LECTURE 11: GAMES IN EXTENSIVE FORM (CONT'D), BARGAINING GAMES

Jan Zouhar Games and Decisions

Example 1: Game of Nim (revision)

- 2
- two players take turns removing objects (matches, tokens) from distinct heaps (piles, rows)
- on each turn, a player must remove an arbitrary number of objects (one or more) from a single heap
- □ the player to remove the last object loses the game (*zero-sum game*)
- origins: centuries ago; mathematical description by Bouton in 1901, the name probably comes from the German word "nimm" = "take!"
- *notation*: numbers of objects in heaps:

Example 1: Game of Nim (revision)

- 3
- □ simplified game tree (non-branching nodes omitted):

- □ player 1 can never win here (unless by fault of player 2)
- □ simple winning strategy for 2 heaps − *leveling up*: as long as both heaps have at least 2 objects, make them equal size with your move

Games and Decisions

Jan Zouhar

Nim with More Than 2 Heaps

- for a game with an arbitrary number of heaps, the winning strategy is a bit similar, though slightly more complicated:
 - as long as all heaps have at least 2 objects, make the *nim-sum* of the heaps equal zero in each move (afterwards: odd number of 1s)
 - calculating *nim-sum*:
 - 1. express the heap counts as sums of powers of 2 (13 = 8 + 4 + 1)
 - 2. cancel out pairs of equal numbers
 - 3. add up what's left
 - *example*: heaps A, B, C with 3,4,5 objects

$$2^{2} \quad 2^{1} \quad 2^{0}$$
Heap A: 3 = 0 + 2 + 1 = 2 + 1
Heap B: 4 = 4 + 0 + 0 = 4
Heap C: 5 = 4 + 0 + 1 = 4 + 1
Nim-sum: 2

Nim with More Than 2 Heaps

(cont'd)

□ nim-sum = *exclusive-or* addition with binary representations:

Heap A:	011 ₂	3 ₁₀
Heap B:	100 ₂	4 ₁₀
Heap C:	101 ₂	5 ₁₀
Nim-sum:	0102	2 ₁₀

- nim 3,4,5: take 2 from heap A (*nim-sum* of 1,4,5 = 0), then make the number of 1s odd (without removing heaps, if possible)
- □ nim 9,7,5: a winning configuration for player 1

Heap A:	9	=	8			+	1	
Heap B:	7	=		4	+ 2	2 +	1	
Heap C:	5	=		4		+	1	
Nim-sum:	11	=	8	-	+ 2	2 +	1	

Question: What's the move that makes the nim-sum zero?

Game Complexity

- 5
- measure of complexity:
 - number of possible game configurations (state space)
 - game tree complexity: number of terminal nodes (= different games)
- \Box example: nim 2,2
 - **possible configurations:** $3 \times 3 = 9$
 - game tree complexity: 6 (symmetric moves ommited)
- \square example 2: tic-tac-toe
 - **state space:**
 - simple upper bound: 3⁹ = 19,683 (three states for each of 9 cells)

- after dropping "illegal" and symmetric/rotated shapes: only 765
- **game tree**
 - simple upper bound: 9! = 362,880
 (9 positions for the first move, 8 for the second, and so on.)
- without illegal/symmetric/rotated: 26,830 possible games

Game Complexity

- as we've seen, games differ with respect to their complexity
 - *very simple*: BoS, Model of Entry, Stackelberg Duopoly
 - □ *simple*: "small" nim
 - moderately complex: tic-tac-toe, "large" nim
 - *complex*: chess

Chess

- every extensive form game with perfect information (such as chess) can be solved using backward induction
 - possible SPNE's: White wins, Draw, White loses
 - empirical evidence suggests either of the first two
- problem with backward induction: game tree way too large, even for computers (today or in future)
- □ first two moves: $20 \times 20 = 400$ possible games already

Game Complexity

(cont'd)

- □ complexity results:
 - □ *board positions*: app. 10⁴⁶
 - **\square** game tree: app. 10^{123}
 - compare: number of atoms in observable universe is less than 10⁸¹
- □ chess software:
 - databases for openings and endings
 - backward induction:
 - several moves ahead only
 - needs a rule for assigning payoffs to non-terminal nodes an intermediate valuation function (assesses the overall strategic power of a given position)

Large numbers look even larger when written in full:

Exercise 1: Centipede Game

9

- □ two players at a table, two heaps of money (initially: \$0 and \$2)
- □ on his/her move, a player can either:
 - take the larger heap and leave the smaller one for the other player (*stop*, *S*)
 - push the heaps across the table to the other player, which increases both heaps by \$1 (continue, C)
- this can go on up until 10^{th} round (player 2's 5^{th} move), where instead of increasing the amounts in heaps, the heaps are distributed evenly amongst the players in case of C

- 1. Play the game in pairs.
- 2. Can you draw the game tree (or part of it, at least)?
- 3. Try to find the SPNE in the game.

Games and Decisions

Exercise 1: Centipede Game

(cont'd)

10

backward induction:

- □ critique of the SPNE:
 - doesn't reflect the way people behave in complicated games (limited *normativity*)
 - □ real decision-makers can only go 3-4 nodes "deep"

Bargaining

- \Box an alternative to *fixed price* settings
- the bargaining problem arises in situations where there are possible gains from trade (in terms of utility)
 - buyer values the object more than the seller
 - people exchanging goods in a barter trade
- bargaining problems arise when the size of the market is *small and* there are no obvious price standards because the good is unique, e.g. a house at a particular location, a custom contract to erect a building, etc.
 - a Seller and a Buyer bargain over the price of a house
 - a Labor Union and Firm bargain over wages & benefits
 - two countries, e.g. the U.S. and Japan bargain over the terms of a trade agreement
 - haggling at informal market settings (common esp. in Asia)
- foundations of bargaining theory: JOHN NASH: The bargaining problem.
 Econometrica, 18(2), pp. 155–162

Exercise 2: Barter Trade

- Bill and Jack are bartering their goods (without the use of money)
- both maximize their total utility (*u* for Bill, *v* for Jack)

2. Is there a way to exchange goods so that both players are better off?

Exercise 2: Barter Trade

- Nash bargaining solution (NBS) is a bargaining solution that observes the following principles:
 - 1. *Pareto optimality*: neither player can be better off without making the other one worse off
 - 2. Independence of irrelevant alternatives:
 - consider two "almost identical" problems (a and b) that differ only with respect to the set of alternatives, a has alternatives in A and b in B, such that A is a subset of B; in other words, a is a version of b with restricted alternatives

- e.g., imagine \mathbf{b} is our barter trade example, and in \mathbf{a} we rule out that Bill gives Jack his box

independence of irrelevant alternatives requires that if the bargaining solution to **b** is in *A*, it is also the bargaining solution to **a**

- e.g., if in the "best" solution to ${\bf b}$ Bill keeps his box, it must be the "best" solution to ${\bf a}$ as well

Exercise 2: Barter Trade

- Nash proved that NBS is unique (in the sense of resulting utilities) and showed how to find it
 - we'll denote Bill's final collection of items as *x* and Jack's as *y*
 - disagreement value: if the players fail to agree on any barter exchange, both will get their disagreement value defined as the utility of their original possessions x⁰ and y⁰
 - Bill: $u(x^0) = u(book, whip, ball, bat, box) = 2 + 2 + 2 + 2 + 4 = 12$
 - Jack: $u(y^0) = u(\text{pen,toy,knife,hat}) = 1 + 1 + 2 + 2 = 6$
 - Nash's result: NBS is such a combination of x and y that maximizes the product $[u(x) - u(x^0)] \cdot [v(y) - v(y^0)]$
 - can be found using *MS Excel Solver*

	А	В	С	D	Е	F	G	Н	- 1	J	K	L	Μ
1													
2			original owner		utility		final owner						
3			(=1 if	owns)	utility		(=1 if owns)				Original:		
4			Bill	Jack	Bill	Jack	Bill	Jack		sum		Bill's utility	12
5		book	1	0	2	4	0	1		1		Jack's utility	6
6		whip	1	0	2	2	0	1		1			
7		ball	1	0	2	1	0	1		1		Final:	
8		bat	1	0	2	2	0	1		1		Bill's utility	24
9		box	1	0	4	1	1	0		1		Jack's utility	11
10		pen	0	1	10	1	1	0		1			
11		toy	0	1	4	1	1	0		1			
12		knife	0	1	6	2	1	0		1			
13		hat	0	1	2	2	0	1		1		Objective	60
14													

Bill gives Jack: Jack gives Bill: book, whip, ball, bat pen, toy, knife

Example 2: Ultimatum Game

- 16
- two players interact to decide how to divide a sum of money offered to them (say, \$2)
- □ player 1 proposes how to divide the sum, player 2 either accepts (A), or rejects (R) a.k.a. Take-it-or-leave-it
 - □ if player 2 accepts, player 1's proposal is carried out
 - **•** if player 2 rejects, *neither player receives anything*
- number of possible divisions: dollars, cents or continuous

continuous

Example 2: Ultimatum Game

- \Box strategies:
 - player 1: "proposal" number x in [0,10]
 - □ player 2 (rational strategies): "reject threshold" number *y* in [0,10]
- equilibria
 - **D** NE: any pair of strategies x = y
 - SPNE: x = y = smallest positive number (or x = y = 0 if continuous)

Note: empirical studies – shares between 80:20 and 50:50

The Alternating Offers Model

- 18
- a sequential move game where players have perfect information, gains of trade (M) are divided among the players
- players take turns making alternating offers, with one offer per round (back-and-forth bargaining)
 - in round 1, player 1 offers a division of M
 - in each consecutive round, the player on the move has three possible actions:
 - Accept the other player's offer
 - *Reject* and make a new offer
 - Stop the game, thus giving up on bargaining, with both players ending up with their disagreement values (typically 0)

The Alternating Offers Model

When does this end?

- alternating offer bargaining games could continue indefinitely. In reality they do not.
- \Box why not?
 - both sides have agreed to a deadline in advance (or *M* = 0 at a certain date)
 - if deadline = 1st round, we're back to take-it-or-leave-it pricing
 - □ the gains from trade, *M*, may *diminish in value over time* (timelimited opportunities), and may fall below disagreement values
 - models with *shrinking factors*: e.g., with each round, M is multiplied by $\frac{1}{2}$.
 - the players are *impatient* (time is money!)
 - future values are discounted
 - practical lesson: act as if you're patient, keep a "poker face", do not respond with counteroffers right away

Class game: Pirates

- 20
- a multiplayer version of the Ultimatum game
- \square rules:
 - □ There are five rational pirates, *A*, *B*, *C*, *D* and *E*. They find 100 gold coins. They must decide how to distribute them.
 - Strict order of seniority: A is superior to B, who is superior to C, who is superior to D, who is superior to E.
 - The pirate world's rules of distribution are thus: first, the most senior pirate should propose a distribution of coins. The pirates, including the proposer, then vote on whether to accept this distribution. If the proposed allocation is approved by a majority or a tie vote, it happens. If not, the proposer is thrown overboard from the pirate ship and dies, and the next most senior pirate makes a new proposal to begin the system again.
 - Pirates base their decisions on three criteria (in order of importance
 - 1. Each pirate wants to survive.
 - 2. Each pirate tries to maximize the number of gold coins he receives.
 - **3.** Each pirate would prefer to throw another overboard, if all other results would otherwise be equal.

LECTURE 11: GAMES IN EXTENSIVE FORM (CONT'D), BARGAINING GAMES

Jan Zouhar Games and Decisions