\square best-response approach:

- determine the "best response" of each player to a particular choice of strategy by the other player (do this for both players)
- if each player's strategy choice is a best response to the strategy choice of the other player, we're in a Nash equilibrium (NE)
"NE is such a combination of strategies that neither of the players can increase their payoff by choosing a different strategy."
"NE is a solution with the property that whoever of the players chooses some other strategy, he or she will not increase his or her payoff."

Nash Equilibrium in Matrix Games

- mathematical definition:

A strategy profile (x^{*}, y^{*}) with the property that

$$
Z_{1}\left(x, y^{*}\right) \leq Z_{1}\left(x^{*}, y^{*}\right) \leq Z_{1}\left(x^{*}, y\right)
$$

for all $x \in X$ and $y \in Y$ is a NE.

Inequality from the definition above explained:

Finding NE's in Matrix Games

\square a matrix game can have 0,1 or multiple NE's
\square best-response analysis (a.k.a. cell-by-cell inspection)

- network 1's best response:
- if network 2 runs a sitcom, network 1's best response is to run a sitcom. Circle (S, S).
- if network 2 runs a game show, network 1's best response is to run a sitcom. Circle (S, G).

Finding NE's in Matrix Games

- network 2's best response:
- if network 1 runs a sitcom, network 2's best response is to run a game show. Square (S, G).
- if network 1 runs a game show, network 2's best response is to run a game show. Square (G, G).
\square the NE strategy profile is (S, G). (if network 2 plays G, network 1's best response is S and vice versa)

Finding NE's in Matrix Games

\square from the best-response analysis it follows that a NE is represented by such an element in the payoff matrix that is both...

- ...the maximum in its column (player 1's best response)
- ...the minimum in its row (player 2's best response)
\square such an element is called a saddle point of the matrix
\square value of a saddle point $=Z_{1}\left(x^{*}, y^{*}\right)=$ value of the game
\square notion of stability: neither player has an incentive to deviate from NE

NE's in Matrix Games: Exercise 1

\square find a NE in the following matrix game:

Player 2

	$\mathbf{1} \backslash 2$	W	X	Y	Z
	A	4	4	(3)	5
Player 1	B	42	10	2	$\boxed{-1}$
	C	-12	56	2	12

NE's in Matrix Games: Exercise 2

\square find all NE's in the following matrix game

Player 2

	$1 \backslash 2$	W	X	Y	Z
	A	(2)	3	(5)	(2)
Player 1	B	(2)	4	(5)	(2)
	C	-2	(7)	2	0

Multiple Nash Equilibria

QUIZZ:

Consider a matrix game with payoff matrix $\mathbf{A}=\left(a_{i j}\right)$. Let a_{27} and a_{43} be two NE's.
a) Is it possible that $a_{27}<a_{43}$?
b) Are a_{23} and a_{47} Nash equilibria as well?
\square answers:
a) no.
b) yes.
\square how to find out: use the basic properties of a saddle point (see next slide)

Multiple Nash Equilibria

- conclusion: multiple equilibria always have equal values and are placed in "rectangular positions"

Dominated strategies

\square definition:
Strategy $x_{1} \in X$ strictly dominates strategy $x_{2} \in X$, if

$$
Z_{1}\left(x_{1}, y\right)>Z_{1}\left(x_{2}, y\right) \text { for all } y \in Y
$$

Analogously, $y_{1} \in Y$ strictly dominates strategy $y_{2} \in Y$, if

$$
Z_{1}\left(x, y_{1}\right)<Z_{1}\left(x, y_{2}\right) \text { for all } x \in X
$$

Weak domination is similar, only it admits $Z_{1}\left(x_{1}, y\right)=Z_{1}\left(x_{2}, y\right)$ for some $y \in Y$, or $Z_{1}\left(x, y_{1}\right)=Z_{1}\left(x, y_{2}\right)$ for some $x \in X$.
\square example:

- network 1: G is dominated by S
- network 2: S is dominated by G

Network 1

Network 2

$1 \backslash 2$	S	G
S	5	2
G	0	-5

Dominated strategies

\square as a rational player would never play a dominated strategy, matrix games can be simplified by deleting the players' dominated strategies

\square iterative elimination of dominated strategies:
\square elimination of dominated rows \rightarrow columns \rightarrow rows \rightarrow columns $\rightarrow \ldots$

- I-know-he-knows-I'm-rational type of thinking

Dominated strategies

\square example: extended battle of networks ($T=$ talent show)

1. network 2 : no dominated strategies
2. network 1: G dominated (by S)
3. network 2: G dominated (by T)
4. network 1: T dominated (by S)
5. network 2: S dominated (by T)

Network 2

Dominated strategies

\square note: sometimes no strategies to eliminate, but still a single NE, as in the example below

Network 2

	$1 \backslash 2$	S	G	T
	S	5	2	1
Network 1	G	6	-5	-4
	T	-2	3	-1

Dominated strategies: Exercise 3

\square eliminate dominated strategies in the matrix game from Exercise 2:

Player 2

	$\mathbf{1} \backslash \mathbf{2}$	W	X	Y	Z
	A	2	3	5	2
Player 1	B	2	4	5	2
	C	-2	7	2	0

Game 2: Rock, Paper, Scissors

$\square \quad$ in this game, each player has 3 strategies: rock (R), paper (P) and scissors (S).
\square rules:

- scissors cut paper
- paper wraps rock
- rock crushes scissors
- winner gets $€ 1$ from his/her opponent
a) Can this game be modelled as a matrix game?
b) Which strategy would you choose?
c) Are there any saddle points in the matrix?

Game 2: Rock, Paper, Scissors

Player 2

	$\mathbf{1} \backslash \mathbf{2}$	\mathbf{R}	\mathbf{P}	\mathbf{S}
	\mathbf{R}	0	-1	$(1$
Player 1	\mathbf{P}	1	0	-1
	S	-1	$(1$	0

\square no saddle point in the payoff matrix, but still there's a way to play the game

- all strategies "equally good" \rightarrow the best thing for both players is to choose their strategy at random, with equal probabilities
- even if the other player finds out about the other players' strategy, he/she can't use it against him/her

Game 2: Rock, Paper, Scissors

\rightarrow switch from pure strategies to mixed strategies
\square pure strategy: the player decides for a certain strategy

- mixed strategy:
- the player decides about the probabilities of the alternative strategies
- when the decisive moment comes, he/she makes a random selection of the strategy with the stated probabilities
\square even if a matrix game has no NE in pure strategies (i.e., no saddle point of the payoff matrix), it still has a NE in mixed strategies (always)
\square optimal mixed strategies for RPC game:

$$
\boldsymbol{x}^{*}=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right], \quad \boldsymbol{y}^{*}=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]
$$

LECTURE 2:
MATRIX GAMES

Jan Zouhar Games and Decisions

