
University of Economics, Prague

Ontological Engineering for the Semantic Web
with special focus on
Pattern-based Ontology Transformation

Vojtěch Svátek
University of Economics, Prague (UEP)
Dept. of Information and Knowledge Engineering
svatek@vse.cz
ISSLOD 2011, September 13, 2011

mailto:svatek@vse.cz

MSc in information science, with focus on AI and expert
systems, and eventually machine learning (1991);
PhD (1998) on prior knowledge in propositional learning
More than 10 years’ research in ontological engineering
(and related knowledge modelling: PSMs, clinical guidelines)
In parallel various projects on data/text/multimedia mining
In the last 2 years (obviously) interested in Linked Data as
the ‘proximal’ side of the semweb: pushing at national level
Backed by UEP’s Knowledge Engineering Group,
http://keg.vse.cz

LinkedTV

Speaker’s background

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

1998 2000 2002 2004 2006 2008 2010

http://keg.vse.cz/

Credits

Ondra Šváb-Zamazal, Mirek Vacura (UEP)
Aldo Gangemi, Valentina Presutti, Enrico Daga
(ISTC/CNR, Rome)
Luigi Iannone (Univ. Manchester)
Francois Scharffe (INRIA / Univ. Montpellier)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Lecture blocks

Prelude: Semantic web as dancing party

I. Linked Data and ontologies
– role of ontological engineering on the semantic web

II. Ontology patterns
– design patterns & empirical patterns

III. Pattern-based ontology transformation
– principles, use cases, implemented tools

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Semantic web as dancing party

Dancers
– L = logician
– KE = knowledge engineer
– WE = web engineer
– SE DE = software engineer + data engineer

Party hats
– AI = Artificial Intelligence
– Onto(logy)
– LD = Linked Data

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Semantic web as dancing party

Since old times

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

L

Semantic web as dancing party

1970s

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

LKE

Semantic web as dancing party

1970s

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

LKE

AI

Semantic web as dancing party

1991

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

AI

Semantic web as dancing party

1991

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

AI

WE

Semantic web as dancing party

1993

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

Onto

WE

Semantic web as dancing party

1993

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

Onto

WE
SE
DE

Semantic web as dancing party

1995

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

Onto

WE
SE
DE

Semantic web as dancing party

1995

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

Onto

WE
SE
DE

Semantic web as dancing party

2000

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

WWW

LKE

Onto

WE
SE
DE

WWW

2000

Semantic web as dancing party

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

SemW

LKE

Onto

WE
SE
DE

2005
WWW

Semantic web as dancing party

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

SemW

LKE

Onto

WE
SE
DE

2007

Semantic web as dancing party

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

SemW

LKE

Onto

WESE
DE

WWW

LD

Semantic web as dancing party

Is ontological
research still
a respected dancer?
Or is it only at the
party because there
is no porter to kick
away those who
cannot dance the
styles prescribed by
the dancing order?

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

LKE

Onto

? ? ?

LINKED DATA AND
ONTOLOGIES

Block I

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Linked Data and ontologies: agenda

What is/isn’t an ontology
Typical settings for ontologies on the semweb
(and nearby)
Brief recap of the OWL language
Why Linked Data engineers shouldn’t forget about
ontological engineers

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

In philosophy
– discipline (dealing with ‘being’ as such)
– system of categories of ‘beings’ in the world

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

In philosophy
– discipline (dealing with ‘being’ as such)
– system of categories of ‘beings’ in the world

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Aristotle: Definitio
per genus proximum
et differentia specifica

A PhD student is a student
that completed a master-level degree
and works on a scholarly topic under
the supervision of a senior researcher

http://en.wikipedia.org/wiki/Image:Aristoteles_Louvre.jpg

What is an ontology and what isn’t?

In philosophy
– discipline (dealing with ‘being’ as such)
– system of categories of ‘beings’ in the world

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Aristotle: Definitio
per genus proximum
et differentia specifica

A PhD student is a student
that completed a master-level degree
and works on a scholarly topic under
the supervision of a senior researcher

Porphyrian tree:
thinking vs. extended
animate vs. inanim.
rational vs. rrational
etc.

http://en.wikipedia.org/wiki/Image:Aristoteles_Louvre.jpg

What is an ontology and what isn’t?

In philosophy
– discipline (dealing with ‘being’ as such)
– system of categories of ‘beings’ in the world

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Aristotle: Definitio
per genus proximum
et differentia specifica

A PhD student is a student
that completed a master-level degree
and works on a scholarly topic under
the supervision of a senior researcher

Porphyrian tree:
thinking vs. extended
animate vs. inanim.
rational vs. rrational
etc.

Modular
system of
interlinked
definitions

http://en.wikipedia.org/wiki/Image:Aristoteles_Louvre.jpg

What is an ontology and what isn’t?

In philosophy
– discipline (dealing with ‘being’ as such)
– system of categories of ‘beings’ in the world

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Aristotle: Definitio
per genus proximum
et differentia specifica

A PhD student is a student
that completed a master-level degree
and works on a scholarly topic under
the supervision of a senior researcher

Modular
system of
interlinked
definitions

Porphyrian tree:
thinking vs. extended
animate vs. inanim.
rational vs. rrational
etc.

Systematic
taxonomy

http://en.wikipedia.org/wiki/Image:Aristoteles_Louvre.jpg

What is an ontology and what isn’t?

In computer science (and related fields)
– information artifact
– …(mostly) conceptualizing a certain part of reality
– …in a shared manner
– …explicitly (not just in the minds),
– … in a formal way (concepts rigorously defined)
– and/or is centered around a hierarchy of terms

Elements of an ontology can provide semantics to
other information elements – vocabulary aspect

Loosely according to Gruber (1993), Borst (1997) and others

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

Is the following an ontology?

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

Is the following an ontology?
– MyOntology.owl, which you create in Protégé or

similar tool

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

Is the following an ontology?
– MyOntology.owl, which you create in Protégé or

similar tool
– Hierarchical chart, made by a panel of medical

experts, which categorizes known forms of a virus

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

Is the following an ontology?
– MyOntology.owl, which you create in Protégé or

similar tool
– Hierarchical chart, made by a panel of medical

experts, which categorizes known forms of a virus
– A set of description logics formulae, set up to

illustrate an interesting phenomenon in tableau
reasoning

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

Is the following an ontology?
– MyOntology.owl, which you create in Protégé or

similar tool
– Hierarchical chart, made by a panel of medical

experts, which categorizes known forms of a virus
– A set of description logics formulae, set up to

illustrate an interesting phenomenon in tableau
reasoning

– A Linked Data vocabulary consisting of a set of
properties for characterizing a movie

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What is an ontology and what isn’t?

Is the following an ontology?
– MyOntology.owl, which you create in Protégé or

similar tool
– Hierarchical chart, made by a panel of medical

experts, which categorizes known forms of a virus
– A set of description logics formulae, set up to

illustrate an interesting phenomenon in tableau
reasoning

– A Linked Data vocabulary consisting of a set of
properties for characterizing a movie

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

No

Depends
on view

No

Depends
on view

What you typically fall upon

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What you typically fall upon

Structured, NL-centered, hierarchical terminology
– Terminological ontology
– Primarily for improvement of text search

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What you typically fall upon

Structured, NL-centered, hierarchical terminology
– Terminological ontology
– Primarily for improvement of text search

Algebraic structure (lattice)
– Graph operations over terminology / object tables

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What you typically fall upon

Structured, NL-centered, hierarchical terminology
– Terminological ontology
– Primarily for improvement of text search

Algebraic structure (lattice)
– Graph operations over terminology / object tables

(An advanced form of) schema for data
– Information ontology
– Primarily for data integration and structured search

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What you typically fall upon

Structured, NL-centered, hierarchical terminology
– Terminological ontology
– Primarily for improvement of text search

Algebraic structure (lattice)
– Graph operations over terminology / object tables

(An advanced form of) schema for data
– Information ontology
– Primarily for data integration and structured search

Knowledge base containing compositional
definitions of concepts
– Knowledge ontology
– Primarily for inferential tasks in logics

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Dichotomy from Presutti et al. (ESWC’09 tutorial)

Coverage-oriented ontologies
– Cover the terminology in a whole domain
– Typically used for non-inferential tasks, often in

relation to unstructured resources (annotation,
retrieval…)

Task-oriented ontologies
– Provide semantics to structured facts / KBs
– Typically used for querying and reasoning
– Design guided by competence questions

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Ontology languages (schema / logical)

There is a plethora of…
OWL (and its sublanguages incl. RDFS)
– Description Logics (DL) semantics
– standardized by W3C

Other
(most seek some interoperability with OWL)
– Common Logic (ISO Standard), CycL
– Frame-based (F-Logic etc.)
– GOL
– Topic Maps (ISO Standard)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Ontology languages (schema / logical)

There is a plethora of…
OWL (and its sublanguages incl. RDFS)
– Description Logics (DL) semantics
– standardized by W3C

Other
(most seek some interoperability with OWL)
– Common Logic (ISO Standard), CycL
– Frame-based (F-Logic etc.)
– GOL
– Topic Maps (ISO Standard)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

OntoLeipzig

(Pre-)history of OWL

Early KR systems based on DL, such as KL-ONE (1985),
distinguished from frame systems
SHOE (1998) – first ‘web ontology’ language, HTML-based
DAML-ONT, OIL (2000)
– more frame aspects (back) to DL; use of RDF

DAML+OIL (2002) – combination of both
– E.g. RDF-based instances (x OIL)
– E.g. local restrictions on properties (x DAML-ONT)

OWL became W3C Recommendation in 2004

Current version, OWL 2, became W3C
Recommendation in 2009
– http://www.w3.org/TR/owl2-overview/

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

http://www.w3.org/TR/owl2-overview/

Basic representational features of OWL

As for any DL language, an OWL knowledge base
(‘ontology’, theory) consists of logical formulae,
called axioms
Axioms express statements regarding entities
– Individuals (instances, objects, …)
– Classes (concepts, types, …)
– Properties (roles, predicates, binary relations, …)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Annotations

Besides the ‘logical’ aspect, OWL also allows to
express `extra-logical’ meta-information via
annotations
– about the ontology as whole

e.g. version

– about entities declared in the ontology
e.g. human-readable name of a class

– about whole formulae (axioms)
e.g. creation date

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

T-box, R-box and A-box

A knowledge base may have three parts
– T-box (terminological box)
– R-box (role box)
– A-box (assertional box)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

T-box, R-box and A-box

A knowledge base may have three parts
– T-box (terminological box)
– R-box (role box)
– A-box (assertional box)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

‘definitions’

‘facts’

T-box, R-box and A-box axioms

A T-box axiom relates two class expressions
– via equivalence (owl:equivalentClass)

or subsumption (rdfs:subClassOf)

An R-box axiom relates two property expressions
– via equivalence (owl:equivalent…Properties)

or subsumption (rdfs:subObjectPropertyOf)

An A-box axiom
– either assigns a class expression to an individual

(rdf:type)
– or relates two individuals by a property expression

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Class and property expressions

A class expression refers to a set of individuals
It can be either
– a named class as (atomic) entity
– a complex class expression, e.g.

‘C1 and C2’ (conjunction)
‘Book and ThingWrittenByBeneluxAuthor’
‘P some C’ (existential restriction)
‘writtenBy some BeneluxWriter’
‘{i1, i2, i3}’ (enumeration)
{Belgium,Netherlands,Luxembourg}

Expressions can be further composed
– Book and (writtenBy some (Person and livesIn

{Belgium,Netherlands,Luxembourg}))

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Class and property expressions

A property expression refers to a set of ordered
pairs of individuals
It can be either a
– named property as (atomic) entity
– complex property expression

e.g. ‘inverse of X’

Property expressions can also be composed

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

A-box axioms

Class expression instantiations
MaigretAfraid a Book
MaigretAfraid a (Book and (writtenBy some (Person

and livesIn {Belgium,Netherlands,Luxembourg}))

Property instantiations (‘normal facts’)
MaigretAfraid writtenBy Simenon

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

(Official) Sublanguages of OWL

OWL 2 EL
– existential but not universal quantification
– conjunction but not disjunction
– suitable for consistency checking, subsumption and

instance checking, even in large T-boxes

OWL 2 QL
– no quantification nor disjunction
– suitable for querying large A-boxes

OWL 2 RL
– does not allow inference of anonymous individuals
– suitable for inference by rule systems

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Most important OWL syntaxes

Functional syntax
– Directly follows from structural specification of the

language

RDF/XML
– Mandatory for any tool
– Assures compliance to RDF processing

Turtle
OWL/XML
– Assures compliance to XML processing

Manchester syntax
– Easy to read and write class expressions

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Examples (from OWL 2 Primer)

Class instantiation
– Mary is a parent

Object property assertion
– Mary is John’s wife

Equivalence axiom with existential restriction over
a property
– Some ‘thing’ is a parent if and only if ‘it’ has at least

one child that is a person

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Mary is a parent

Functional-Style Syntax
ClassAssertion(:Parent :Mary)

RDF/XML Syntax
< Parent rdf:about="Mary"/>

Turtle Syntax
:Mary rdf:type : Parent .

Manchester Syntax
Individual: Mary Types: Parent

OWL/XML Syntax
<ClassAssertion>

<Class IRI=" Parent "/> <NamedIndividual IRI="Mary"/>
</ClassAssertion>

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Mary is John’s wife

Functional-Style Syntax
ObjectPropertyAssertion(:hasWife :John :Mary)

RDF/XML Syntax
<rdf:Description rdf:about="John"> <hasWife

rdf:resource="Mary"/> </rdf:Description>
Turtle Syntax

:John :hasWife :Mary .
Manchester Syntax

Individual: John Facts: hasWife Mary
OWL/XML Syntax

<ObjectPropertyAssertion> <ObjectProperty IRI="hasWife"/>
<NamedIndividual IRI="John"/>
<NamedIndividual IRI="Mary"/>
</ObjectPropertyAssertion>

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Some ‘thing’ is a parent if and only if ‘it’ has at least one child that is a person

Functional-Style Syntax
EquivalentClasses(:Parent

ObjectSomeValuesFrom(:hasChild :Person))

RDF/XML Syntax
<owl:Class rdf:about="Parent">

<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="hasChild"/>
<owl:someValuesFrom rdf:resource="Person"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Some ‘thing’ is a parent if and only if ‘it’ has at least one child that is a person

Turtle Syntax
:Parent owl:equivalentClass

[rdf:type owl:Restriction ; owl:onProperty :hasChild ;
owl:someValuesFrom :Person] .

Manchester Syntax
Class: Parent EquivalentTo: hasChild some Person

OWL/XML Syntax
<EquivalentClasses>

<Class IRI="Parent"/>
<ObjectSomeValuesFrom>
<ObjectProperty IRI="hasChild"/> <Class IRI="Person"/>
</ObjectSomeValuesFrom>
</EquivalentClasses>

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

OWL spread of use

First-choice for ontologies designed under the
influence of academia
By http://pingthesemanticweb.com to date:
– 549K documents use the OWL namespace

cf. FOAF: 1.3M

– Presumably often due to owl:sameAs?

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

http://pingthesemanticweb.com/

Linked Data view

Semantics is defined by RDFS vocabularies
– Mostly consensual to some degree

Research project consortia, VoCamps, …

– Structure influenced by ‘what is in data’
– Usually small, flat, and adopted piecewise

‘Ontology-like’ classifications are sometimes
modeled at the level of instances
– E.g. through SKOS vocabulary
– Usually not referred to as ontologies… but often

could be viewed as terminological ontologies

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Linked Data view

Semantics is defined by RDFS vocabularies
– Mostly consensual to some degree

Research project consortia, VoCamps, …

– Structure influenced by ‘what is in data’
– Usually small, flat, and adopted piecewise

‘Ontology-like’ classifications are sometimes
modeled at the level of instances
– E.g. through SKOS vocabulary
– Usually not referred to as ontologies… but often

could be viewed as terminological ontologies

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

~ Task-oriented
ontologies?

~ Coverage-oriented
ontologies?

Linked Data view

Ontologies are complex vocabularies
– Hierarchical, axiomatized, … beyond RDFS
– Hardly pay off unless inference desired

(Rare) example: GoodRelations
– http://www.heppnetz.de/projects/goodrelations/
– Used by over 10K businesses to describe their

company and product data
– Pragmatically evolves towards a simple vocabulary
– Yet toughly competes with even simpler approaches

such as http://schema.org/
Joint initiative by MS, Yahoo!, Google
Microdata syntax, ignores RDF etc.

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

http://www.heppnetz.de/projects/goodrelations/
http://schema.org/

Where are the ‘true’ ontologies?

Decent ‘knowledge ontologies’ now in medicine
– Concepts in human anatomy, physiology etc. evolve

slowly → there is accumulated experience
– Very high degree of reuse → investments to careful

modeling pay off
– Very high numbers of mutually related concepts

even in a single domain → manual maintenance of
taxonomies is hard → room for logical inference

– DL applications (T-box) have been tested in this
domain from the beginning

GALEN project (1990s)

– SNOMED-OWL (400K concepts in 2007)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Examples (SNOMED)

Concept defined based on other concepts
– Appendicectomy equivalentTo
Surgical_Procedure and
(method some Excision) and
(procedure-site some Appendix_structure)

Unnamed concept
– Excision and (procedure-site some (kidney
and (laterality some left)))

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Inferencing in the current Web of Data?

Classical deductive inference often inadequate
Some non-standard inference methods under
investigation: LARKC project http://www.larkc.eu
– Tackles some real problems of web data

(vagueness, incompleteness…)
– However, adds further complexity to current

reasoners (which are already tough for non-experts)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

http://www.larkc.eu/

Inferencing in the current Web of Data?

If simple A-box inference needed, it can be
implemented as ‘inference on demand’
– SPARQL CONSTRUCT

Integrity constraints checking
– ‘repair’ in ORE system (Lehmann et al.)
– SPIN language proposal by TopQuadrant?

Inductive inferencing
– ‘analytical’ rather than ‘transactional’ level of LD
– ‘enrichment’ in ORE

In any case, inferencing should be applied
selectively, with care, in order not to destroy the
scalability and transparency of LD infrastructure

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Now comes a quizz, to relax

A ‘real world problem’ is presented

Task 1: Suggest a solution for the problem

(… there might be more solutions – for the next
step let’s consider the solution endorsed by me)

Task 2: Try to decode the problem and its solution
as a metaphor in the semweb/LD context

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem I: Heal the famine using silos

Problem description:
– You are a leader of a tribe
– You got a permission from

the king to get grain for your
people

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem I: Heal the famine using silos

Problem description:
– You are a leader of a tribe
– You got a permission from

the king to get grain for your
people

– The granary master is willing
to give you grain, but the
entrance to the granary is
rusted

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem I: Heal the famine using silos

Problem description:
– You are a leader of a tribe
– You got a permission from

the king to get grain for your
people

– The granary master is willing
to give you grain, but the
entrance to the granary is
rusted

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem I: Heal the famine using silos

Problem description:
– You are a leader of a tribe
– You got a permission from

the king to get grain for your
people

– The granary master is willing
to give you grain, but the
entrance to the granary is
rusted

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem I: Heal the famine using silos

Problem description:
– You are a leader of a tribe
– You got a permission from

the king to get grain for your
people

– The granary master is willing
to give you grain, but the
entrance to the granary is
rusted

– When enough grain is taken
away, the entrance could be
open from inside

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem I: Heal the famine using silos

Metaphor for:
– ‘Raw data first’ principle
– Initially large effort from

consumer/mediator needed
– Real use of data encourages

further data opening /
publisher-side enhancement

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem II: Elephant in zoo

You are a zoo director
You managed to build
the elephant pavilion,
and introduced the first
elephant

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem II: Elephant in zoo

You are a zoo director
You managed to build
the elephant pavilion,
and introduced the first
elephant
Children are afraid of
approaching, as there
was a ‘Furious elephant’
movie on the TV

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem II: Elephant in zoo

You are a zoo director
You managed to build
the elephant pavilion,
and introduced the first
elephant
Children are afraid of
approaching, as there
was a ‘Furious elephant’
movie on the TV
When the initial worry
dissolves, they will want
to see it whole

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem II: Elephant in zoo

Metaphor for:
– Web application

developers ignore LD
resources, as they
perceive RDF/SPARQL
as too complex and
hard to learn

– REST APIs on top of LD
provide ‘RDF-free’
access to fragments of
resources’ content

– This encourages to
later explore advanced
access options

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem III: Cupboards and drill bits

You need to hang bookshelves of various
size on the wall
You picked up a drill bit that would make
holes for heavy-duty screws, capable of
carrying any shelf you think of

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem III: Cupboards and drill bits

You need to hang bookshelves of various
size on the wall
You picked up a thick drill bit that would
make holes for heavy-duty screws,
capable of carrying any shelf you think of
However, the drill only made shallow
dents into the plaster
Nothing but empty shelves can be hung

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem III: Cupboards and drill bits

You need to hang bookshelves of various
size on the wall
You picked up a thick drill bit that would
make holes for heavy-duty screws,
capable of carrying any shelf you think of
However, the drill only made shallow
dents into the plaster
Nothing but empty shelves can be hung
Use a narrow bit first, to get deeper
– You hang at least small shelves
– Heavy-duty bit (if ready in toolbox!) can

thrust easier into an existing, narrow hole

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Problem III: Cupboards and drill bits

Metaphor for:
– Starting the semantic web with complex

schemata didn’t work much
– Simple LD schemata allow to develop

useful though lightweight applications
– More sophisticated ontologies should only

be widely applied after the simple
schemata sufficiently proved to work

– Such ontologies should be developed and
maintained already now (by an effort from
academia); they cannot be instantly built
when eventually needed!

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

OE: thick drill bit handy in the tool box

Schemas are adopted based on their popularity
and simplicity
Cost: often conceptually simplified (if not wrong)
This may lead to problems when already
established communities open and interact
– see the FOAF study in Block III

Ontological engineering may help
– Not (necessarily) by rebuilding the schemas proper
– Rather as an additional, optional layer

‘Reactive’ rather than ‘proactive’ attitude of
ontological engineering needed now to advance
the semantic web

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

What do the quizz and lecture have in common?

Object-level relationship: Problem III was mapped
on the role of ontological engineering on the
semantic web
Meta-level relationship: The use of metaphors as
such is analogous to the LD practice
– Terms such as ‘bull’ and ‘bear’ for stock-exchange

market trends are efficient and mnemotechnic
vs. “market with increasing investor confidence” etc.

– However, when an outsider steps in, some
explanation is necessary

– Just as solid ontological modeling on top of popular
schemata may show useful when moving beyond
original communities of ‘tacit consensus’

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

ONTOLOGY PATTERNS
Block II

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Ontology patterns: agenda

Ontological engineering context
Overview of pattern types
Ontology content patterns and the XD approach
Logical/structural patterns in OWL
Naming patterns

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Inventory of an ontological engineer

Set of requirements on the specific ontology
Elementary logical constructs (e.g. OWL)
Existing ontologies / vocabularies (e.g. FOAF)
Non-formalized schemata
Conventions and practices
Software tools (editors, reasoners…)

Adapted from Presutti and al., ESWC’09 tutorial

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Ontology design patterns

Reusable successful solutions to a recurrent
modeling problem
Cf. patterns in software engineering (SE) –
typically consist of
– Problem description
– Suggested solution
– Implementation guidelines
– Discussion on consequences of using the pattern

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Design vs. empirical patterns

Design patterns
– used intentionally

Empirical patterns
– discovered in artifacts
– may result from design patterns
– may produce design patterns

(even if appeared spontaneously)

Due to low maturity of ontological engineering,
design patterns mostly considered so far
With growing amount of ontologies available,
empirical patterns gain on importance
– Šváb-Zamazal (2008), Mikroyannidi (2011)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Pre-cursor: Clark’s knowledge patterns (1997)

An ontology is not just a list of axioms, but a
collection of abstract, modular theories and
associated modeling decisions
Examples:
– a ‘distribution network’ pattern can be used to

model electric circuits or
– a ‘container’ pattern can be used to model bank

accounts or computers

Mapping of the elements (signature) of the pattern
to elements of a concrete setting is specified
Similarly to SE patterns helps avoid repeated
writing of same-structured axioms

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Traditional streams (after 2000)

Logical ontology design patterns
– Address some limitation of a modelling language
– For OWL: primarily by

W3C notes by the SWBPD – OEP group
Univ. Manchester (web catalogue)

Ontology content design patterns
– Reusable building blocks
– Often derived from foundational ontologies

(esp. DOLCE), originally language-independent
– To be imported to new / reengineered ontologies

(as whole - unlike current vocabularies)
– Primarily by ISTC/CNR Rome

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

W3C SWBPD WG OEP TF

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Manchester (bioinformatics-oriented) catalogue

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

The ontologydesignpatterns.org catalogue

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Current taxonomy of ontology design patterns

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

From http://ontologydesignpatterns.org

Current taxonomy of ontology design patterns

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

From http://ontologydesignpatterns.org

Ontology content design patterns (CPs)

Originally conceptual models to be adapted for any
particular language
Currently small ‘micro-ontologies’ in OWL
– Assumed to be used in the root part of a domain

ontology
– Accompanied with examples, entity lists, links to

other (esp. reused)CPs

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Example of pattern import+specialization

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Classification CPObjectRole CPAgentRole CP

Multi-CP modelling example

Arnold Schwarzenegger is Shylock in the play of
"Merchant of Venice”, that is given at the theater
“Roma” during September and October 2009

Borrowed from V. Presutti, ESWC’09 tutorial

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• A person plays a
character

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• A person plays a
character

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• A person plays a
character

To represents objects
and the roles they
play.

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• The play of some
drama

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• The play of some
drama

To distinguish information
objects from their concrete
realizations.

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• A time period

IS
SL
OD

Multi-CP modelling example

• Arnold
Schwarzenegger is
Shylock in the play of
"Merchant of Venice”,
that is given at the
theater “Roma” during
September and
October 2009

• A time period

To represent time intervals,
their start/end dates, and any
dates falling into the period

IS
SL
OD

Multi-CP modelling example

• Arnold Schwarzenegger is
Shylock in the play of
"Merchant of Venice”, that
is given at the theater
“Roma” during September
and October 2009

• A person plays a character
in a play of a drama, given
at a theater during a time
period

• How can we relate them
together?

IS
SL
OD

Multi-CP modelling example

• Arnold Schwarzenegger is
Shylock in the play of
"Merchant of Venice”, that
is given at the theater
“Roma” during September
and October 2009

• A person plays a character
in a play of a drama, given
at a theater during a time
period

• A situation, a set of
circumstances in a defined
setting

IS
SL
OD

Creation of CPs

Reengineering from patterns expressed in other
data models
Data model patterns, Lexical Frames, Workflow
patterns, Knowledge discovery patterns, etc.
Specialization/Generalization/Composition of other
CPs
Extraction from reference ontologies (by cloning)
Mix of these

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

XD methodology / tools

Developed at ISTC-CNR, Rome
– See Presutti et al., 2009 (WOP workshop)

Tailored for the design of small, compact task-
oriented ontologies
– Increase the development speed
– Allow for better quality control
– Increase the reuse potential

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

eXtreme ontology Design (XD)

• Inspired by eXtreme Programming basic rules
– e.g., pair programming, test-oriented, continued

integration, etc.

• Main principles
– divide & conquer

• understand the task and express it by means of
competency questions

– reuse ontology design patterns
– evaluate the result against the task

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

XD Methodology in nutshell

Step 1 – Get into the project context.
Step 2 – Collect requirement stories.
Step 3 – Select a story that hasn’t been treated yet.
Step 4 – Transform the story into CQs.
Step 5 - Select a coherent set of CQs.
Step 6 - Match the CQs to available CPs.
Step 7 - Select CPs to use.
Step 8 - Reuse (import, specialize) and integrate (compose,
extend) selected CPs.
Step 9 - Unit tests, through SPARQL queries, and fix.
Step 10 – Release the module.
Step 11 – Integrate, test and fix.
Step 12 – Release new version of ontology.

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

XDTools

Plugin to Eclipse and to NeOn Toolkit
– http://stlab.istc.cnr.it/stlab/XDTools

Access to patterns in a repository
– Browsing
– Keyword search

Pattern manipulation
– Such as specialization

Pattern annotation
Pattern-based analysis of ontology
– Check if best practices were followed

detects e.g. missing labels and comments, isolated
entities, unused imported ontologies

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

http://stlab.istc.cnr.it/stlab/XDTools

Logical / structural ontology patterns

Do not contain any content vocabulary
Dependent on language (here, OWL)
Typically several patterns clustered as different
solutions for the same (or similar) modeling
problem
Cannot be directly represented in the target
language, only in terms of
– Verbal descriptions
– Examples
– Structures with placeholders (variables)
– Transformations between different solutions

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Examples of popular LPs

Classes as property values (W3C)
Normalization (Manchester)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Classes as property values

Problem (arising from modeling heterogeneity)
– A taxonomy is modeled in terms of classes
– Individuals have to refer to these classes

AfricanLion rdfs:subclassOf Lion
LionsLifeInThePride rdf:type Book
LionsLifeInThePride dc:subject AfricanLion

Solutions within OWL DL
– Class/individual melting (OWL Full / OWL 2 punning)
– Represent each class by its (dummy) instance
– Represent each class by another individual
– Use ‘subject’ as annotation property
– Refer to an anonymous individual of a class

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Normalization pattern

T-box oriented
Untangling
polyhierarchies
by replacing explicit
subclass links
by existential
definitions
Polyhierarchy is
only constructed
at reasoning-time

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

OPPL – Ontology Pre-Processor Language

University of Manchester
– http://oppl2.sourceforge.net

Tool for manipulation with OWL structures
Pattern-based in version 2
– Logical patterns

Typically meant for refactoring of an ontology
prior to reasoning
Example: „Finds subclasses of NamedPizza and
make them subclasses of Thing“
– ?x:CLASS

SELECT ?x SubClassOf NamedPizza
BEGIN ADD ?x SubClassOf Thing END;

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

http://oppl2.sourceforge.net/

Naming patterns

Consider entity names (expressed by URIs and
labels) in ontologies as natural language terms
Both design and analysis aspects are important
Both users and applications benefit from the use
of `best-practice’ naming patterns
Naming patterns can be considered
– at the level of indiviual entities

(general naming conventions)
– across multiple interconnected entities

(cross-entity patterns leveraging on logical patterns)

See: Svátek (2009), Schober (2009)

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Naming patterns: for human user

User-focused initiatives in ontological engineering,
such as the introduction of Manchester syntax for
OWL, aim to improve the readability at the level of
meta-model constructions
Naming patterns could play an analogous role of
at the level of model entities

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Example: T-box axiom in Manchester syntax

Careless of naming patterns
– StateOwned Director only

(nomination some ministry)

Same axiom, same syntax, but careful naming
– StateOwnedCompany hasDirector only

(nominatedBy some Ministry)

What made the difference?
– Explicitly present head noun (‘company’)
– Avoiding plain nouns as object property names

(‘director’, ‘nomination’)
– Consistent capitalisation for same entity type

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Benefits for applications

Aside pure (deductive) logical reasoning, automated semantic
processing of ontology content is needed e.g. for
– Detection (and even suggestion of repair) of possible

conceptual mismatches
– Automated alignment and (modular) importing
– Model transformation, e.g.

For better alignment
For better tractability by a reasoner

Such heuristic processing typically require human assistence
in selecting among alternative operations
To reduce the number of alternatives offered to a human
(or rank such alternatives), even not-too-reliable evidence,
incl. entity naming, should be exploited

Many conceptualisation errors are not manifested
at the level of logical consistency
Naming analysis can reveal problems that are
either conceptualisation errors or awkward naming
Example (Šváb-Zamazal, 2008): detection of
lexical head incompatibility in a taxonomy
– 40-70% precision (detection indeed pointing to a

probable conceptualisation issue)
– depends on reliable detection of thesaurus

correspondence
– seems to work best on narrow-focused ontologies

with lots of (compound) technical terms

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Benefits for applications

Lexical head incompatibility

• Set-theoretic problem

• Bad naming policy
– Would have been

detected by other means

• Synonymy/Hyperonymy

ProgramCommittee

CommitteeMember

Paper

Rejected

Presentation

InvitedTalk

PATTERN-BASED ONTOLOGY
TRANSFORMATION

Block III

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

Context: PatOMat project

Funded by the Czech Science Foundation, 2010-2012
Central thread: „metamorphing ontologies“
– The same conceptualisation can be expressed differently in the

same language (OWL), depending on the modelling style used

IS
SL
OD

Context: PatOMat project

Funded by the Czech Science Foundation, 2010-2012
Central thread: „metamorphing ontologies“
– The same conceptualisation can be expressed differently in the

same language (OWL), depending on the modelling style used
– The modelling style should (semi-)automatically adjust to

current needs

IS
SL
OD

Context: PatOMat project

Funded by the Czech Science Foundation, 2010-2012
Central thread: „metamorphing ontologies“
– The same conceptualisation can be expressed differently in the

same language (OWL), depending on the modelling style used
– The modelling style should (semi-)automatically adjust to

current needs
– For example, for the given ontology to smoothly map to or

import another one

IS
SL
OD

Context: PatOMat project

Funded by the Czech Science Foundation, 2010-2012
Central thread: „metamorphing ontologies“
– The same conceptualisation can be expressed differently in the

same language (OWL), depending on the modelling style used
– The modelling style should (semi-)automatically adjust to

current needs
– For example, for the given ontology to smoothly map to or

import another one
– Or for removing features that make problems to a reasoner

IS
SL
OD

Context: PatOMat project

Funded by the Czech Science Foundation, 2010-2012
Central thread: „metamorphing ontologies“
– The same conceptualisation can be expressed differently in the

same language (OWL), depending on the modelling style used
– The modelling style should (semi-)automatically adjust to

current needs
– For example, for the given ontology to smoothly map to or

import another one
– Or for removing features that make problems to a reasoner

http://patomat.vse.cz

IS
SL
OD

http://patomat.vse.cz/

Motivation: example of style heterogeneity

Notion of „acceptance/rejection of a paper at a conference“

IS
SL
OD

Motivation: example of style heterogeneity

Notion of „acceptance/rejection of a paper at a conference“

Modelling via sibling classes
– PaperAcceptanceAct SubClassOf: ReviewerAct
– PaperRejectionAct SubClassOf: ReviewerAct

IS
SL
OD

Motivation: example of style heterogeneity

Notion of „acceptance/rejection of a paper at a conference“

Modelling via sibling classes
– PaperAcceptanceAct SubClassOf: ReviewerAct
– PaperRejectionAct SubClassOf: ReviewerAct

Modelling via object properties
– accepts Domain: Reviewer accepts Range: Paper
– rejects Domain: Reviewer rejects Range: Paper

IS
SL
OD

Motivation: example of style heterogeneity

Notion of „acceptance/rejection of a paper at a conference“

Modelling via sibling classes
– PaperAcceptanceAct SubClassOf: ReviewerAct
– PaperRejectionAct SubClassOf: ReviewerAct

Modelling via object properties
– accepts Domain: Reviewer accepts Range: Paper
– rejects Domain: Reviewer rejects Range: Paper

Modelling via enumeration class, i.e. individuals
– reviewerDecision Domain: Paper
– reviewerDecision Range: (EquivalentTo {acceptance, rejection})

IS
SL
OD

Motivation: example of style heterogeneity

Notion of „acceptance/rejection of a paper at a conference“

Modelling via sibling classes
– PaperAcceptanceAct SubClassOf: ReviewerAct
– PaperRejectionAct SubClassOf: ReviewerAct

Modelling via object properties
– accepts Domain: Reviewer accepts Range: Paper
– rejects Domain: Reviewer rejects Range: Paper

Modelling via enumeration class, i.e. individuals
– reviewerDecision Domain: Paper
– reviewerDecision Range: (EquivalentTo {acceptance, rejection})

Similar setting but slightly more higher-level than
(SPARQL-based) EvoPat or R2R are meant for?

IS
SL
OD

PatOMat and patterns

IS
SL
OD

PatOMat and patterns

Alternative modelling styles are captured via
(logical/structural) ontology patterns: OWL structures
(mostly) containing placeholders instead of real entities
– source OP
– target OP

IS
SL
OD

PatOMat and patterns

Alternative modelling styles are captured via
(logical/structural) ontology patterns: OWL structures
(mostly) containing placeholders instead of real entities
– source OP
– target OP

Transformation of (occurrences of) one OP into another is
defined by a transformation pattern
– namely, in its pattern transformation (PT) part

IS
SL
OD

PatOMat and patterns

Alternative modelling styles are captured via
(logical/structural) ontology patterns: OWL structures
(mostly) containing placeholders instead of real entities
– source OP
– target OP

Transformation of (occurrences of) one OP into another is
defined by a transformation pattern
– namely, in its pattern transformation (PT) part

Both ontology patterns and transformation patterns may
contain naming patterns with linguistic grounding
– naming detection patterns
– naming transformation patterns

IS
SL
OD

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

Example of source fragment

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

hasDecisionhasDecision hasDecisionDecisionhasDecisionPaper

hasDecisionAcceptance

domain range

subClassOf

Example of transformation pattern

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

transform
ation pattern

IS
SL
OD

Example of transformation pattern

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

transform
ation pattern

so
ur

ce
 o

nt
. p

at
t.

ta
rg

et
 o

nt
. p

at
t.

IS
SL
OD

Example of transformation pattern

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

transform
ation pattern

so
ur

ce
 o

nt
. p

at
t.

ta
rg

et
 o

nt
. p

at
t.

IS
SL
OD

naming detection pattern

naming transformation pattern

Example of transformation pattern

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

transform
ation pattern

so
ur

ce
 o

nt
. p

at
t.

ta
rg

et
 o

nt
. p

at
t.

IS
SL
OD

naming detection pattern

naming transformation pattern

hasDecision Domain: Paper
hasDecision Range: Decision
Acceptance SubClassOf: Decision

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

Example of transformation pattern

Paper Decision Acceptance hasDecision

IS
SL
OD

hasDecision Domain: Paper
hasDecision Range: Decision
Acceptance SubClassOf: Decision

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

Example of transformation pattern

Paper Decision Acceptance hasDecision

IS
SL
OD

‘Decision’=‘Decision’ accept (according to WordNet)

hasDecision Domain: Paper
hasDecision Range: Decision
Acceptance SubClassOf: Decision

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

Example of transformation pattern

Paper Decision Acceptance hasDecision

IS
SL
OD

‘Decision’=‘Decision’ accept (according to WordNet)

accepted Paper

hasDecision Domain: Paper
hasDecision Range: Decision
Acceptance SubClassOf: Decision

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

Example of transformation pattern

Paper Decision Acceptance hasDecision

IS
SL
OD

‘Decision’=‘Decision’ accept (according to WordNet)

accepted Paper

Paper Decision Acceptance AcceptedPaper

hasDecision

hasDecision Domain: Paper
hasDecision Range: Decision
Acceptance SubClassOf: Decision

OP1 : E={Class: ?A, Class: ?B, Class: ?C, ObjectProperty: ?p},
Ax={?p Domain: ?A, ?p Range: ?B, ?C SubClassOf: ?B},
NDP={comparison(?B, head term(?p)), exists(verb form(?C))}

OP2 : E={Class: ?D, Class: ?E, Class: ?F, Class: ?G,
ObjectProperty: ?q},
Ax={?q Domain: ?D, ?q Range: ?E, ?F SubClassOf: ?E,
?G EquivalentTo: (?q some ?F)}

PT : LI={?A EquivalentTo: ?D, ?B EquivalentTo: ?E,
?C EquivalentTo: ?F, EquivalentProperties: ?p, ?q},
NTP= {(?G, make passive verb(?C) + head noun(?A))}.

Example of transformation pattern

Paper Decision Acceptance hasDecision

IS
SL
OD

‘Decision’=‘Decision’ accept (according to WordNet)

accepted Paper

Paper Decision Acceptance AcceptedPaper

hasDecision

AcceptedPaper = hasDecision some Acceptance

hasDecision Domain: Paper
hasDecision Range: Decision
Acceptance SubClassOf: Decision

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies

IS
SL
OD

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies
– Alternative to building complex ‘Mannheim-style’

correspondences, such as
AcceptedPaper2 = hasDecision1 some Acceptance1

IS
SL
OD

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies
– Alternative to building complex ‘Mannheim-style’

correspondences, such as
AcceptedPaper2 = hasDecision1 some Acceptance1

– Or, complex correspondences can be built ex post by
composing two pieces of correspondence into one

AcceptedPaper1’ = hasDecision1 some Acceptance1

AcceptedPaper2 = AcceptedPaper1’

IS
SL
OD

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies
– Alternative to building complex ‘Mannheim-style’

correspondences, such as
AcceptedPaper2 = hasDecision1 some Acceptance1

– Or, complex correspondences can be built ex post by
composing two pieces of correspondence into one

AcceptedPaper1’ = hasDecision1 some Acceptance1

AcceptedPaper2 = AcceptedPaper1’

Solving structural problems when
importing an ontology into another

IS
SL
OD

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies
– Alternative to building complex ‘Mannheim-style’

correspondences, such as
AcceptedPaper2 = hasDecision1 some Acceptance1

– Or, complex correspondences can be built ex post by
composing two pieces of correspondence into one

AcceptedPaper1’ = hasDecision1 some Acceptance1

AcceptedPaper2 = AcceptedPaper1’

Solving structural problems when
importing an ontology into another
– Currently investigated for content patterns

(CPs) from the OntologyDesignPatterns.org portal

IS
SL
OD

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies
– Alternative to building complex ‘Mannheim-style’

correspondences, such as
AcceptedPaper2 = hasDecision1 some Acceptance1

– Or, complex correspondences can be built ex post by
composing two pieces of correspondence into one

AcceptedPaper1’ = hasDecision1 some Acceptance1

AcceptedPaper2 = AcceptedPaper1’

Solving structural problems when
importing an ontology into another
– Currently investigated for content patterns

(CPs) from the OntologyDesignPatterns.org portal

IS
SL
OD

Use cases

‘Smoother’ matching of style-wise heterogeneous ontologies
– Alternative to building complex ‘Mannheim-style’

correspondences, such as
AcceptedPaper2 = hasDecision1 some Acceptance1

– Or, complex correspondences can be built ex post by
composing two pieces of correspondence into one

AcceptedPaper1’ = hasDecision1 some Acceptance1

AcceptedPaper2 = AcceptedPaper1’

Solving structural problems when
importing an ontology into another
– Currently investigated for content patterns

(CPs) from the OntologyDesignPatterns.org portal
Canonically reducing complexity for reasoners by
`transforming away’ less palatable constructs

IS
SL
OD

“Transformation for Matching” Scenario

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

2. Detect style discrepancy of O1 and O2

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

2. Detect style discrepancy of O1 and O2

3. Identify relevant transformation pattern/s TP
in terms of contentwise matcheable ontology patterns in O1
and O2

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

2. Detect style discrepancy of O1 and O2

3. Identify relevant transformation pattern/s TP
in terms of contentwise matcheable ontology patterns in O1
and O2

4. Identify the boundaries of relevant fragment of source
ontology

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

2. Detect style discrepancy of O1 and O2

3. Identify relevant transformation pattern/s TP
in terms of contentwise matcheable ontology patterns in O1
and O2

4. Identify the boundaries of relevant fragment of source
ontology

5. Transform O1 to O1’ using TP

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

2. Detect style discrepancy of O1 and O2

3. Identify relevant transformation pattern/s TP
in terms of contentwise matcheable ontology patterns in O1
and O2

4. Identify the boundaries of relevant fragment of source
ontology

5. Transform O1 to O1’ using TP
6. Align O1’ to O2, yielding an ontology alignment OA

IS
SL
OD

Possible Workflow for Data Mediation Tasks

Given a source ontology O1 and a to-be-matched ontology O2,
with associated instance pools
1. Detect content compatibility of O1 and O2

2. Detect style discrepancy of O1 and O2

3. Identify relevant transformation pattern/s TP
in terms of contentwise matcheable ontology patterns in O1
and O2

4. Identify the boundaries of relevant fragment of source
ontology

5. Transform O1 to O1’ using TP
6. Align O1’ to O2, yielding an ontology alignment OA
7. Mediate (query/merge) instances over two-tiered links

Links between O1 and O1’ built according to TP
Correspondences from OA

IS
SL
OD

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

„Content pattern importing“ scenario

IS
SL
OD

Example: Importing AgentRole content pattern

IS
SL
OD

Example: Importing AgentRole content pattern

AgentRole (with own imports)
– OntologyDesignPatterns.org

portal

IS
SL
OD

Example: Importing AgentRole content pattern

AgentRole (with own imports)
– OntologyDesignPatterns.org

portal

(Fragment of) ConfOf ontology
from OntoFarm collection
– modelling the ‘conference

organisation’ domain

IS
SL
OD

Example: Importing AgentRole content pattern

AgentRole (with own imports)
– OntologyDesignPatterns.org

portal

(Fragment of) ConfOf ontology
from OntoFarm collection
– modelling the ‘conference

organisation’ domain

Need for adaptation: we should be able to say that a person
has the role of author (rather than just ‘is author’)

IS
SL
OD

Dimensions of the ‘import’ transformation

IS
SL
OD

Dimensions of the ‘import’ transformation

Source logical pattern in the ontology to be transformed
– ‘class-centric’ modelling approach in ConfOf

IS
SL
OD

Dimensions of the ‘import’ transformation

Source logical pattern in the ontology to be transformed
– ‘class-centric’ modelling approach in ConfOf

Additional axioms referring to to-be-affected entities from
the source pattern
– e.g. local and global restrictions over the ‘writes’ property

IS
SL
OD

Dimensions of the ‘import’ transformation

Source logical pattern in the ontology to be transformed
– ‘class-centric’ modelling approach in ConfOf

Additional axioms referring to to-be-affected entities from
the source pattern
– e.g. local and global restrictions over the ‘writes’ property

Target logical pattern
– only partly constrained by the content pattern
– alternatives may well map on the ‘approaches’ in the

notes published by the W3C SWBPD group
– In the example, as we have to transform the subclassOf

relationship (Author-Person) to a property relationship
between instances of a natural class (Person) and a ‘role’
class, Classes as Property Values pattern is relevant

IS
SL
OD

‘Approaches’ for ‘Classes as Property Values’

IS
SL
OD

CPW pattern applied for AgentRole import

IS
SL
OD

CPW pattern applied for AgentRole import

Approach 2: Create special instances
of the class to be used as property values

IS
SL
OD

CPW pattern applied for AgentRole import

Approach 2: Create special instances
of the class to be used as property values

Approach 3: Create a parallel
hierarchy of instances
as property values

IS
SL
OD

CPW pattern applied for AgentRole import

Approach 2: Create special instances
of the class to be used as property values

Approach 3: Create a parallel
hierarchy of instances
as property values

and other…

IS
SL
OD

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

FOAF ‘knows’ use case for pattern transformation

Initial study from ‘foundational’ perspective
foaf:knows is probably the most prominent
representative of object property on the Web of
Data
Object properties are most interesting as bridges
to substantial conceptual (ontological) modelling
Analysis (Vacura, 2010) of
– Adding implicit relationships
– Relation expansion

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Adding implicit relationships

May be needed to guarantee integration into other
ontologies that do not share the same
assumptions

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Relation expansion (‘unfolding’) paths

May be used to disambiguate the specific semantic
of an entity as conventionally used by a LD source

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

Prototype implementation

Three-phase transformation

IS
SL
OD

Prototype implementation

Three-phase transformation
– detection of source pattern in ontology

IS
SL
OD

Prototype implementation

Three-phase transformation
– detection of source pattern in ontology
– generation of transformation instructions

instantiation of the transformation part of the pattern

IS
SL
OD

Prototype implementation

Three-phase transformation
– detection of source pattern in ontology
– generation of transformation instructions

instantiation of the transformation part of the pattern

– actual transformation
using OPPL and directly OWL-API

IS
SL
OD

Prototype implementation

Three-phase transformation
– detection of source pattern in ontology
– generation of transformation instructions

instantiation of the transformation part of the pattern

– actual transformation
using OPPL and directly OWL-API

The user can interact in each step

IS
SL
OD

Prototype implementation

Three-phase transformation
– detection of source pattern in ontology
– generation of transformation instructions

instantiation of the transformation part of the pattern

– actual transformation
using OPPL and directly OWL-API

The user can interact in each step

Services available via POST method at
http://owl.vse.cz:8080

IS
SL
OD

http://owl.vse.cz:8080/

Prototype implementation

Three-phase transformation
– detection of source pattern in ontology
– generation of transformation instructions

instantiation of the transformation part of the pattern

– actual transformation
using OPPL and directly OWL-API

The user can interact in each step

Services available via POST method at
http://owl.vse.cz:8080
Tutorial, including technical details and sample
codes, available http://owl.vse.cz:8080/tutorial/

IS
SL
OD

http://owl.vse.cz:8080/
http://owl.vse.cz:8080/tutorial/

Pipeline of RESTful Services

IS
SL
OD

Alternative implementation – Java library

Used by the XDTools ontology engineering
environment (ISTC/CNR, Rome)
Wizard-based user interface

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

Support for transformation pattern authoring

TPE – Transformation Pattern Editor

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

IS
SL
OD

Agenda

Context and motivations
(Ontology) Transformation patterns
– Structure and (abstract) use

Use cases
– Ontology matching
– Content pattern import
– Special use case: FOAF ‘knows’

Transformation workflow and implementation
Ongoing and future work

Ongoing and future work

Comprehensive library of naming patterns relevant for
ontology style transformation
– Implementation on top of existing lexical sources

Canonical methods for swapping info between logical and
annotation spaces while transforming
Ontologies of logical/structural patterns
– Patterns structure; categorisation facets
– Patterns usage, esp. matching to modelling issues

Elaborate more use cases
– other CPs; matching settings; reasoning settings

More advanced detection techniques

IS
SL
OD

THANKS FOR YOUR
ATTENTION

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

References

W.N. Borst: Construction of Engineering Ontologies for Knowledge Sharing
and Reuse. PhD dissertation, University of Twente, Enschede, 1997.
P. Clark et al.: Knowledge Patterns. In: Handbook of Ontologies, Springer
2003.
T. Gruber: A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 1993.
E. Mikroyannidi et al.: Inspecting regularities in ontology design using
clustering. In: ISWC’11.
V. Presutti et al.: Extreme Design (XD): Pattern-based Ontology Design.
Tutorial at ESWC’09.
V. Presutti et al.: eXtreme Design with Content Ontology Design Patterns.
In: WOP@ISWC’09
D. Schober et al.: Survey-based naming conventions for use in OBO
Foundry ontology development
O. Šváb-Zamazal, V. Svátek: Analysing Ontological Structures through
Name Pattern Tracking. In: EKAW’08.
V. Svátek et al., Ontology Naming Pattern Sauce for (Human and
Computer) Gourmets . In: WOP@ISWC’09

ISSLOD 2011, (Ontological Engineering...) Pattern-based ontology transformation

	Ontological Engineering for the Semantic Web�with special focus on�Pattern-based Ontology Transformation
	Speaker’s background
	Credits
	Lecture blocks
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	Semantic web as dancing party
	LINKED DATA AND ONTOLOGIES
	Linked Data and ontologies: agenda
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What is an ontology and what isn’t?
	What you typically fall upon
	What you typically fall upon
	What you typically fall upon
	What you typically fall upon
	What you typically fall upon
	Dichotomy from Presutti et al. (ESWC’09 tutorial)
	Ontology languages (schema / logical)
	Ontology languages (schema / logical)
	(Pre-)history of OWL
	Basic representational features of OWL
	Annotations
	T-box, R-box and A-box
	T-box, R-box and A-box
	T-box, R-box and A-box axioms
	Class and property expressions
	Class and property expressions
	A-box axioms
	(Official) Sublanguages of OWL
	Most important OWL syntaxes
	Examples (from OWL 2 Primer)
	Mary is a parent
	Mary is John’s wife
	Some ‘thing’ is a parent if and only if ‘it’ has at least one child that is a person
	Some ‘thing’ is a parent if and only if ‘it’ has at least one child that is a person
	OWL spread of use
	Linked Data view
	Linked Data view
	Linked Data view
	Where are the ‘true’ ontologies?
	Examples (SNOMED)
	Inferencing in the current Web of Data?
	Inferencing in the current Web of Data?
	Now comes a quizz, to relax
	Problem I: Heal the famine using silos
	Problem I: Heal the famine using silos
	Problem I: Heal the famine using silos
	Problem I: Heal the famine using silos
	Problem I: Heal the famine using silos
	Problem I: Heal the famine using silos
	Problem II: Elephant in zoo
	Problem II: Elephant in zoo
	Problem II: Elephant in zoo
	Problem II: Elephant in zoo
	Problem III: Cupboards and drill bits
	Problem III: Cupboards and drill bits
	Problem III: Cupboards and drill bits
	Problem III: Cupboards and drill bits
	OE: thick drill bit handy in the tool box
	What do the quizz and lecture have in common?
	Ontology patterns
	Ontology patterns: agenda
	Inventory of an ontological engineer
	Ontology design patterns
	Design vs. empirical patterns
	Pre-cursor: Clark’s knowledge patterns (1997)
	Traditional streams (after 2000)
	W3C SWBPD WG OEP TF
	Manchester (bioinformatics-oriented) catalogue
	The ontologydesignpatterns.org catalogue
	Current taxonomy of ontology design patterns
	Current taxonomy of ontology design patterns
	Ontology content design patterns (CPs)
	Example of pattern import+specialization
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Multi-CP modelling example
	Creation of CPs
	XD methodology / tools
	eXtreme ontology Design (XD)
	XD Methodology in nutshell
	XDTools
	Logical / structural ontology patterns
	Examples of popular LPs
	Classes as property values
	Normalization pattern
	OPPL – Ontology Pre-Processor Language
	Naming patterns
	Naming patterns: for human user
	Example: T-box axiom in Manchester syntax
	Snímek číslo 120
	Snímek číslo 121
	Lexical head incompatibility
	Pattern-based Ontology transformation
	Agenda
	Agenda
	Context: PatOMat project
	Context: PatOMat project
	Context: PatOMat project
	Context: PatOMat project
	Context: PatOMat project
	Motivation: example of style heterogeneity
	Motivation: example of style heterogeneity
	Motivation: example of style heterogeneity
	Motivation: example of style heterogeneity
	Motivation: example of style heterogeneity
	PatOMat and patterns
	PatOMat and patterns
	PatOMat and patterns
	PatOMat and patterns
	Agenda
	Example of source fragment
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Example of transformation pattern
	Agenda
	Use cases
	Use cases
	Use cases
	Use cases
	Use cases
	Use cases
	Use cases
	“Transformation for Matching” Scenario
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Possible Workflow for Data Mediation Tasks
	Agenda
	„Content pattern importing“ scenario
	Example: Importing AgentRole content pattern
	Example: Importing AgentRole content pattern
	Example: Importing AgentRole content pattern
	Example: Importing AgentRole content pattern
	Dimensions of the ‘import’ transformation
	Dimensions of the ‘import’ transformation
	Dimensions of the ‘import’ transformation
	Dimensions of the ‘import’ transformation
	‘Approaches’ for ‘Classes as Property Values’
	CPW pattern applied for AgentRole import
	CPW pattern applied for AgentRole import
	CPW pattern applied for AgentRole import
	CPW pattern applied for AgentRole import
	Agenda
	FOAF ‘knows’ use case for pattern transformation
	Adding implicit relationships
	Relation expansion (‘unfolding’) paths
	Agenda
	Prototype implementation
	Prototype implementation
	Prototype implementation
	Prototype implementation
	Prototype implementation
	Prototype implementation
	Prototype implementation
	Pipeline of RESTful Services
	Alternative implementation – Java library
	Support for transformation pattern authoring
	Agenda
	Ongoing and future work
	THANKS FOR YOUR ATTENTION
	References

