
The Ex Project: Web Information Extraction using
Extraction Ontologies

Martin Labský, Vojtěch Svátek, Marek Nekvasil and Dušan Rak

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

e-mail: {labsky,svatek,nekvasim,rakdusan}@vse.cz

Abstract. Extraction ontologies represent a novel paradigm in web information
extraction (as one of ‘deductive’ species of web mining) allowing to swiftly pro-
ceed from initial domain modelling to running a functional prototype, without
the necessity of collecting and labelling large amounts of training examples. Bot-
tlenecks in this approach are however the tedium of developing an extraction
ontology adequately covering the semantic scope of web data to be processed
and the difficulty of combining the ontology-based approach with inductive or
wrapper-based approaches. We report on an ongoing project aiming at developing
a web information extraction tool based on richly-structured extraction ontologies
and with additional possibility of (1) semi-automatically constructing these from
third-party domain ontologies, (2) absorbing the results of inductive learning for
subtasks where pre-labelled data abound, and (3) actively exploiting formatting
regularities in the wrapper style.

1 Introduction

Web information extraction (WIE) represents a specific category of web mining. It con-
sists in the identification of typically small pieces of relevant text within web pages and
their aggregation into larger structures such as data records or instances of ontology
classes. As its core task is application of pre-existent patterns or models (in contrast
to inductively discovering new patterns), it falls under the notion of ‘deductive’ web
mining [10], similarly as e.g. web document classification. As such, some kind of prior
knowledge is indispensable in WIE. However, the ‘deductive’ aspects of WIE are often
complemented with inductive ones, especially in terms of learning the patterns/models
(at least partly) from training data.

In the last decade, WIE was actually dominated by two paradigms. One—wrapper-
based—consists in systematically exploiting the surface structure of HTML code, as-
suming the presence of regular structures that can be used as anchors for the extrac-
tion. This approach is now widely adopted in industry, however, its dependence on
formatting regularity limits its use for diverse categories of web pages. The other—
inductive—paradigm assumes the presence of training data: either web pages contain-
ing pre-annotated tokens or stand-alone examples of data instances. It is linked to ex-
ploration of various computational learning paradigms, e.g. Hidden-Markov Models,
Maximum Entropy Models, Conditional Random Fields [7] or symbolic approaches

such as rule learning [1]. Again, however, the presence of (sufficient amounts of) an-
notated training data is a pre-condition that is rarely fulfilled in real-world settings, and
manual labelling of training data is often unfeasible; statistical bootstrapping alleviates
this problem to some degree but at the same time burdens the whole process with ‘heavy
computational machinery’, whose requirements and side-effects are not transparent to a
casual user of a WIE tool. In addition, both approaches usually deliver extracted infor-
mation as rather weakly semantically structured; if WIE is to be used to fuel semantic
web repositories, secondary mapping to ontologies is typically needed, which makes
the process complicated and possibly error-prone.

There were recently proposals for pushing ontologies towards the actual extraction
process as immediate prior knowledge. Extraction ontologies [3] define the concepts,
the instances of which are to be extracted, in the sense of various attributes, their al-
lowed values as well as higher level (e.g. cardinality or mutual dependency) constraints.
Extraction ontologies are assumed to be hand-crafted based on observation of a sam-
ple of resources; however, due to their clean and rich conceptual structure (allowing
partial intra-domain reuse and providing immediate semantics to extracted data), they
are superior to ad-hoc hand-crafted patterns used in early times of WIE. At the same
time, they allow for rapid start of the actual extraction process, as even a very simple
extraction ontology (designed by a competent person) is likely to cover a sensible part
of target data and generate meaningful feedback for its own redesign; several iterations
are of course needed to obtain results in sufficient quality. It seems that for web do-
mains that consist of a high number of relatively tiny and evolving resources (such as
web product catalogs), information extraction ontologies are the first choice. However,
to make maximal use of available data and knowledge and avoid overfitting to a few
data resources examined by the designer, the whole process must not neglect available
labelled data, formatting regularities and even pre-existing domain ontologies.

In this paper we report on an ongoing effort in building a WIE tool named Ex, which
would synergistically exploit all the mentioned resources, with central role of extrac-
tion ontologies. Section 2 explains the structure of extraction ontologies used in Ex.
Section 3 describes the steps of the information extraction process. Section 4 briefly
reports on experiments in two different domains. Finally, section 5 surveys related re-
search, and section 6 outlines future work.

2 Ex(traction) ontology content

Extraction ontologies in Ex are designed so as to extract occurrences of attributes (such
as ‘age’ or ‘surname’), i.e. standalone named entities or values, and occurrences of
whole instances of classes (such as ‘person’), as groups of attributes that ‘belong to-
gether’, from HTML pages (or texts in general) in a domain of interest.

2.1 Attribute-related information

Mandatory information to be specified for each attribute is: name, data type (string,
long text, integer, float) and dimensionality (e.g. 2 for screen resolution like 800x600).
In order to automatically extract an attribute, additional knowledge is typically needed.

Extraction knowledge about the attribute content includes (1) textual value patterns;
(2) for integer and float types: min/max values, a numeric value distribution and possi-
bly units of measure; (3) value length in tokens: min/max length constraints or a length
distribution; (4) axioms expressing more complex constraints on the value and (5) coref-
erence resolution knowledge. Attribute context knowledge includes (1) textual context
patterns and (2) formatting constraints.

Textual patterns in Ex (for both the value and the context of an attribute) are regular
patterns primarily defined at the level of words (tokens). They may be inlined in the
extraction ontology or as (possibly large) external files, and may include the following:

– specific tokens, e.g. ’employed by’
– token wildcards, which require one or more token properties to have certain values

(e.g. any capital or uppercase token, any token whose lemma is ‘employ’)
– character-level regular expressions for individual tokens
– references to other matched attribute candidates: a value pattern containing a refer-

ence to another attribute means that it can be nested inside this attribute’s value; for
context patterns, attribute references help encode how attributes follow each other

– references to other matched patterns; this allows for construction of complex gram-
mars where rules can be structured and reused

– references to named entities provided by other systems: these could include part-
of-speech tags, parsed chunks or output from other IE/NER systems1

For numeric types, default value patterns for integer/float numbers are provided.
Tabular, uniform, normal and mixture distributions are available to model attribute val-
ues. Linking a numeric attribute to unit definitions (e.g. to various currency units) will
automatically create value patterns containing the numeric value surrounded by the
units. In case there are multiple convertible units the extraction knowledge is reused.

For both attribute and class definitions, axioms can be specified that impose con-
straints on attribute value(s). For a single attribute, the axiom checks the to-be-extracted
value and is either satisfied or not (which may boost or suppress the attribute candidate’s
score). For a class, each axiom may refer to all attribute values present in the partially
or fully parsed instance. For example, a price with tax must be greater than the price
without tax. Axioms can be authored using the JavaScript2 scripting language. We chose
JavaScript since it allows arbitrarily complex axioms to be constructed and also because
the web community is used to it.

In addition, formatting constraints may be provided for each attribute. Currently,
four types of formatting constraints are supported: (1) the whole attribute value is con-
tained in a single parent, i.e. it does not include other tags or their boundaries; (2) the
value fits into the parent; (3) the value does not cross any inline formatting elements;
(4) it does not cross any block elements. We investigate how custom constraints could
easily be added by users. By default, all four constraints are in effect and influence the
likelihood of attribute candidates being extracted.

1 So far we experimented with lemmatizers and POS taggers.
2 http://www.mozilla.org/rhino

2.2 Class-related information

Each class definition enumerates the attributes which may belong to it, and for each
attribute it defines a cardinality range. Extraction knowledge may address both con-
tent and context of the class. Class content patterns are analogous to the attribute value
patterns, however, they may match parts of an instance and must contain at least one
reference to a member attribute. Class content patterns may be used e.g. to describe
common wordings used between attributes or just to specify attribute ordering. Axioms
are used to constrain or boost instances based on whether their attributes satisfy the
axiom. For each attribute, an engagedness parameter may be specified to estimate the
apriori probability of the attribute joining a class instance (as opposed to standalone
occurrence). Regarding class context, analogous class context patterns and similar for-
matting constraints as for attributes are in effect also for classes. An excerpt from an
extraction ontology about computer monitor descriptions is shown in Fig. 1.

2.3 Extraction evidence parameters

All types of extraction knowledge mentioned above, i.e. value and context patterns,
axioms, formatting constraints and ranges or distributions for numeric attribute values
and for attribute content lengths, are essentially pieces of evidence indicating the pres-
ence (or absence) of a certain attribute or class instance. In Ex, every piece of evidence
may be equipped with two probability estimates: precision and recall. The precision of
evidence states how probable it is for the predicted attribute or class instance to occur
given the evidence holds, disregarding the truth values of other evidence. For example,
the precision of a left context pattern “person name: $” (where $ denotes the predicted
attribute value) may be estimated as 0.8; i.e. in 80% of cases we expect a person name
to follow in text after a match of the “person name:” string. The recall of evidence states
how abundant the evidence is among the predicted objects, disregarding whether other
evidence holds. For example, the ”person name: $” pattern could have a low recall since
there are many other contexts in which a person name could occur.

Pattern precision and recall can be estimated in two ways. First, annotated docu-
ments can be used to estimate both parameters using simple ratios of counts observed in
text. In this case, it is necessary to smooth the parameters using an appropriate method.
For a number of domains it is possible to find existing annotated data, e.g. web por-
tals often make available online catalogs of manually populated product descriptions
linking to the original sellers’ web pages. When no training data is available or if the
evidence seems easy to estimate, the user can specify both parameters manually. For
the experimental results reported below we estimated parameters manually.

3 The extraction process

The inputs to the extraction process are the extraction ontology and a set of documents.
Extraction consists of six stages depicted in Fig. 2.

<class id="Monitor">
<pattern id="name_price_order" cover="0.8">

$name (<tok/>{0,20} $price){1,4}
</pattern>
<axiom cover="1"> $price_with_tax > $price_wo_tax </axiom>
<attribute id="name" type="name" card="1" eng="0.70">
<value>
<pattern cover="0.5" p="0.8" ignore="case">
(LCD (monitor|panel)?)? <pattern src="manuf.txt" ign="case"/>
(<tok type="ALPHANUM|ALPHA|INT"/>|<tok case="UC"/>){1,2}
</pattern>
<length> <distribution min="1" max="7"/> </length>
<pattern cover="0.5" type="fmt"> fits_in_parent </pattern>
<pattern cover="1.0" type="fmt"> no_cross_blocks </pattern>

</value>
</attribute>

Fig. 1. Sample extraction ontology for computer monitors

Fig. 2. Extraction process schema

3.1 Document preprocessing

First, the analysed document is loaded and its formatting structure is read into a sim-
plified DOM tree of formatting objects. To robustly read web pages containing invalid
HTML we employ the CyberNeko HTML parser3. Any text found in the formatting
elements and their attributes is tokenized using a configurable tokenizer. A flat array
of tokens is created for the document with each token linking to its parent format-
ting element. As part of tokenization, new words are registered in a common vocabu-
lary, lemmatized and linked to their lemmas (if available), and classified by token type
(e.g. alphanumeric) and case (e.g. capital).

3.2 Attribute candidate generation

After loading the document, all attribute value and attribute context patterns of the on-
tology are matched against the document’s tokens. Where a value pattern matches, the

3 http://people.apache.org/˜andyc/neko/doc/html/

system attempts to create a new candidate for the associated attribute (attribute candi-
date – AC). If more value patterns match at the same place, or if there are context pat-
tern matches for this attribute in neighbouring areas, then the corresponding evidence is
turned on as well for the AC. Evidence corresponding to all other non-matched patterns
is kept off for the AC. Also, during the creation of the AC, all other evidence types
(axioms, formatting constraints, content length and numeric value ranges) are evalu-
ated and set. The set of all evidence ΦA known for the attribute A is used to compute
a conditional probability estimate PAC of how likely the AC is given all the observed
evidence values:

PAC = P (A|E ∈ ΦA) (1)

The full formula is described and derived in [6]. We assume conditional independence
of evidence given that the attribute holds or not. The AC is created only if PAC exceeds
a pruning threshold defined by the extraction ontology.

In places where a context pattern matches and there are no value pattern matches in
neighbourhood, the system tries to create ACs of various length (in tokens) in the area
pointed to by the context pattern. For patterns which include other attributes, we run the
above process until no new ACs are generated.

The set of (possibly overlapping) ACs created during this phase is represented as
an AC lattice going through the document, where each AC is scored by score(AC) =
log(PAC). Apart from the ACs which may span multiple tokens, the lattice also includes
one ‘background’ state for each token that takes part in some AC. A background state
BGw for token w is scored as follows:

score(BGw) = min
AC,w∈AC

log(
1 − P (AC)

|AC|
) (2)

where |AC| is the length of the AC in tokens. The extraction process can terminate
here if no instance generation or formatting pattern induction is done, in which case all
ACs on the best path through the lattice are extracted.

3.3 Instance candidate generation

At the beginning of the instance candidate (IC) generation phase, each AC is used to
create a simple IC consisting just of that single AC. Then, a bottom-up IC generation
algorithm is employed to generate increasingly complex ICs from the working set of
ICs. At each step, the highest scoring (seed) IC is chosen and its neighbourhood is
searched for ACs that could be added to it without breaking ontological constraints
for the IC class. Only a subset of the constraints is taken into account at this time as
e.g. some minimum cardinality constraints or axioms could never get satisfied initially.
Each added AC is also examined to see whether it may corefer with some AC that is
already present in the IC; if yes, it is only added as a reference and it does not affect the
resulting IC score. To detect coreferences, the extraction ontology author may specify
for each attribute a binary comparison function that compares two attribute values to
determine whether they corefer (by default the values must equal to corefer).

After adding ACs to the chosen seed IC, that IC is removed from the working set
and the newly created larger ICs are added to it. The seed IC is added to a valid IC set if

it satisfies all ontological constraints. As more complex ICs are created by combining
simpler ICs with surrounding ACs, a limited number of ACs is allowed to be skipped
(ACskip) between the combined components, leading to a penalization of the created
IC. The IC scores are computed based on their AC content and based on the observed
values of evidence E known for the IC class C:

sc1(IC) = exp(

∑
AC∈IC log(PAC) +

∑
ACskip∈IC(1 − log(PACskip

))

|IC|
) (3)

sc2(IC) = P (C|E ∈ ΩC) (4)

where |IC| is the number of member ACs and ΩC is the set of evidence known for
class C; the conditional probability is estimated as in Eq. 1. By experiment we chose
the Prospector [2] pseudo-bayesian method to combine the above into the final IC score:

score(IC) =
sc1(IC)sc2(IC)

sc1(IC)sc2(IC) + (1 − sc1(IC))(1 − sc2(IC))
(5)

The IC generation algorithm picks the best IC to expand using the highest score(IC).
The generation phase ends when the working set of ICs becomes empty or on some ter-
minating condition such as after a certain number of iterations or after a time limit has
elapsed. The output of this phase is the set of valid ICs.

3.4 Formatting pattern induction

During the IC generation process, it may happen that a significant part of the created
valid ICs satisfies some (apriori unknown) formatting pattern. For example, a contact
page may consist of 6 paragraphs where each paragraph starts with a bold person name
together with scientific degrees. A more obvious example would be a table with the first
two columns listing staff first names and surnames. Then, if e.g. 90 person names are
identified in such table columns and the table has 100 rows, the induced patterns make
the remaining 10 entries more likely to get extracted as well.

Based on the lattice of valid ICs, the following pattern induction procedure is per-
formed. First, the best scoring sequence of non-overlapping ICs is found through the
lattice. Only the ICs on the best path take part in pattern induction. For each IC, we find
its nearest containing formatting block element. We then create a subtree of formatting
(incl. inline) elements between the containing block element (inclusive) and the at-
tributes comprising the IC. This subtree contains the names of the formatting elements
(e.g. paragraph or bold text) and their order within parent (e.g. the first or second cell
in table row). Relative frequencies of these subtrees are calculated over the examined
IC set (separately for each class if there are more). If the relative and absolute frequen-
cies of a certain subtree exceed respective configurable thresholds, a new formatting
pattern is induced and the subtree is transformed into a new context pattern indicating
the presence of the corresponding class. This induced formatting context pattern is an
example of ‘local’ evidence only useful within the currently analysed document (or a
set of documents coming from the same source). The precision and recall of the induced
context patterns are based on the relative frequencies with which the patterns hold in
the document (or document set) with respect to the observed ICs.

The newly created context patterns are then fed back to the pattern matching phase,
where they are matched and applied. This extra iteration rescores existing ACs and ICs
and may as well yield new ACs and ICs which would not have been created otherwise.
With our current implementation we have so far only experimented with pattern induc-
tion for ICs composed of a single attribute. Using this feature typically increases recall
but may have adverse impact on precision. One approach to avoid degradation of preci-
sion is to provide attribute evidence which will prevent unwanted attributes from being
extracted.

3.5 Attribute and instance parsing

The purpose of this final phase is to output the most probable sequence of instances and
standalone attributes through the analysed document. The valid ICs are merged into the
AC lattice so that each IC can be avoided by taking a path through standalone ACs
or through background states. In the lattice, each IC is scored as score(IC)|IC|. This
lattice is searched for n best sequences of non-overlapping extractable objects and these
sequences are finally output. Consequently, the best path through the document may
contain both instances and standalone attributes.

3.6 Incorporating third party tools

In practical WIE tasks it often happens that some of the attributes of interest are rela-
tively easy to extract using manually specified evidence, some require machine learning
algorithms such as CRFs [7] in order to achieve good extraction results, and some may
benefit from a combination of both. To support all three cases, Ex allows named entity
candidates identified by other engines to be included in all types of textual patterns de-
scribed above. For example, suppose our task is to extract instances of a Person class
composed of a person name and a scientific degree. Let’s also suppose we have training
data for person names but no data for degrees. A viable approach would then be to train
e.g. a CRF classifier to identify person names in text and to specify evidence for degrees
manually. To incorporate the CRF classifier’s suggestions into the extraction ontology,
a simple attribute value pattern like ”${crf:personname}” can be added to the person
name attribute. Here, ${} denotes a reference to an external named entity, crf is the
source component name and personname is the identifier output by the CRF classifier.
The precision for this value pattern can either be derived from the CRF classifier confi-
dence score, or we can use the expected precision of the classifier for this attribute. To
estimate the recall of the pattern, we can use the expected recall achieved by the classi-
fier. Additionally to this pattern, the user may specify more patterns to correct (limit or
extend) the classifier’s suggestions.

4 Experimental Results

4.1 Contact Information on Medical Pages

In the EU (DG SANCO) MedIEQ project4 we experiment with several dozens of med-
ical website quality criteria, most of which are to be evaluated with the assistance of IE

4 http://www.medieq.org

tools. One of them is the presence and richness of contact information. Table 1 shows
early results for contact IE. The data set consists of 109 HTML documents, which
were all manually classified as contact pages (each coming from a different website);
in total there are 146 HTML files as some documents include frames or iframes. The
documents contain 6930 annotated named entities of 10 types. The contact extraction
ontology was written based on seeing the first 30 documents of the total data; it also
refers to gazetteers such as lists of city names, common first names and surnames. The
ontology contains about 100 textual patterns for the context and content of attributes and
of the single extracted ’contact’ class, attribute length distributions and several axioms.
The effort spent on developing and tuning the ontology was about 2-3 person-weeks.
In the strict mode of evaluation, only exact matches are considered to be successfully
extracted. In the loose mode, partial credit is given to incomplete or overflown matches;
e.g. extracting ’John Newman’ where ’John Newman Jr.’ was supposed to be extracted
will count as a 66% match (based on overlapping word counts). The performance is
probably underestimated since the reliability of manual annotation was very low: the
inter-annotator agreement between the 3 human annotators was only 73.2% on average,
and e.g. for person names it only reached 68.7%. We are working to fix these inconsis-
tencies. Fig. 3 shows sample automatically annotated data.

Table 1. Contact IE results

strict mode loose mode
attribute prec recall F prec recall F
title 0.71 0.82 0.76 0.78 0.86 0.82
name 0.66 0.51 0.58 0.74 0.56 0.64
street 0.62 0.52 0.56 0.85 0.67 0.75
city 0.47 0.73 0.57 0.48 0.76 0.59
zip 0.59 0.78 0.67 0.67 0.85 0.75
country 0.58 0.89 0.70 0.59 0.89 0.71
phone 0.97 0.84 0.90 0.99 0.87 0.93
email 1.00 0.99 1.00 1.00 0.99 1.00
company 0.57 0.37 0.44 0.81 0.51 0.63
dept. 0.51 0.31 0.38 0.85 0.45 0.59
overall 0.70 0.62 0.66 0.78 0.68 0.72

4.2 Weather Forecasts

Finally, we experimented with the domain of weather forecasts. Here our goal was to
investigate the possibility to assist the ontology engineer in reusing existing domain
ontologies in order to develop the extraction one/s. An advantage of this domain was
the fact that several OWL ontologies were available for it. We analysed three of them
by means of applying generic rules of two kinds:

Fig. 3. Sample automatically annotated data; extracted instances on the right.

1. Rules suggesting the core class/es for the extraction ontology. As the extraction
ontology for extraction from HTML-formatted text5 is typically more class-centric
and hierarchical than a properly-designed domain ontology, only few classes from
the domain ontology are likely to become classes in the extraction ontology, while
others become attributes that are dependent on the core class/es. For example, ‘Day’
is typically an attribute of a ‘Forecast’ class in an extraction ontology, while in the
domain ontology they could easily be two classes connected by a relationship. One
of such core class selection rules is, in verbal form, e.g. “Classes that appear more
often in the domain than in the range of object properties are candidates for core
class/es.”.

2. Rules performing the actual transformation. Examples of such rules are e.g. “A
data type property D of class C may directly yield an attribute of C.” or “A set of
mutually disjoint subclasses of class C may yield an attribute, whose values are
these subclasses.”

Most such independently formulated selection and transformation rules appeared as
performing well in the initial experiment in the weather domain; details are in [5].
Transformation rules seemed, by first judgement, to suggest a sensible and inspiring,
though by far not complete, skeleton of an extraction ontology. Testing this ontology on
real weather forecast records is however needed for proper assessment.

In general, although the first experiments look promising, extensive usage of do-
main ontologies as starting point for extraction ontologies seems to be hindered by
unavailability of high-quality domain ontologies for most domains, e.g. in relation to
different categories of products or services, judging by the results of Swoogle-based6

retrieval. This obstacle is likely to disappear in the not-so-distant future, as the semantic
web technology becomes more widespread.

5 This is not the case for extraction from free text, which is more relation-centric.
6 http://swoogle.umbc.edu

5 Related Work

Most state-of-the-art WIE approaches focus on identifying structured collections of
items (records), typically using inductively learnt models. Ontologies are often con-
sidered but rather as additional structures to which the extracted data are to be adapted
after they have been acquired from the source documents, for the sake of a follow-up
application [4]. There is no provision for directly using the rich structure of a domain-
specific ontology in order to guide the extraction process. The approach to WIE that is
inherently similar to ours (and from which we actually got inspiration in the early phase
of our research) is that developed by Embley and colleagues at BYU [3]. The main
distinctive features of our approach are: (1) the possibility to provide the extraction pat-
terns with probability estimates (plus other quantitative info such as value distributions),
allowing to calculate the weight for every attribute candidate as well as instance candi-
date; (2) the effort to combine hand-crafted extraction ontologies with other sources of
information—HTML formatting and/or known data instances (3) the pragmatic distinc-
tion between extraction ontologies and domain ontologies proper: extraction ontologies
can be arbitrarily adapted to the way domain data are typically presented on the web
while domain ontologies address the domain as it is (but can be used as starting point
for designing extraction ontologies). For similarly pragmatic reasons (easy authoring),
we also used a proprietary XML syntax for extraction ontologies. An objective compar-
ison between both approaches would require detailed experiments on a shared reference
collection.

An approach to automatically discover new extractable attributes from large amounts
of documents using statistical and NLP methods is described in [8]. On the other hand,
formatting information is heavily exploited for IE from tables in [11]. Our system has a
slightly different target; it should allow for fast IE prototyping even in domains where
there are few documents available and the content is semi-structured. While our system
relies on the author to supply coreference resolution knowledge for attribute values, ad-
vanced automatic methods are described e.g. in [13]. A system described in [12] uses
statistical methods to estimate the mutual affinity of attribute values.

Our ideas and experiments on domain ontology selection and transformation to ex-
traction ontology are related to the generic research in ontology selection [9] and con-
tent evaluation7, especially with respect to the notion of intra-ontology concept central-
ity; this relationship deserves further study.

6 Conclusions

The Ex system attempts to unify the often separate phases of WIE and ontology popu-
lation. Multiple sources of extraction knowledge can be combined: manually encoded
knowledge, knowledge acquired from annotated data, and knowledge induced from
common formatting patterns by the means of wrapper induction. An alpha version of
Ex (incl. extraction ontology samples) is publicly available8.

7 http://km.aifb.uni-karlsruhe.de/ws/eon2006/
8 http://eso.vse.cz/˜labsky/ex

Future work will concentrate on the integration with trainable machine learning
algorithms, on improving the extraction results and on covering more domains. We
currently experiment with IE from online product descriptions, where we develop an
extraction ontology for each type of examined product. Typically extracted attributes
include product name, price, picture and multiple product-specific attributes. In order
to obtain annotated data, we cooperate with one of the largest Czech web portals. Both
instance parsing and formatting pattern induction algorithms need improvement in ac-
curacy and speed. We also plan to investigate how text mining over the extraction re-
sults could help us identify ‘gaps’ in the ontology, e.g. non-labelled tokens frequently
appearing inside a ‘cloud’ of annotations are likely to be unrecognised important val-
ues. Finally, we intend to provide support for semi-automated transformation of domain
ontologies to extraction ones.

The research was partially supported by the EC under contract FP6-027026, Knowl-
edge Space of Semantic Inference for Automatic Annotation and Retrieval of Multime-
dia Content - K-Space. The medical website application is carried out in the context of
the EC-funded (DG-SANCO) project MedIEQ.

References

1. Ciravegna, F.: LP2 – an adaptive algorithm for information extraction from web-related texts.
In: Proc IJCAI-2001.

2. Duda, R.O., Gasching, J., and Hart, P.E. Model design in the Prospector consultant system for
mineral exploration. In: Readings in Artificial Intelligence, pp. 334–348, 1981.

3. Embley, D. W., Tao, C., Liddle, D. W.: Automatically extracting ontologically specified data
from HTML tables of unknown structure. In Proc. ER ’02, pp. 322–337, London, UK, 2002.

4. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, index-
ing, and retrieval. In: J. Web Sem., volume 2, pp. 49–79, 2004.

5. Labsky, M., Nekvasil, M., Svatek, V.: Towards Web Information Extraction using Extraction
Ontologies, Domain Ontologies, and Inductive Learning. Accepted as poster paper for Proc. of
K-CAP 2007, Whistler, Canada, ACM 2007.

6. Labsky, M., Svatek, V: Information extraction with presentation ontologies. Technical report,
KEG UEP, http://eso.vse.cz/˜labsky/ex/ex.pdf.

7. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine Learn-
ing, pp. 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

8. Popescu, A., Etzioni, O.: Extracting Product Features and Opinions from Reviews. In: Proc.
EMNLP 2005.

9. Sabou, M., Lopez, V., Motta, E.: Ontology selection for the real semantic web: How to cover
the queen’s birthday dinner? In: Proc. EKAW 2006. Springer LNCS, 2006.

10. Svatek, V., Labsky, M., Vacura, M.: Knowledge Modelling for Deductive Web Mining. In:
Proc. EKAW 2004, Springer Verlag, LNCS, 2004.

11. Wei, X., Croft, B., McCallum, A.: Table Extraction for Answer Retrieval. In: Information
Retrieval Journal, vol. 9, issue 5, pp. 589-611, 2006.

12. Wick, M., Culotta, A., McCallum, A.: Learning Field Compatibilities to Extract Database
Records from Unstructured Text. In: Proc. EMNLP, 2006.

13. Yates, A., Etzioni, O.: Unsupervised Resolution of Objects and Relations on the Web. In:
Proc. HLT 2007.

