# LECTURE 10: GAMES IN EXTENSIVE FORM

Jan Zouhar Games and Decisions

### Sequential Move Games

- 2
- so far, we have only dealt with *simultaneous* games
  (players make the decisions at the same time, or simply without knowing what the action of their opponent is)
- □ in most games played for amusement (cards, chess, other board games), players make moves in turns  $\rightarrow$  sequential move games
- many economic problems are in the sequential form:
  - English auctions
  - price competition: firms repeatedly charge prices
  - executive compensation (contract signed; then executive works)
  - monetary authority and firms (continually observe and learn actions)
  - ••••
- formally, we describe these as games in extensive form (representation using a game tree)

### **Class Game: Century Mark**

- 3
- $\square$  rules:
  - played by fixed pairs of players taking turns
  - at each turn, each player chooses a number (integer) between 1 and 10 inclusive
  - this choice is added to sum of all previous choices (initial sum is 0)
  - the first player to take the cumulative sum *above* 100 (*century*) loses the game
- **prize**: 5 extra points for the final test (!!!)

Volunteers?



### **Class Game: Century Mark**

### Analysis of the game

- $\Box$  what's the winning strategy?
  - broadly speaking, bring the sum to 89; then your opponent can't possibly win
  - actually, it's enough to bring it to 78; then you can make sure to make it 89 later
  - reasoning like this, the winning positions are: 100, 89, 78, 67, 56, 45, 34, 23, 12, 1
- $\rightarrow$  the first mover can guarantee a win!
  - winning strategy:
    - in the first move, pick 1
    - then, choose 11 minus the number chosen by the second mover
- $\Box$  *note*: strategy = a complete plan of action

(cont'd)

### Sequential Move Games with Perfect Information

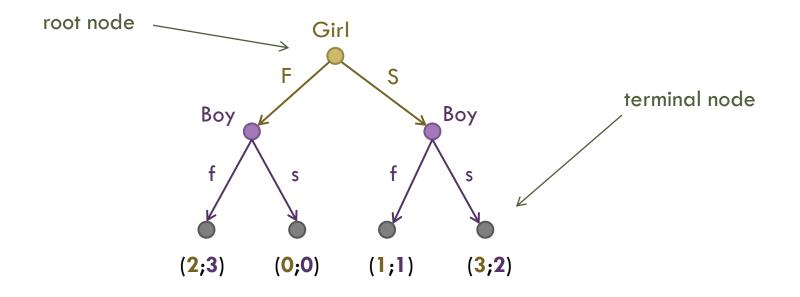
- **models** of strategic situations where there is a strict order of play
- perfect information implies that players know...
  - ... the rules of the game
    - possible actions of all players
    - resulting payoffs
  - ... everything that has happened prior to making a decision
- □ most easily represented using a **game tree** 
  - tree = graph, nodes connected with edges
    - *nodes* = decision-making points, each non-terminal (see below) node belongs to one of the players
    - edges = possible actions (moves)
    - root node: beginning of the game
    - *terminal nodes (end nodes)*: end of the game, connected with payoffs

### Example 1: Sequential Battle of the Sexes

simultaneous moves:
 a bimatrix game (*normal form*)

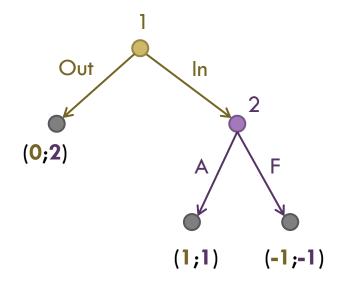
| <b>Girl \ Boy</b> | f           | S   |
|-------------------|-------------|-----|
| F                 | <b>2</b> ;3 | 0;0 |
| S                 | 1;1         | 3;2 |

□ girl moves first: a sequential move game (*extensive form*)



### Example 2: Model of Entry

- □ currently, firm 2 is an incumbent monopolist
- $\Box$  firm 1 has the opportunity to enter
- after firm 1 makes the decision to enter (*In* or *Out*), firm 2 will have the chance to choose a pricing strategy; it can choose either to *fight* (F) the entrant or to *accommodate* (A) it with higher prices



## Exercise 1: Stackelberg Duopoly

- 8
- suppose firm 1 develops a new technology before firm 2 and as a result has the opportunity to build a factory and commit to an output level  $q_1$ *before* firm 2 starts
- $\Box$  firm 2 then observes firm 1 before picking its output level  $q_2$
- $\Box$  assume that:
  - output levels can only be 0,1, or 2 units of production
  - **•** market price function (inverse demand) is:  $p = 3 (q_1 + q_2)$
  - production costs are 0



- 1. How many decision (= non-terminal) nodes are there in the game tree?
- 2. Draw the game tree

Games and Decisions

### Strategies vs. Actions

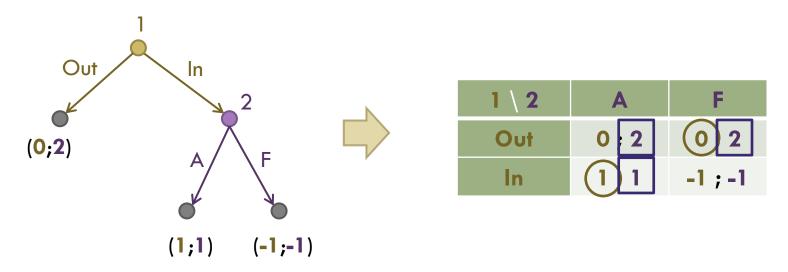
- **action** = decision taken in any node of the game tree
- strategy = complete contingent plan explaining what a player will do in any situation that arises
  - **•** specifies the choice to be made at each decision node
  - the sort of advice you would give to somebody playing on your behalf
- example strategies:
  - Model of entry
    - firm 1: In, Out
    - firm 2: *A*, *F*
  - Battle of the sexes
    - Girl: F,S
    - Boy: ff, fs, ss, sf (first letter: case F, second letter: case S)
  - Stackelberg duopoly
    - firm 1: 0,1,2
    - **i** firm 2: 000, 001, 002, 010, 011, 012, 020, 021, ...  $(3^3 = 27 \text{ strategies})$

Games and Decisions

Jan Zouhar

### Normal Form Analysis of Move Games

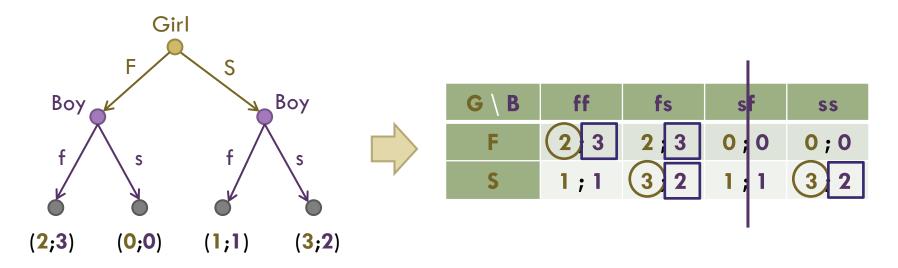
- 10
- every extensive form game can be translated into a normal form game by listing the available strategies
- **Example**:
  - Model of entry:



- $\hfill\square$  normal form allows us to find NE's
  - □ here: (*In*,*A*) and (*Out*,*F*) ← "Stay out or I will fight!"

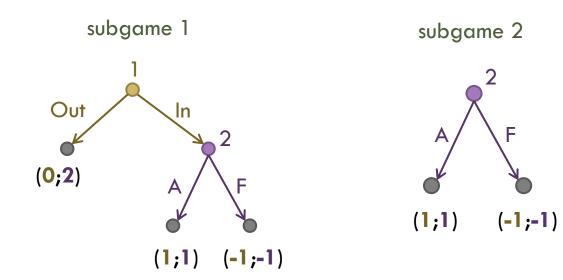
### Normal Form Analysis of Move Games (cont'd)

- **Another example**:
  - Battle of the sexes:



- $\Box$  criticism:
  - 1. too many strategies even for simple trees (consider Stackelberg)
  - 2. too many NE's, some of them not very plausible (non-credible threats: "If you go shopping, I'll go to the football game anyway")

- 12
- backward induction is a method to find a NE that is "plausible" (or, in some games, a *winning strategy*)
- solutions found using backward induction are so called subgame perfect nash equilibria (SPNE's)
  - definition: A strategy profile s\* is a subgame perfect equilibrium of game G if it is a Nash equilibrium of every subgame of G.
  - **subgames**: Model of entry

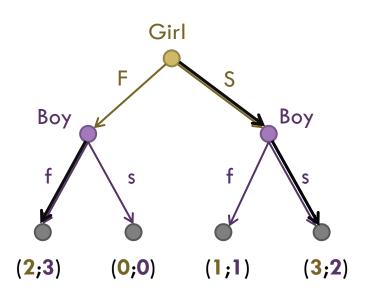


- backward induction finds best responses from terminal nodes upwards:
- Step 1: start at the last decision nodes (neighbors to terminal nodes). For each of the decision nodes, find the deciding player's best action (payoff-maximizing one).
- Step 2: replace the decision nodes from step 1 with terminal nodes, the payoffs being the profit-maximizing payoffs from step 1. (i.e., suppose the players always maximize profit)
- **Step 3**: repeat steps 1 and 2 until you reach the root node.
- $\Box$  Notes:
  - in step 1, each decision node with its terminal neighbors constitutes a *subgame* (→ we find *subgame perfect* NE's)
  - □ in principle, this resembles the approach we used in the *Century* mark game (100 wins  $\rightarrow$  89 wins  $\rightarrow$  ...  $\rightarrow$  1 wins)
  - in practice, we're not exactly replacing nodes in the tree; instead, we mark the used branches and "prune" the unused ones



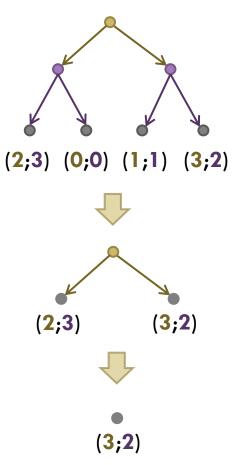
#### **Example**: Sequential battle of the Sexes

Notation (solving manually)



 $\square$  SPNE move sequence: *S*-*s* 

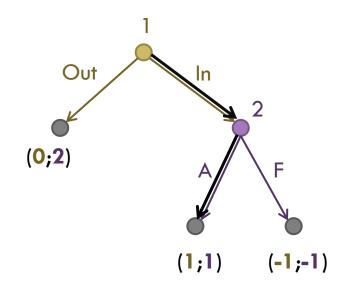
Algorithm reference:



Games and Decisions

Jan Zouhar

**Example**: Model of entry



#### $\Box$ SPNE move sequence: *In-A*

Games and Decisions

Jan Zouhar

(cont'd)

### Exercise 2: Reversed Sequential BoS

16

- $\Box$  consider Battle of sexes again
- this time, the boy moves first

| <b>Girl</b> \ Boy | f           | S   |
|-------------------|-------------|-----|
| F                 | <b>2</b> ;3 | 0;0 |
| S                 | 1;1         | 3;2 |



- 1. Draw the game tree for this game
- 2. Find a SPNE using backward induction.
- 3. Compare the results with the "girls-first" version of the game. Is it an advantage to be a first mover in this game?

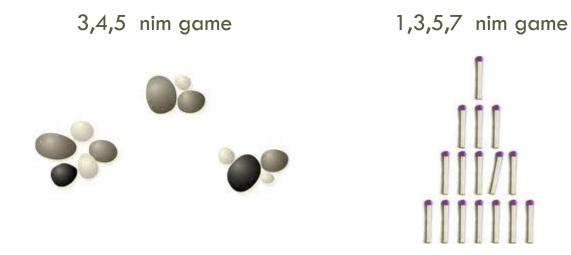
Games and Decisions

### First-Mover Advantage

- □ Is there a first-mover advantage?
  - in many real-life and artificial games, yes:
    - BoS
    - Model of Entry
    - Stackelberg duopoly
    - Chess, checkers, many other board games
  - can you think of any games with a second-mover advantage?
- □ Games with a second-mover advantage:
  - English auction.
  - Cake-cutting: one person cuts, the other gets to decide how the two pieces are allocated
  - some versions of the game of *nim* (see next slides)

### Example 3: Game of Nim

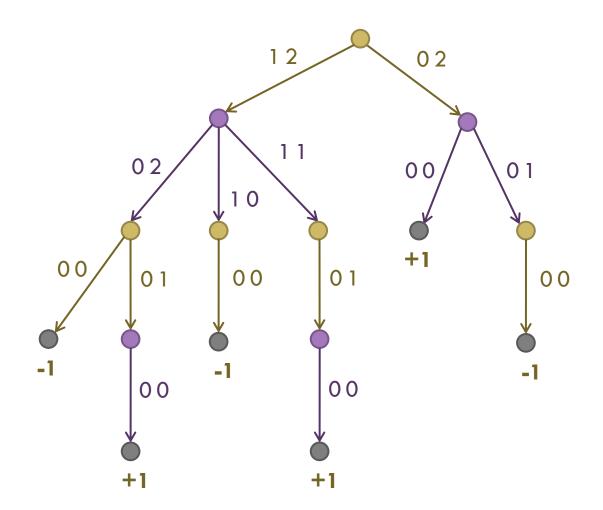
- two players take turns removing objects (matches, tokens) from distinct heaps (piles, rows)
- on each turn, a player must remove an arbitrary number of objects (one or more) from a single heap
- □ the player to remove the last object loses the game (*zero-sum game*)
- origins: centuries ago; mathematical description by Bouton in 1901, the name probably comes from the German word "nimm" = "take!"
- *notation*: numbers of objects in heaps:



### Example 3: Game of Nim

(cont'd)

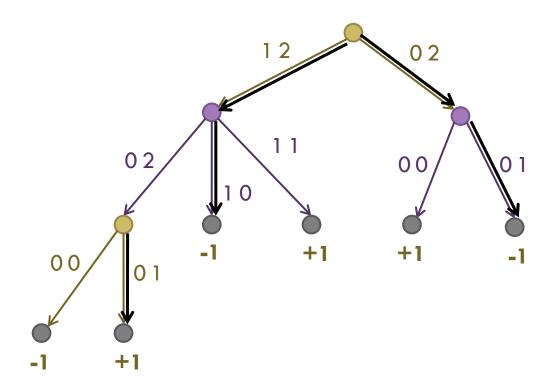
 $\Box$  game tree for 2,2 nim (symmetric moves omitted):



### Example 3: Game of Nim

(cont'd)

□ simplified game tree (non-branching nodes omitted):



- □ player 1 can never win here (unless by fault of player 2)
- □ simple winning strategy for 2 heaps − *leveling up*: as long as both heaps at least 2, make them equal size with your move

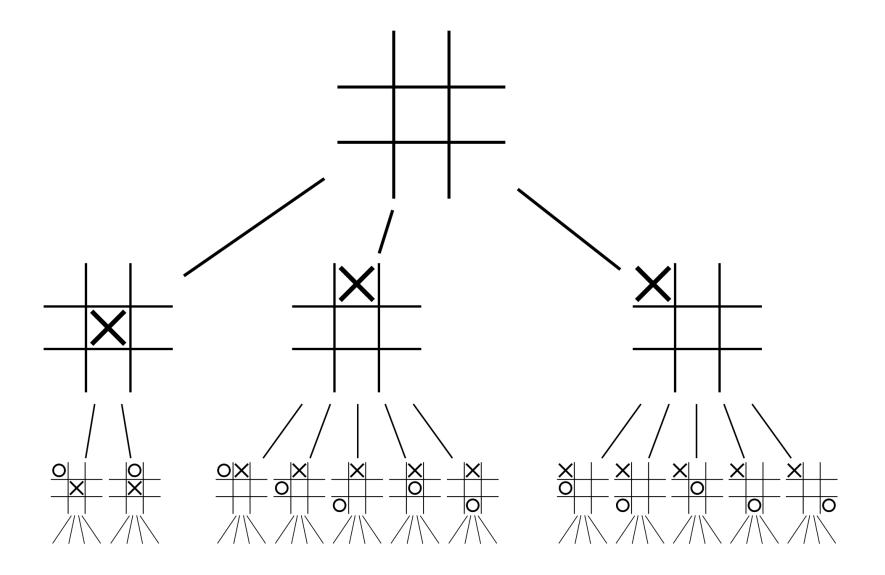
Games and Decisions

Jan Zouhar

### Example 4: Tic-tac-toe

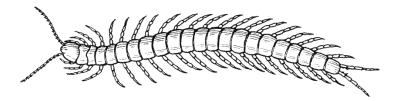
- □ game tree quite complex (see next slide)
  - manual calculation of the backward induction is cumbersome
  - suitable for computer analysis
  - one of the first "video games"
  - conclusions from the analysis can be formulated in a set of tactical rules (or: strategic algorithm)
    - similar to the *nim* situation with more than 2 heaps (more-or-less simple rules to apply the best strategic decisions)
  - for other complex game trees, this is not possible

Upper part of the tic-tac-toe game tree (symmetric moves omitted)



### **Exercise 4: Centipede Game**

- 23
- $\Box$  two players at a table, two heaps of money (initially: \$0 and \$2)
- □ on his/her move, a player can either:
  - take the larger heap and leave the smaller one for the other player (*stop*, *S*)
  - push the heaps across the table to the other player, which increases both heaps by \$1 (continue, C)
- this can go on up until  $10^{\text{th}}$  round (player 2's  $5^{\text{th}}$  move), where instead of increasing the amounts in heaps, the heaps are distributed evenly amongst the players in case of C



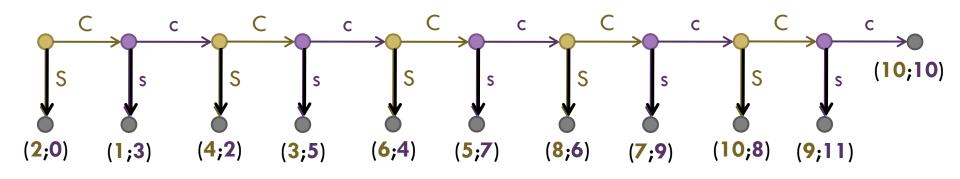
- 1. Play the game in pairs.
- 2. Can you draw the game tree (or part of it, at least)?
- 3. Try to find the SPNE in the game.

Games and Decisions

### **Exercise 4: Centipede Game**

(cont'd)

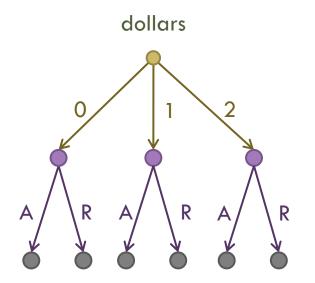
backward induction:



- □ critique of the SPNE:
  - doesn't reflect the way people behave in complicated games (limited *normativity*)
  - real decision-makers can only go 3-4 nodes "deep"

### **Example 5: Ultimatum Game**

- 25
- two players interact to decide how to divide a sum of money offered to them (say, \$2)
- □ player 1 proposes how to divide the sum, player 2 either accepts (A), or rejects (R)
  - □ if player 2 accepts, player 1's proposal is carried out
  - □ if player 2 rejects, neither player receives anything
- number of possible divisions: dollars, cents or continuous



continuous



### Example 5: Ultimatum Game

### (cont'd)

- 26
- $\Box$  strategies:
  - player 1: "proposal" number x in [0,10]
  - player 2: "reject threshold" number y in [0,10]
- equilibria
  - **D** NE: any pair of strategies x = y
  - **D** SPNE: any pair of strategies x = y = smallest non-zero number or 0

# LECTURE 10: GAMES IN EXTENSIVE FORM

Jan Zouhar Games and Decisions