LECTURE 2: MATRIX GAMES

Jan Zouhar Games and Decisions

Normal (Strategic) Form Games

2

Main traits:

simultaneous moves

players have to make their strategy choices *simultaneously*, *without knowing the strategies* that have been chosen by the other player(s)

common knowledge of available strategies

 while there is no information about what other players will actually choose, we assume that the *strategic choices* available to each player *are known by all players*

rationality & interdependence

 players must think not only about their own best strategic choice but also the best strategic choice of the other player(s)

Normal (Strategic) Form Games

 $\{X_1, X_2, ..., X_n\}$

 $\mathbf{x} = (x_1, x_2, ..., x_n)$

- □ *mathematical notation* of a game's elements:
 - a finite set of agents: $\{1,2,...,n\}$
 - strategy spaces (finite or infinite):
 - after selection: a strategy profile:
 - payoff functions: $Z_1(x), Z_2(x), \dots, Z_n(x)$ (or: $Z_1(x_1, x_2, \dots, x_n), Z_2(x_1, x_2, \dots, x_n), \dots, Z_n(x_1, x_2, \dots, x_n))$
- *infinite strategy spaces*: payoff functions typically expressed as mathematical formulas:

$$Z_1(x_1, x_2) = 100 - (x_1 + 2x_2),$$

$$Z_2(x_1, x_2) = 150 - (2x_1 + x_2).$$

• example: *Cournot oligopoly*, strategies = quantities supplied

Normal (Strategic) Form Games

(cont'd)

- □ *finite strategy spaces*: payoffs specified in tables (or *matrices*)
 - Prisoner's dilemma revisited:
 - payoffs in two matrices \rightarrow a *bimatrix game*

Pl	aye	er B
----	-----	------

	A \ B	Stay silent	Betray
Player A	Stay silent	-1,-1	-10,0
	Betray	<mark>0</mark> , – 10	- 5 , - 5

Game 1: A Bimatrix Game

□ choose a strategy for player 1 in the following bimatrix game:

	1 \ 2	W	X	Y	Z
Player 1	Α	5,2	2,6	1,4	1,4
	В	9,5	1,3	0,2	4,8
	С	7,0	2,2	1,5	5,1
	D	0,0	3,2	2,1	1,1

Player 2

5

Game 1: A Bimatrix Game

(cont'd)

- comments on individual strategies:
 - A: no matter what player 2 (opponent) plays, this strategy is worse than or equal to C (i.e., C weakly dominates A)
 → no rational player would ever play A!
 - B: high payoff combinations (B,W) and (B,Z)
 → works only in case players cooperate!
 - B and C: highest sum of possible payoffs (i.e., row sums)
 → best only if the opponent picks her strategy at random!
 - C: looks safe always gives the highest or second-highest payoff
 → doesn't take the opponents rationality into account!
- game-theoretic approach: both players rational, aware of the other player's rationality
 - optimal strategy: D (we'll be explaining why in the following lectures)

Battle of the Networks: A Constant-Sum Game

- 7
- suppose there are just two television networks. Both are battling for shares of viewers (0-100%). Higher shares are preferred (= higher advertising revenues).
 - sum of shares = 100%, i.e. for two players

 $Z_1(x_1, x_2) + Z_2(x_1, x_2) = const.$ for all (x_1, x_2)

- network 1 has an advantage in sitcoms. If it runs a sitcom, it always gets a higher share than if it runs a game show.
- network 2 has an advantage in game shows. If it runs a game show it always gets a higher share than if it runs a sitcom.

Zero-Sum Games

zero-sum game: a special case of constant-sum games

$$sum of payoffs = Z_1 + Z_1 + ... + Z_n = 0.$$

- every constant-sum game has a strategically equivalent counterpart in zero-sum games
 - example: zero-sum version of battle of the networks
 - □ payoffs expressed as the difference from the 50/50 share
 - \rightarrow differences in outcomes unchanged \rightarrow *strategic equivalence*

	1 \ 2	Sitcom	Game show
Network 1	Sitcom	5%,-5%	2%,-2%
	Game show	0% , 0%	-5%, 5%

Network 2

Note: entries for 1 and 2 always opposite $(Z_1 = -Z_2) \rightarrow no need to write both! \blacktriangleleft$

Games and Decisions

Jan Zouhar

Matrix Games

- a special case of zero-sum games:

 a finite set of agents:
 \$1,2\$

 strategy spaces (*finite*):

 \$X,Y\$
 \$trategy profile:
 \$x,y\$

 payoff functions:
 - **zero-sum payoffs:** $Z_1(x,y) + Z_2(x,y) = 0$
- \Box payoffs written in a matrix, typically denoted by *A*:

$$\boldsymbol{A} = (a_{ij})_{\substack{i=1,\dots,m \\ j=1,\dots,n}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

a_{ij} = the payoff of player 1 for strategy profile (i,j)
 (i.e., player 1 picks ith strategy and player 2 picks jth)

Games and Decisions

Matrix Games

10

- example: battle of the networks (zero-sum version)
 - a matrix game with

$$\mathbf{A} = \begin{bmatrix} 5 & 2 \\ 0 & -5 \end{bmatrix}$$

 note: in order to know the strategic nature of the game, nothing else needs to be specified (the payoffs and number of strategies of both players are determined by A)

Nash Equilibrium

- one of the most widely used game-theoretical concepts (not only for matrix games)
- \square best-response approach:
 - determine the "best response" of each player to a particular choice of strategy by the other player (do this for both players)
 - if each player's strategy choice is a best response to the strategy choice of the other player, we're in a Nash equilibrium (NE)

"NE is such a combination of strategies that neither of the players can increase their payoff by choosing a different strategy."

"NE is a solution with the property that whoever of the players chooses some other strategy, he or she will not increase his or her payoff."

Nash Equilibrium in Matrix Games

mathematical definition:

A strategy profile (x^*, y^*) with the property that

$$Z_1(x,y^*) \le Z_1(x^*,y^*) \le Z_1(x^*,y)$$

for all $x \in X$ and $y \in Y$ is a NE.

Finding NE's in Matrix Games

- 13
- a matrix game can have 0, 1 or multiple NE's
- **best-response analysis** (a.k.a. cell-by-cell inspection)
 - network 1's best response:
 - if network 2 runs a sitcom, network 1's best response is to run a sitcom. Circle (S,S).
 - if network 2 runs a game show, network 1's best response is to run a sitcom. Circle (*S*,*G*).

Network 2

Finding NE's in Matrix Games

(cont'd)

network 2's best response:

- if network 1 runs a sitcom, network 2's best response is to run a game show. Square (*S*,*G*).
- if network 1 runs a game show, network 2's best response is to run a game show. Square (*G*,*G*).
- □ the NE strategy profile is (S,G). (if network 2 plays *G*, network 1's best response is *S* and vice versa)

Network 2

Finding NE's in Matrix Games

(cont'd)

- □ from the best-response analysis it follows that a NE is represented by such an element in the payoff matrix that is both...
 - ...the *maximum* in its column (player 1's best response)
 - ...the *minimum* in its row (player 2's best response)
- such an element is called a saddle point of the matrix
- □ value of a saddle point = $Z_1(x^*, y^*)$ = value of the game
- notion of *stability*: neither player has an incentive to deviate from NE

NE's in Matrix Games: Exercise 1

16

□ find a NE in the following matrix game:

Player 2

NE's in Matrix Games: Exercise 2

17

□ find all NE's in the following matrix game

Player 2

Games and Decisions

Multiple Nash Equilibria

QUIZZ:

Consider a matrix game with payoff matrix $\mathbf{A} = (a_{ij})$. Let a_{27} and a_{43} be two NE's.

a) Is it possible that a₂₇ < a₄₃?
b) Are a₂₃ and a₄₇ Nash equilibria as well?

 \square answers:

a) no.

b) yes.

 how to find out: use the basic properties of a saddle point (see next slide)

Multiple Nash Equilibria

(cont'd)

conclusion: multiple equilibria always have *equal values* and are placed in "rectangular positions"

19

20

definition:

Strategy $x_1 \in X$ strictly dominates strategy $x_2 \in X$, if $Z_1(x_1,y) > Z_1(x_2,y)$ for all $y \in Y$. Analogously, $y_1 \in Y$ strictly dominates strategy $y_2 \in Y$, if $Z_1(x,y_1) < Z_1(x,y_2)$ for all $x \in X$.

Weak domination is similar, only it admits $Z_1(x_1,y) = Z_1(x_2,y)$ for some $y \in Y$, or $Z_1(x,y_1) = Z_1(x,y_2)$ for some $x \in X$.

- \square example:
 - network 1: G is dominated by S
 - network 2: S is dominated by G

 G
 1 \ 2
 S
 G

 Network 1
 S
 5
 2

 G
 0
 -5

Network 2

 as a *rational* player would *never* play a *dominated strategy*, matrix games can be simplified by deleting the players' dominated strategies

- **iterative elimination of dominated strategies**:
 - elimination of dominated rows \rightarrow columns \rightarrow rows \rightarrow columns \rightarrow ...
 - I-know-he-knows-I'm-rational type of thinking

21

Games and Decisions

(cont'd)

- \Box example: extended battle of networks (*T* = talent show)
 - 1. network 2: no dominated strategies
 - 2. network 1: *G* dominated (by *S*)
 - 3. network 2: *G* dominated (by *T*)
 - 4. network 1: *T* dominated (by *S*)
 - 5. network 2: S dominated (by T)

Network 2

23

 note: sometimes no strategies to eliminate, but still a single NE, as in the example below

Network 2

Dominated strategies: Exercise 3

□ eliminate dominated strategies in the matrix game from Exercise 2:

	1 \ 2	W	X	Y	Z
	Α	2	3	5	2
Player 1	В	2	4	5	2
ridyer i	С	-2	7	2	0

Player 2

Games and Decisions

Game 2: Rock, Paper, Scissors

- 25
- □ in this game, each player has 3 strategies: rock (R), paper (P) and scissors (S).
- \Box rules:
 - scissors cut paper
 - paper wraps rock
 - rock crushes scissors
 - winner gets €1 from his/her opponent

- a) Can this game be modelled as a matrix game?
- **b**) Which strategy would you choose?
- c) Are there any saddle points in the matrix?

Games and Decisions

Jan Zouhar

Game 2: Rock, Paper, Scissors

Player 2

- no saddle point in the payoff matrix, but still there's a way to play the game
 - all strategies "equally good" → the best thing for both players is to choose their strategy at random, with equal probabilities
 - even if the other player finds out about the other players' strategy, he/she can't use it against him/her

26

Game 2: Rock, Paper, Scissors

(cont'd)

- \rightarrow switch from *pure strategies* to *mixed strategies*
 - pure strategy: the player decides for a certain strategy
 - mixed strategy:
 - the player decides about the probabilities of the alternative strategies
 - when the decisive moment comes, he/she makes a random selection of the strategy with the stated probabilities
- even if a matrix game has no NE in pure strategies (i.e., no saddle point of the payoff matrix), it still has a NE in mixed strategies (*always*)
- optimal mixed strategies for RPC game:

$$\boldsymbol{x^*} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \quad \boldsymbol{y^*} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

Jan Zouhar

LECTURE 2: MATRIX GAMES

Jan Zouhar Games and Decisions