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Main traits: 

 simultaneous moves 

 players have to make their strategy choices simultaneously, without 

knowing the strategies that have been chosen by the other player(s) 

 common knowledge of available strategies 

 while there is no information about what other players will actually 

choose, we assume that the strategic choices available to each player 

are known by all players 

 rationality & interdependence 

 players must think not only about their own best strategic choice but 

also the best strategic choice of the other player(s) 
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 mathematical notation of a game’s elements: 

 a finite set of agents: {1,2,...,n} 

 strategy spaces (finite or infinite): { X1 , X2 ,..., Xn } 

 after selection: a strategy profile: x = (x1 , x2 ,..., xn )
 

 payoff functions: Z1(x), Z2(x),..., Zn(x) 

 (or:  Z1(x1 , x2 ,...,xn ), Z2(x1 , x2 ,...,xn ),..., Zn(x1 , x2 ,...,xn ) ) 

 

 infinite strategy spaces: payoff functions typically expressed as 

mathematical formulas: 

Z1(x1,x2) = 100 – (x1 + 2x2), 

Z2(x1,x2) = 150 – (2x1 + x2). 

 example: Cournot oligopoly, strategies = quantities supplied 
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 finite strategy spaces: payoffs specified in tables (or matrices) 

 Prisoner’s dilemma revisited: 

 payoffs in two matrices → a bimatrix game 

 

 

 

 

 

 

 

 

 

 

A \ B Stay silent Betray 

Stay silent –1 , –1 –10 , 0 

Betray 0 , – 10 – 5 , – 5 

Player A 

Player B 
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 choose a strategy for player 1 in the following bimatrix game: 

1 \ 2 W X Y Z 

A 5 , 2 2 , 6 1 , 4 1 , 4 

B 9 , 5 1 , 3 0 , 2 4 , 8 

C 7 , 0 2 , 2 1 , 5 5 , 1 

D 0 , 0 3 , 2 2 , 1 1 , 1 

Player 1 

Player 2 
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 comments on individual strategies: 

 A: no matter what player 2 (opponent) plays, this strategy is worse 

than or equal to C (i.e., C weakly dominates A) 

→ no rational player would ever play A! 

 B: high payoff combinations (B,W) and (B,Z) 

→ works only in case players cooperate! 

 B and C: highest sum of possible payoffs (i.e., row sums) 

→ best only if the opponent picks her strategy at random! 

 C: looks safe – always gives the highest or second-highest payoff 

→ doesn’t take the opponents rationality into account! 

 game-theoretic approach: both players rational, aware of the other 

player’s rationality 

 optimal strategy: D (we’ll be explaining why in the following 

lectures) 
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 suppose there are just two television networks. Both are battling for 

shares of viewers (0 – 100%). Higher shares are preferred 

(= higher advertising revenues). 

 sum of shares = 100%, i.e. for two players 

Z1(x1,x2) + Z2(x1,x2) = const.    for all (x1,x2) 

 network 1 has an advantage in sitcoms. If it runs a sitcom, it always 

gets a higher share than if it runs a game show. 

 network 2 has an advantage in game shows. If it runs a game show it 

always gets a higher share than if it runs a sitcom. 

1 \ 2 Sitcom Game show 

Sitcom 55% , 45% 52% , 48% 

Game show 50% , 50% 45% , 55% 

Network 1 

Network 2 
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 zero-sum game: a special case of constant-sum games 

sum of payoffs = Z1 + Z1 + … + Zn  = 0. 

 every constant-sum game has a strategically equivalent counterpart in 

zero-sum games 

 example: zero-sum version of battle of the networks 

 payoffs expressed as the difference from the 50/50 share 

→ differences in outcomes unchanged → strategic equivalence 

1 \ 2 Sitcom Game show 

Sitcom 5% , -5% 2% , -2% 

Game show 0% , 0% -5% , 5% 

Network 1 

Network 2 

Note: entries for 1 and 2 always opposite (Z1 = –Z2) → no need to write both! 
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 a special case of zero-sum games: 

 a finite set of agents: {1,2} 

 strategy spaces (finite): { X,Y} 

 strategy profile: (x,y) 

 payoff functions: Z1(x,y), Z2(x,y) 

 zero-sum payoffs:  Z1(x,y) + Z2(x,y) = 0 

 payoffs written in a matrix, typically denoted by A: 

 

 

 

 

 aij = the payoff of player 1 for strategy profile (i,j) 

(i.e., player 1 picks ith strategy and player 2 picks jth)  
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 example: battle of the networks (zero-sum version) 

 a matrix game with  

 

 

 

 note: in order to know the strategic nature of the game, nothing else 

needs to be specified (the payoffs and number of strategies of both 

players are determined by A) 

1 \ 2 Sitcom Game show 

Sitcom 5 2 

Game show 0 -5 

Network 1 

Network 2 

 
  

 

5 2

0 5
A
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 one of the most widely used game-theoretical concepts (not only for 

matrix games) 

 best-response approach:  

 determine the “best response” of each player to a particular choice of 

strategy by the other player (do this for both players) 

 if each player’s strategy choice is a best response to the strategy 

choice of the other player, we’re in a Nash equilibrium (NE) 

 

“NE is such a combination of strategies that neither of the players can 

increase their payoff by choosing a different strategy.” 

“NE is a solution with the property that whoever of the players chooses some 

other strategy, he or she will not increase his or her payoff.” 
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 mathematical definition: 

A strategy profile (x*, y*) with the property that 

Z1(x,y*) ≤ Z1(x*,y*) ≤ Z1(x*,y) 

for all x  X and y  Y is a NE.   

 
 

 

Z1(x,y*) ≤ Z1(x*,y*) ≤ Z1(x*,y) 

Inequality from the definition above explained: 

If player 2 deviates from NE, he/she won’t be any better off 

If player 1 deviates from NE, he/she won’t be any better off 



Finding NE’s in Matrix Games 

Jan Zouhar Games and Decisions 

13 

 a matrix game can have 0, 1 or multiple NE’s 

 best-response analysis (a.k.a. cell‐by‐cell inspection) 

 network 1’s best response: 

 if network 2 runs a sitcom, network 1’s best response is to run a 

sitcom. Circle (S,S). 

 if network 2 runs a game show, network 1’s best response is to run 

a sitcom. Circle (S,G). 

 

1 \ 2 S G 

S 5 2 

G 0 -5 
Network 1 

Network 2 
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 network 2’s best response: 

 if network 1 runs a sitcom, network 2’s best response is to run a 

game show. Square (S,G). 

 if network 1 runs a game show, network 2’s best response is to run 

a game show. Square (G,G). 

 the NE strategy profile is (S,G). (if network 2 plays G, network 1’s best 

response is S and vice versa) 

 

1 \ 2 S G 

S 5 2 

G 0 -5 
Network 1 

Network 2 
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 from the best-response analysis it follows that a NE is represented by 

such an element in the payoff matrix that is both… 

 …the maximum in its column (player 1’s best response) 

 …the minimum in its row (player 2’s best response) 

 such an element is called a saddle point of the matrix 

 value of a saddle point = Z1(x*,y*) = value of the game 

 notion of stability: neither player has an incentive to deviate from NE 
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 find a NE in the following matrix game: 

1 \ 2 W X Y Z 

A 4 4 3 5 

B 42 10 2 -1 

C -12 56 2 12 

Player 1 

Player 2 
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 find all NE’s in the following matrix game 

1 \ 2 W X Y Z 

A 2 3 5 2 

B 2 4 5 2 

C -2 7 2 0 

Player 1 

Player 2 
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 answers: 

a) no. 

b) yes. 

 how to find out: use the basic properties of a saddle point 

(see next slide)  

 

Consider a matrix game with payoff matrix A = (aij). Let a27 and 

a43 be two NE’s. 

a) Is it possible that a27 < a43 ? 

b) Are a23 and a47  Nash equilibria as well? 

QUIZZ: 
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NE’s 

2nd row 

4th row 

a27 a23 

a43 a47 

3rd  7th  

≤ 

≥ 

≤
 ≤

 

 conclusion: multiple equilibria always have equal values and are placed 

in “rectangular positions” 
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 definition: 

 Strategy x1 X strictly dominates strategy x2 X, if 

Z1(x1,y) > Z1(x2,y) for all yY. 

 Analogously, y1 Y strictly dominates strategy y2 Y, if 

Z1(x,y1) < Z1(x,y2) for all xX. 

 Weak domination is similar, only it admits Z1(x1,y) = Z1(x2,y) for some 

yY, or Z1(x,y1) = Z1(x,y2) for some xX. 

 example: 

 network 1: G is dominated by S 

 network 2: S is dominated by G 1 \ 2 S G 

S 5 2 

G 0 -5 
Network 1 

Network 2 
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 as a rational player would never play a dominated strategy, matrix 

games can be simplified by deleting the players’ dominated strategies 

 

 

 

 

 

 

 

 

 iterative elimination of dominated strategies: 

 elimination of dominated rows → columns → rows → columns → … 

 I-know-he-knows-I’m-rational type of thinking 

 

1 \ 2 S G 

S 5 2 

G 0 -5 
Network 1 

Network 2 
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 example: extended battle of networks (T = talent show) 

1. network 2: no dominated strategies 

2. network 1: G dominated (by S) 

3. network 2: G dominated (by T)  

4. network 1: T dominated (by S) 

5. network 2: S dominated (by T) 

 

 

1 \ 2 S G T 

S 5 2 1 

G 0 -5 -4 

T -2 3 -1 

Network 1 

Network 2 
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 note: sometimes no strategies to eliminate, but still a single NE, as in the 

example below 

 

1 \ 2 S G T 

S 5 2 1 

G 6 -5 -4 

T -2 3 -1 

Network 1 

Network 2 
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 eliminate dominated strategies in the matrix game from Exercise 2: 

1 \ 2 W X Y Z 

A 2 3 5 2 

B 2 4 5 2 

C -2 7 2 0 

Player 1 

Player 2 
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 in this game, each player has 3 strategies: rock (R), paper (P) and 

scissors (S). 

 rules: 

 scissors cut paper 

 paper wraps rock 

 rock crushes scissors 

 winner gets €1 from his/her opponent 

 

 

a)  Can this game be modelled as a matrix game? 

b)  Which strategy would you choose?  

c)  Are there any saddle points in the matrix? 
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1 \ 2 R P S 

R 0 -1 1 

P 1 0 -1 

S -1 1 0 

Player 1 

Player 2 

 no saddle point in the payoff matrix, but still there’s a way to play the 

game 

 all strategies “equally good” → the best thing  for both players is to 

choose their strategy at random, with equal probabilities 

 even if the other player finds out about the other players’ strategy, 

he/she can’t use it against him/her 
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→ switch from pure strategies to mixed strategies 

 pure strategy: the player decides for a certain strategy 

 mixed strategy: 

 the player decides about the probabilities of the alternative 

strategies 

 when the decisive moment comes, he/she makes a random 

selection of the strategy with the stated probabilities 

 even if a matrix game has no NE in pure strategies (i.e., no saddle point 

of the payoff matrix), it still has a NE in mixed strategies (always) 

 optimal mixed strategies for RPC game: 

1 1
3 3

1 1
3 3

1 1
3 3

* , *

   
   
    
   
   
   

x y
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