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ABSTRACT
We present a framework for efficiently exploiting free-text
annotations as a complementary resource to image classifi-
cation. A novel approach called Semantic Concept Mapping
(SCM) is used to classify entities occurring in the text to a
custom-defined set of concepts. SCM performs unsupervised
classification by exploiting the relations between common
entities codified in the Wordnet thesaurus. SCM exploits
Targeted Hypernym Discovery (THD) to map unknown en-
tities extracted from the text to concepts in Wordnet. We
show how the result of SCM/THD can be fused with the
outcome of Knowledge Assisted Image Analysis (KAA), a
classification algorithm that extracts and labels multiple seg-
ments from an image. In the experimental evaluation, THD
achieved an accuracy of 75%, and SCM an accuracy of 52%.
In one of the first experiments with fusing the results of a
free-text and image-content classifier, SCM/THD + KAA
achieved a relative improvement of 49% and 31% over the
text-only and image-content-only baselines.

1. INTRODUCTION
Images are often accompanied by free-text annotations,

which describe what is on the image and thus can serve as a
valuable complementary source of information for content-
based image classifiers. The fact that annotations often refer
to specific places and people (named entities) that appear on
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the image has, however, ironically hindered their utilization
in image classification tasks, since existing approaches to in-
tegration of textual annotations with image content do not
handle well uncommon words and particularly named enti-
ties. The use of existing systems for Named Entity Recogni-
tion (NER) is limited, because they only categorize named
entities to several predefined classes, which is insufficient for
the general image classification task.

In this paper we present a framework for efficiently ex-
ploiting free-text image annotations, with special focus on
named entities. A novel approach called Semantic Concept
Mapping (SCM) is used to classify entities occurring in the
text to a custom-defined set of concepts (classes). SCM per-
forms unsupervised classification by exploiting the relations
between common entities codified in the Wordnet thesaurus.

SCM uses a new variation of hypernym discovery, called
Targeted Hypernym Discovery (THD), to map an unknown
entity extracted from the text to a concept in the Wordnet
thesaurus. The most appropriate documents defining the
entity are found in a large encyclopedic corpora and lexico-
syntactic patterns are used to extract the hypernym.

In order to demonstrate the benefit of our approach, we
show how the result of SCM can be fused with the outcome
of a specific image classification algorithm. We chose Knowl-
edge Assisted Image Analysis (KAA) [20], which considers a
raw image as the input and produces a set of segments, each
associated with a corresponding label from a predefined set
of semantic concepts. The resulting experimental framework
is depicted in Figure 1.

We experimentally evaluated the performance of THD,
SCM and KAA. In the final experiment, the class predictions
of SCM/THD were fused with the classification result of
KAA.

Paper organization: The proposed approach to the
analysis of text consisting of SCM and THD is described
in Sections 2 and 3. Section 4 briefly describes the KAA im-



Figure 1: Framework overview

plementation used and the preliminary approach to classifier
fusion. Experimental evaluation is presented in Section 5.
Related research is presented in Section 6, followed by a dis-
cussion and an outline of future work in Section 7. Section 7
summarizes our contribution and provides conclusions.

2. SEMANTIC CONCEPT MAPPING
The goal of SCM is to facilitate the fusion of text analysis

with the results of image classification. Image classification
algorithms typically perform classification of whole images
or image segments to multiple categories with the choice of
categories varying from application to application. The clas-
sifier needs to be retrained each time the set of categories
changes. This is not a problem since the amount of required
training data is usually small enough to make the design of
human-labeled training sets feasible. The resulting classi-
fiers often have soft outputs, assigning a confidence measure
to the prediction of class label.

If textual annotations were to be classified in a similar
fashion as image classifiers, a much larger training set would
be necessary. The reason being that when learning text clas-
sifiers, one often has to deal with very large numbers (more
than 10,000) of features [16], since there is typically one fea-
ture for every word. For comparison, images are represented
with much lower number of features, e.g. the KAA system
introduced in section 4.1 only uses a 98-dimensional feature
vector consisting of low-level image features such as color,
texture, shape, etc. In addition, the feature vectors of indi-
vidual annotations are extremely sparse; [28] reports a ratio
of 158:1 between the average number of terms in an image
caption and the total number of terms in the collection of
captions. Data sparsity has a particularly severe effect on
uncommon words including named entities, which are often
of central importance in image annotations.

Since large training sets (annotated corpora) are gener-
ally unavailable and expensive to design for an ad hoc set
of classes1, with Semantic Concept Mapping (SCM) we pro-

1Such datasets only exist for standardized NLP tasks, such
as named entity recognition.

pose to take a ‘linguistic’ rather then statistical approach to
classification.

SCM proceeds in a similar way as a human evaluator
would do if presented with an image annotation together
with a pool of possible concepts and asked to express what
is probably on the image only using the concepts provided.
Abstracting from background knowledge, humans would prob-
ably first identify the objects on the image by parsing the
annotation for entities (noun phrases). For every entity the
evaluator would assess its semantic similarity to each of the
provided concepts and select the most similar one.

SCM takes advantage of the Wordnet thesaurus to assess
the similarity of a pair of concepts. Wordnet2 groups En-
glish words into sets of synonyms called synsets and declares
various semantic relations including hypernymy between the
synsets in the form of a lexical semantic network. SCM ex-
presses the desired set of classes as well as entities from text
as Wordnet synsets. Wordnet similarity measure is then
used to determine the similarity between an entity and each
of the classes. Soft classification is thus achieved with an en-
tity being classified to the class with which it has the highest
similarity.

Although Wordnet is a comprehensive thesaurus contain-
ing approximately 146 thousand word–sense pairs for nouns
(as of its version 3.0), it does not contain some uncommon
words and most named entities. For the purpose of resolv-
ing entities not found in Wordnet, we introduced Targeted
Hypernym Discovery (THD), which uses Wikipedia to find
a hypernym to an entity.

The input for SCM is a free-text annotation and a custom-
defined set of classes (Wordnet synsets) Ctc. NLP tools
available in the GATE NLP Framework [10] are used to
extract noun chunks from the annotation. Noun chunks are
used similarly as in other approaches (e.g. [12]) to represent
a semantic entity. SCM then maps each entity to a Word-
net synset, possibly with the help of THD, and computes
the similarity between the synset and each of the classes in
Ctc. The class with the highest similarity (confidence) is
the prediction. However, the fuzzy character of the results
facilitates classifier fusion [22].

2.1 Selection of Classification Concepts
SCM is an unsupervised classification algorithm, and no

training is necessary for THD either. The classification per-
formance is thus mainly affected by the similarity measure
used and by the selection of a suitable set of synsets (classes)
from the Wordnet thesaurus. As a consequence, if the same
set of classes were used in SCM as in image classification
and no regard were paid to the characteristics of the cho-
sen similarity measure and to the position of the classes in
Wordnet, the classifier performance would suffer.

Since SCM always produces a decision, the classes should
ideally cover the whole universe of entities that may appear
in the annotation, and not just the entities recognized by
the image classifier. A theoretical option is to require some
minimum similarity to classify an entity. If the similarity
between the entity and the winning class was below a certain
threshold, the entity would be classified as ’unknown’. The
’unknown’ class would thus cover the part of the universe
not covered by the image classifier. Since such thresholds
proved difficult to find, the current framework requires that

2wordnet.princeton.edu



the ’unknown’ is represented by multiple specific concepts
(classes).

In this preliminary work, it is expected that classes for
classification of entities from text Ctc are selected by a hu-
man expert. A possible discrepancy between the semantics
of classes used by the image classifier and the semantics con-
veyed at the level of image annotations can thus be taken
into account.

2.2 Mapping to Wordnet Synsets
SCM tries to map each noun phrase (entity) to a Word-

net synset according to the following experimentally-defined
priorities: 1) noun phrase, 2) head noun, 3) hypernym for
noun phrase and 4) hypernym for head noun. The match is
successful if a Wordnet concept with the same string repre-
sentation is found. If even the hypernym for head noun is
not found, the system recursively extracts a more general hy-
pernym mappable to Wordnet. The implementation of the
hypernym discovery approach used is discussed in Section 3.

Consider the noun phrase ’Bucegi National Park’, which
has been extracted from an image annotation. Following
the priorities outlined above, the system tries to look up the
following 1) ’Bucegi National Park’, which is not a Word-
net entry, and 2) ’park’, which is a match since ’park’ is a
Wordnet entry. This result is correct, but can be improved
by syntactical analysis of the noun phrase, which will allow
more informed stripping of the modifiers (i.e. try ’national
park’ before ’park’).

The general limitation of the current approach is posed by
the fact that most queries have multiple matches in Word-
net. For example, there are six possible meanings (synsets)
for the noun ‘park’ as given by Wordnet 3.0. The first three
refer to a recreational area, the fourth one refers to the Scot-
tish explorer Mungo Park, the fifth to ‘parking lot’ and the
sixth to a gear position. The order of these entries is not
random; Wordnet actually lists the most frequently used
sense of the word first. The system uses the common base-
line approach for word sense disambiguation [2] and only
selects the most frequently used sense. Work in progress is
focused on the development of a word sense disambiguation
algorithm that would be able to identify such a combination
of word senses that would maximize the overall similarity of
the annotations in the collection.

2.3 Wordnet Similarity Measure
The system computes the similarity between the synset

representing the entity and each of the custom-defined con-
cepts (Wordnet synsets) in Ctc. There is a large body of
work on Wordnet-based measures of semantic similarity [6].
Our system uses the Lin similarity measure. This measure
has sound theoretical foundation stated in the Similarity
Theorem [6] and is defined as

simL(c1, c2) =
2 ∗ log p(lso(c1, c2))

log p(c1) + log p(c2)
(1)

The function lso returns the lowest common subsumer from
the hierarchy, and the value −log(p(c)) is called informa-
tion content (IC). The value p(c) denotes the probability of
encountering an instance of concept c, which is estimated
from frequencies from a large corpus. Our SCM implemen-
tation uses the Java Wordnet Similarity Library3 (JWSL),

3http://grid.deis.unical.it/similarity

which automatically derives the values of IC from the Word-
net structure by exploiting the hyponymy relations among
synsets.

The experiment presented in subsection 5.2 evaluates the
agreement between the class predicted by SCM based on
Wordnet similarity and the human judgment.

3. TARGETED HYPERNYM DISCOVERY
The hypernym discovery approach proposed here is based

on the application of hand-crafted lexico-syntactic patterns
(Hearst patterns). Although lexico-syntactic patterns have
been extensively studied since the seminal work [15] was
published in 1992, most research have focused on the ex-
traction of all word-hypernym pairs from the given generic
free-text corpus. In contrast, the goal of Targeted Hypernym
Discovery (THD) is not to find all hypernyms in the corpus
but rather to find hypernyms for the current entity. Addi-
tional experiments presented here show that THD achieves
a significantly higher accuracy than previous approaches to
hypernym discovery. THD also has the advantage of requir-
ing no training and can use up-to-date on-line resources to
find hypernyms in real time. The THD algorithm proposed
here is an updated and expanded version of the algorithm
used in our earlier work [8]. The outline of the steps taken
to find a hypernym for a given entity in our THD implemen-
tation is as follows:

1. Fetch documents from the corpus defining the entity

2. For each document:

(a) Determine if suitable for further processing

(b) Extract hypernyms matching the lexico-syntactic
patterns

(c) Return the most likely hypernym found

Performing all these steps requires to carry out multiple
information retrieval and text processing tasks. For this pur-
pose, our THD implementation uses the GATE NLP Frame-
work [10]. Figure 2 sketches the NLP components and their
interaction in THD. In the rest of this section, we substan-
tiate the choice of Wikipedia as the corpus and explain the
way it is interfaced and the documents are preprocessed. Fi-
nally, we focus on the application of lexico-syntactic patterns
and provide an example of it.

3.1 Wikipedia as the Corpus
A gold-standard dataset for training and testing hyper-

nym discovery algorithms is Wordnet (e.g. [25, 26]). Word-
net’s structured nature and general coverage makes it a good
choice for general disambiguation tasks.

The frequent occurrence of named entities in image an-
notations makes the use of most closed lexical resources
including Wordnet unfeasible. This is documented in the
study [25], which evaluated several hypernym discovery al-
gorithms on a hand-labeled dataset where 60% of hyper-
nyms were named entities. The performance of the best
algorithm based on lexico-syntactic patterns significantly
surpassed the best Wordnet-based classifier (F-Measure in-
crease from 0.2339 to 0.3592).

The goal of THD is to improve the coverage of SCM by
mapping entities that do not occur in Wordnet to Word-
net synsets through hypernyms extracted from a suitable



Figure 2: Targeted Hypernym Discovery

large free-text corpus. We opted for the fast growing, pub-
licly available encyclopedia, Wikipedia, which contains more
than two million articles (definitions) in English (as of June
2008).

Unlike [5] who combined web search and Wikipedia article
titles and hyperlinks for extraction of instances of arbitrary
relations or [27] who mainly use the Wikipedia category sys-
tem for the purpose of ontology learning, we found the first
section of Wikipedia articles as particularly suitable for hy-
pernym discovery and use it as the sole source of informa-
tion.

3.2 Interfacing Wikipedia
The selection of suitable articles for hypernym discovery is

the main differentiator between the system presented here
and other approaches in the literature. Our system inter-
faces with Wikipedia through a newly-designed Wikifetch
plug-in for GATE. For a given entity (query for hypernym),
Wikifetch executes an online search in English Wikipedia
through the Wikipida Search API, which provides access
to Wikipedia’s Lucene-based fulltext search4. Articles are
ranked, in addition to textual similarity, also based on the
number of backlinks they recieve. This ensures that e.g. for
the query “Gates” the first article in the search result list is
an article on “Bill Gates”, and not an article on some other
person named Gates, which would have probably be pro-
duced on the basis of pure textual match. We assume that
this feature ensures that the search results approximate the
possible senses of the entity sorted in the descending order.
Since in our current work we stick to this ‘most frequent
sense assumption’, the articles are processed in the order of
their appearance in the search results.

In many cases the article title is spelled differently or with
a word missing or added as compared to the query. Ex-
tracting hypernyms from articles that only loosely match
the query would deteriorate the performance of the system;
it is therefore necessary to determine if the article is on the
exact topic sought. In order to make this decision we com-

4http://www.mediawiki.org/wiki/Extension:Lucene-search

pute a string similarity5 between the article title and the
original query. If this similarity is below an experimentally-
set threshold, the article is excluded from further processing.

The system also performs diacritics stripping in order to
improve the matching of non-English titles.

Since the capitalization of the query and the article topic
should match, but Wikipedia capitalizes all the article head-
ings, the article text is previewed to see if the topic of the
article always appears in upper-case. This for example re-
moves an article titled“Logical Gates” from the search result
for query “Gates”.

The full texts of n top ranked Wikipedia articles that
passed the selection outlined above are obtained through
the Special:Export interface of Wikipedia’s MediaWiki en-
gine6, which puts less strain on Wikipedia’s resources than
crawling the Wikipedia would. Wikifetch strips away the
wiki-markup, links, hidden text such as comments, informa-
tion boxes etc., and returns the first section of the article.

3.3 Text Preprocessing
According to our experimental evaluation, the first sec-

tion of each article provides a sufficient basis for THD since
it contains a brief introduction of the topic of the article,
often including the desired definition in the form of a Hearst
pattern. Processing the remaining sections, in our experi-
ence, only increases the computation time and introduces
noisy hypernyms.

The system uses the existing as well as newly-created
GATE modules (see Figure 2) to perform text preprocess-
ing. We use the modules available within the GATE refer-
ence information retrieval and extraction system ANNIE to
perform text tokenization, sentence splitting and Brill-style
part-of-speech (POS) tagging. Noun chunks are identified
using the Ramshaw-and-Marcus chunker [21]. The system
also performs customely implemented replacement of non-
English characters by their ASCII fallback alternatives.

3.4 Pattern Matching
The NLP components that perform text preprocessing in

the GATE framework append their output to the existing
text in the form of annotations. Hearst patterns are usually
matched in free text using regular expressions. Since here
annotations are on the input, we use the JAPE engine [11],
which evaluates regular expressions over annotations.

A Java Annotation Patterns Engine (JAPE) provides a
finite-state transduction over annotations. Its input is a
JAPE grammar (basically a set of rules) and a text to an-
notate. JAPE grammar rules consist of left- and right-hand
side. On the left-hand side, there is a regular expression
over existing annotations; annotation manipulation state-
ments are the on the right-hand side. A JAPE grammar
was already used to match Hearst patterns in [9]. However,
their paper does not elaborate on the grammar used or on
its performance in detail.

The JAPE grammar used in our research consists of sev-
eral rules, which particularly differ in the way the entity for
which a hypernym is sought is matched in the text. Each
rule is assigned a priority, such as the strictest rule, which
requires the entity to appear exactly as it is in the text, has

5Our system uses the Jaro-Winkler similarity, since this
measure was specifically developed for matching named en-
tities (people names) [29].
6http://www.mediawiki.org



the highest priority. The exactness of the required match
decreases with the priority of the rule. If the text in the
currently processed document matches multiple JAPE rules
then the first match provided by the strictest rule is taken.
If no rule fires then a next article provided by the Wikifetch
plugin is processed. This is repeated until a hypernym is
found or there are no more articles to process.

A sample pattern illustrating (using the text after the
comment signs ’//’) the extraction of hypernym for the en-
tity ’Maradona’ as exemplified on Figure 2 follows:

//the rule matches patterns only within one sentence

Rule: HearstRuleExactMatch

Priority:1000

// rule-specific macro to match the query

(Query) // ’Maradona’

// matches any number of any tokens

({Token})* //’(born October 30, 1960)’

//followed by a form of "to be", here ’is’

{Token.string == "is"}|{Token.string == "are"}|

{Token.string == "were"}|{Token.string == "was"}

// followed by article, here ’a’

({Token.string == "a"}|{Token.string == "an"}|

{Token.string == "the"})

//followed by macro a defining allowed words

//preceding the actual hypernym for query

(NounChunkBody) // ’former Argentine football’

//hypernym can be only NN, NNS or NNP

(Head) //’player’

:hearstPattern

--> //delimits LHS from RHS

//a new ’hearst’ annotation is added to ’’player’

//the string identified by the hearstPattern label

:hearstPattern.hearst = {rule = "ExactMatch"}

The NounChunkBody macro was determined experimen-
tally and matches the following pattern: Token? CD? JJ?

JJ? NNP? NNP? VBN? JJ? JJ? NN? NN? NN? NN?.
Token? matches any single token (word, comma etc.), CD

matches a cardinal number, JJ an adjective, NNP a proper
noun, NN a noun and VBN a verb. If this rule fires then
it marks the hypernym, which can be a single noun (NN),
a plural noun (NNS) or a proper noun (NNP), with the
annotation ‘hearst’.

When constructing this grammar we preferred speed to
elegancy. Although the use of ”+” and ”*” operators would
simplify and generalize the NounChunkBody macro, it would
also have deteriorating impact on the processing speed, which
we wanted to avoid. Other lexico-syntactic patterns identi-
fied by Hearst [15], e.g. the ‘such as’ pattern, were not con-
sidered, because they did not seem to provide a significant
improvement from our observation.

THD has two outcomes: the (proper) noun annotated
with the ‘hearst’ annotation (’player’) and the noun chunk
in which it is contained (’former Argentine football player’).
This noun chunk can be in some cases identical with the
noun, but ideally it should provide a less general hypernym
for the query. This allows to map the original entity to a
more specific concept of the thesaurus used.

3.5 Example
Consider the picture of a footballer scoring a goal, which is

assigned the textual annotation“David Beckham hits the net

again”. This image is processed with the KAA image clas-
sifier trained on the sports domain. This classifier assigns
the following labels (classes) to image segments: {hockey
player, football player, basketball player, swimmer, runner,
sports equipment}. In order to aid this classifier in its un-
easy task, SCM/THD can be used to determine which of the
classes probably appear in the image based on the textual
annotation.

Semantic Concept Mapping first breaks the annotation
into two entities, ’David Beckham’ and ’net’, and then at-
tempts to map each of these entities to a Wordnet synset.
Following the steps described in subsection 2.2, SCM tries
to find an entry for ’David Beckham’ in Wordnet, but there
is no such entry. Since also the following try ’Beckham’ fails,
the system calls Targeted Hypernym Discovery to return a
hypernym for ’David Beckham’. THD finds a Wikipedia
entry entitled ’David Beckham’, and using lexico-syntactic
patterns it extracts the hypernym ’footballer’. SCM finds
one synset that has the word ’footballer’ attached, and maps
’David Beckham’ to it. Then the system computes the simi-
larity between this synset and the synsets representing each
of the classes. The class ’football player’ is correctly assigned
the highest confidence; it has similarity 1 because it belongs
to the same Wordnet synset as ’footballer’.

SCM then proceeds to the second entity, ’net’. THD is not
used, because multiple synsets described with this word are
found directly in Wordnet. SCM maps ’net’ to its first, most
frequently used, meaning (synset). Since this is ’the com-
puter network’ sense, the word gets misclassified. Luckily,
the sports equipment meaning of the word is, nevertheless,
assigned the highest similarity (0.60).

The result obtained with the on-line demo of our system
is a feature vector:

//’David Beckham’ mapped with THD to footballer

<football_player="1.0" sports_equipment="0.126"

hockey_player="0.720" runner="0.705"

swimmer="0.687" basketball_player="0.710">

//’net’ found directly in Wordnet

<football_player="0.11" sports_equipment="0.60"

hockey_player="0.11" runner="0.34"

swimmer="0.10" basketball_player="0.11">

The annotation is broken into two entities, ’David Beckham’
and ’net’. ‘David Beckham’ is not found in Wordnet, THD is
thus first used to map it to its hypernym ’footballer’, which
is mapped to a Wordnet synset, and then the similarity with
each of the classes is computed. The entity ’net’ is found di-
rectly in Wordnet, but ’horse’ is incorrectly identified as the
semantically closest class to it (similarity 0.64), the correct
sense ’sports equipment’, however, closely follows with simi-
larity 0.63. This is due to the fact that the sports equipment
meaning of ’net’ is not the most frequent sense of the word.

In subsection 5.1 we present an experiment evaluating the
performance of THD on a real dataset.

4. TEXT-ENHANCED KAA
There are multiple promising scenarios where merging the

results of analysis of image content and the accompanying
free-text annotation would be beneficial. SCM/THD breaks
textual annotations into entities and classifies them into a
custom-defined set of classes. This result can be used in the
classical image classification task, where the whole image is



assigned one label. Since the outcome of SCM are multiple
named entities, it is natural to fuse these results with those
of Knowledge Assisted Image Analysis (KAA), which also
detects and classifies multiple objects (i.e. segments) on an
image.

In the following we will briefly outline the KAA implemen-
tation used [20], and present a tentative approach fusing the
SCM and KAA classification results. We emphasize that
the purpose of this task is to illustrate how the presented
approach to text analysis can contribute to image classifi-
cation. We will focus on more effective approaches to the
fusion of these classifiers in our future work.

4.1 Knowledge-Assisted Analysis
The objective of KAA is to label image regions from a pre-

defined set of semantic concepts Cic = rock, sky, person, ....
Each region is assigned one concept from this set. For classi-
fication we use a self-organizing map (SOM), whose perfor-
mance is improved by particle swarm optimization (PSO).
A detailed discussion of the algorithm is presented in our
previous work [7]. Prior to classification, the images are
segmented into image regions using the RSST algorithm [1],
and for each image region, MPEG-7 low-level visual fea-
tures are extracted [18]. In our earlier work [19] we devel-
oped a framework for evaluating the performance of multi-
ple classification methods: support vector machines (SVM);
genetic algorithms (GA) in combination with SVM; SOM
alone; SOM+PSO.

From the careful observation of the results we concluded
that the use of optimization methods (such as GA or PSO)
in combination with a more traditional classifier (SVM and
SOM, respectively) generally leads to increased classification
accuracy compared to using the latter classifiers alone [19].
Furthermore, the use of an increased number of images for
training the classifiers is generally beneficial, highlighting
the need for the availability of large annotated media sets
for appropriately training any classification method. How-
ever, even in the absence of a rich training set we showed
that meaningful classification results can be produced; the
PSO classification utilized in the KAA implementation used
in this paper is shown to be particularly suitable in this
case. Experimental evaluation of this KAA implementation
is presented in Experiment 3.

4.2 Fusing the Results of SCM and KAA
The analysis of image annotations cannot in the general

case provide information on objects present in the image
comparable in terms of completeness to the analysis of the
image content. However, entities appearing in image anno-
tation are likely to occur in the image [12]. This section
presents an example approach to merging the classification
results of KAA and SCM with the goal of determining the
most important concept present on the image.

Our approach relies on the assumption that the most im-
portant concept should be present on at least one image
segment and at the same time mentioned in the image an-
notation.

Each image is assigned a distinct set of classes T, T ⊆ Ctc,
which were assigned by SCM to entities in the text, and a
distinct set of classes V, V ⊆ Cic, which were assigned to
segments of the image by KAA. In order to compute the
desired intersection of the classification results, we express
the results of SCM in terms of classes used by KAA using

the following transformation:

T
f→ Tf , Tf ⊆ Cic

The projection f : Ctc → Cic is defined by a human ex-
pert.

Concepts c ∈ Ctc that do not have their counterpart in
Cic are projected to the empty set, c → ∅. A similar solu-
tion is proposed by [12] who mark 25 manually selected seed
concepts as either visual or non-visual; the visualness of a
given concept is determined using the Wordnet similarity
between the entity and the seeds. Entities with visualness
below a certain threshold are discarded.

The intersection of the classification results from the tex-
tual and image analysis COMB = Tf ∩V provides the basis
for the selection of the image class. If COMB contains mul-
tiple concepts or the intersection is empty then we prefer
the concept selected by KAA, since it has more complete
information.

In Experiment 4 we evaluate this simple approach to com-
bining the outcomes of SCM and KAA. Future work that
will address the shortcomings of the current approach, par-
ticularly the need for a different set of concepts for SCM, is
discussed in Section 7.

5. EVALUATION
In the first three experiments we individually evaluate our

implementations of THD, SCM and KAA. In Experiment
4 we combine the results of the systems to show how the
analysis of text can contribute to image classification.

There are no standard datasets available for the tasks per-
formed here. The closest available dataset for the evaluation
of THD/SCM is perhaps the one used in the ACM KDD
CUP 2005 for Query Categorization. This dataset was not
used since search engine queries exhibit significantly differ-
ent linguistic properties than free-text image annotations
and there are no accompanying images to demonstrate the
fusion. The Corel and Washington DC data sets do not
contain free-text annotations, hence, similarly as in related
research dealing with free-text annotations [12, 4, 28], we
used a proprietary set of annotated images.

The datasets used in most experiments are comparable in
size with some of the related work. The number of hyper-
nyms in the human-annotated test set of [25] was 131, while
in our Experiment 1 there were 98; [12] mentions process-
ing 100 image annotations vs. 105 in our Experiment 2; and
in [14] 50 images were classified compared to our 489 seg-
mented regions in Experiment 3. Our weakest dataset is for
Experiment 4, where we use 92 images.

Implementations of SCM and THD used in the experi-
ments are available as an online demo7.

5.1 Exp 1: Targeted Hypernym Discovery
Our system differs in two fundamental ways from existing

approaches in hypernym discovery: a) it performs targeted
hypernym discovery, only selecting the most suitable hyper-
nym for each query, and b) it is focused on discovery of
hypernyms for named entities and uncommon words. These
factors influenced the choice of the evaluation procedure and
the test datasets. This experiment only aims at evaluating
the hypernym extraction from Wikipedia articles, assuming

7http://nb.vse.cz/˜klit01/hypernym discovery/



Figure 3: THD accuracy per named entity type

that an article defining the given entity is available. Note
that THD is evaluated on a more comprehensive task in
Experiment 2.

We randomly selected 100 articles describing named enti-
ties from Wikipedia using the ‘random article’ link. Article
titles were used as queries for hypernym and the articles as
the corpus.

THD executed on this test set correctly discovered hyper-
nyms for 86 Wikipedia article titles. The system failed to
extract the correct hypernym from 14 articles: a Hearst-like
pattern was not present in 8 articles, out of which 2 did
not even contain any hypernym, and in 6 cases a Hearst-like
pattern was present but was not matched by the extraction
grammar. A detailed analysis of the results depending on
entity type is depicted on Figure 3. An encouraging result
from the point of view of integration of THD with SCM is
that all the discovered hypernyms were mappable to Word-
net with a disambiguation accuracy of 87% for the most
frequent sense synset.

The overall accuracy8 achieved in the experiment was
88%. We consider this as a very good result but we cannot
provide a benchmark, since we perform targeted hypernym
discovery, while most related approaches including [25] try
to discover all hypernym pairs from the corpus. However,
we believe that the results show that THD is an effective
approach for resolving named entities.

5.2 Exp 2: Semantic Concept Mapping
The goal of this experiment is to evaluate how well the

system presented here is able to map entities extracted from
a specialized image collection to Wordnet concepts as com-
pared to human judgment. We used a collection of 1276
images taken by a professional photographer during trips to
Albania and Romania as the test set. These images have
short textual annotations consisting of 1 to 10 words saved
in the EXIF data. Out of the available annotations we ex-
tracted 105 images with unique annotations.

We decided to perform the evaluation at the entity level,
since the number of entities per image varied, which would
make image-level comparison difficult. We used the follow-

8We do not give precision, recall and F-measure for our re-
sult since it is not clear whether to count an incorrect hy-
pernym as false positive (the system gave a wrong answer)
or false negative (there was a good answer).

Figure 4: SCM classification result

ing set of eleven Wordnet concepts as the set of classes:9

Ctc ={natural object, artifact, event, vehicle, sand, geologi-
cal formation, structure, organism, water, vegetation, land-
scape}. This selection reflected the needs of the semantic
concept detection as introduced in Experiment 4.

Two annotators were asked to select the semantically clos-
est concept for each of the entities. The annotators were
allowed to use Wikipedia. Even then, for two entities, Je-
tee du Dragon and Syri i Kalter, the annotators were both
unable to assign a label.

The annotations were first broken by SCM into 196 enti-
ties and mapped to Wordnet synsets. The resulting accuracy
was 85% (167 correct classifications). Out of the 196 entities,
95 (49%) were named entities not present in Wordnet. THD
correctly found a hypernym for 71 of these named entities
(accuracy 75%). THD thus accounted for 83% of the error.
The remaining 17% error was due to the most-frequent-sense
assumption, which caused the selection of a wrong Wordnet
synset, and to incorrect noun phrase chunking and entity
detecion.

A similar task was perfomed by [12], who classified all en-
tities appearing in 100 annotations assigned to images from
Yahoo! News. Their annotations were longer (15 entities per
image on average) and comprised several sentences. Using
a combination of a Named Entity Recognition (NER) sys-
tem and Word Sense Disambiguation (WSD) package, the
authors achieved an accuracy of 75.97% when classifying
entities to Wordnet synsets. The erroneous entity detection
accounted for 32.32% of the error, 60.56% was caused by the
WSD system and 8.12% by the NER package. It is difficult
to make a comparison between the sources of error, since [12]
did not give the number of named entities in their dataset.

The experiment of [12] finished with disambiguating the
extracted entities to Wordnet synsets, since they did not at-
tempt to align the results of text analysis with those of the
visual analysis. In contrast, we used SCM to map the disam-
biguated entities to an arbitrary set of Wordnet concepts Ctc

in order to support such alignment in Experiment 4. Our
system achieved an overall accuracy of 52% on this task.
The achievable maximum given by inter-annotator agree-
ment was 80%. This compares favourably with the most-
frequent-sense baseline of 24%, which assigns all the noun
chunks to the most common concept (here ‘structure’).

9Each concept was represented by its most frequent sense.



Figure 5: KAA classification results

5.3 Exp 3: Knowledge-Assisted Analysis
The evaluation of KAA was performed on 489 labeled seg-

mented regions from the same 105 images.
Region classification was performed for the following 10

concepts Cic ={ Sand, Sea, Vegetation, Person, Sky, Rock,
Tree, Grass, Ground, Building}. The classifier for these con-
cepts was trained based on a dataset of 50 images from our
previous work [19].

The methodology used for evaluation of classification re-
sults was the same as in the TRECVid high-level feature
detection task. The classifier was trained without the knowl-
edge of the test set. A region where the result was the same
as the human annotation was considered as correctly classi-
fied, while the opposite case was counted as error.

The results of the analysis are depicted in Figure 5. The
overall accuracy of the system was 56%. Not considering the
marginally present Grass and Sand concepts, the system was
most successful in classifying the Person concept with 84%
accuracy and the Tree concept with 67% accuracy.

5.4 Exp 4: Combining Text with Images
The goal of this experiment was to verify that combining

the results of SCM and KAA can be beneficial for image
classification. We used the same test of 105 images as in
Experiments 2 and 3. The ground truth was provided by
a human who annotated each image from the ground truth
with one concept from Cic; 13 images where the annotator
could not decide were discarded.

In the experiment we attempted to improve the baseline
classification performance by fusing the results of KAA with
SCM as suggested in subsection 4.2. Table 1 defines the
projection f : Ctc → Cic, which is necessary to map the
results of SCM to the same set of semantic concepts as in
KAA (and in the ground truth).

It should be noted that Ctc was selected with regard to
the character of the dataset and to the possibility of manu-
ally defining the mapping to Cic. Since from past experience
we knew that our KAA classifier tends to classify different
kinds of standing structures as buildings, structure was in-
cluded to Ctc and this was reflected in f . For similar reason,
natural object is mapped to Tree and landscape to Vegeta-
tion. The Cic concepts Sky, Grass and Ground were not
included in Ctc since these are common concepts rarely ex-
plicitly mentioned in annotations. The concepts Vehicle,
Event and Artifact were only included in Cic in order to

sand→sand structure→building vegetation→veg.
water→sea landscape→vegetation artifact→∅

geo. for.→rock organism→person event→∅
nat. obj.→tree vehicle→∅ →

Table 1: Projection f : Ctc → Cic

capture entities that are not detected by KAA.
We provide two baselines, one for the textual and one

for the visual classifier. For the SCM (text-only) baseline,
the results of SCM were projected using f and the concept
with the highest confidence was selected as the image label.
For the KAA (image-content only) baseline, the label for
the whole image was provided by the class associated with
the segment with the highest region importance, which was
computed based on the percentage ratio between the area of
the segmented region and the whole image. In our test-set
the SCM baseline resulted in an accuracy of 27% and the
KAA baseline in an accuracy of 42%.

The fusion of the SCM and KAA classifiers resulted in an
accuracy of 55%. This is a 49% relative improvement over
the text-only baseline and 31% relative improvement over
the image-content only baseline. Remarkably, the analysis of
the results showed that complementing the KAA result with
that of SCM improved the classification performance to the
person class by 20% compared to the KAA baseline. This
would underpin the effectiveness of the system in resolving
named entities, but further experiments on a larger and more
varied dataset are needed to confirm this result.

Inspection of the result showed that the manually pro-
vided mapping f and the selection of concepts Ctc were not
ideal. Further research in this area is necessary to improve
the classification results and to eliminate the need for human
assistance.

6. RELATED RESEARCH
This paper refers to techniques from several research ar-

eas, particularly from hypernym discovery, named entity
recognition, word sense disambiguation and image classifi-
cation. We tried to reference the most relevant works from
each of these disciplines within the respective parts of this
paper. In this section we only focus on works combining
textual annotations with image analysis.

There is relatively small number of papers that report
free-text image annotations as an aid for image classifica-
tion. According to [12] the earliest system was NameIt! [23],
which associated names with faces in news video using the
analysis of video captions and extraction of named entities
from transcripts. The performance of named entity extrac-
tion was poor (13% precision), but the overall results were
promising (33% accuracy of name-to-face retrieval). A more
recent approach to a similar task, presented in [4], aready
used a NER system to improve the accuracy of extraction
of named entities.

The paper [12] determines if entities extracted from an
image annotation appear in the image. They detect and
classify all entities (not just persons) but do not work with
visual information. This research can be considered as the
closest to our work in that noun chunks are also extracted
from text and mapped to Wordnet synsets. The authors use
Wordnet to determine whether the entity is visual, but do
not perform mapping to a custom-defined set of classes. The



recognition of person names is improved through a dictio-
nary of names extracted from Wikipedia.

It should be noted that SCM/THD has the advantage
that, in principle, all entities in text can be mapped to a
custom-defined set of concepts. In contrast, NER systems
only categorize named entities to several predefined classes
(typically ‘organisation’, ‘person’, ‘location’, ‘miscellaneous’
[13]). Retraining NER systems for a different set of classes
is expensive as a large training set is necessary.

There are also multiple more distantly related approaches,
especially from the area of information retrieval. For exam-
ple [28] uses LSI to represent information coming from both
the image and the textual analysis in one semantic space.
The image annotations are represented by full-term vectors;
no NLP is performed. The authors note that LSI as a sta-
tistical technique is less useful for named entities since these
often occur infrequently in the corpus.

Of interest is also the work of [14], which combines the
textual content with image features to classify images into
four categories based on on the text surrounding the images
on web-pages. No NLP or NER was performed, and the
use of textual content resulted in marginal improvement in
classification to categories for which named entities were im-
portant. This can be accounted to problems with statistical
processing of named entities, as also marked by [28].

7. DISCUSSION AND FUTURE WORK
The review of related research presented in Section 6 has

shown that most approaches that exploit textual informa-
tion for image classification either ignore uncommon words
or use a NER system or its variation. The disadvantage of
most NER techniques is that they are not flexible enough
to accommodate the variable needs of image classification,
since large labeled corpora are needed for their training. To
the best of our knowledge, our framework based on Semantic
Concept Mapping and Targeted Hypernym Discovery con-
stitutes one of the first attempts to harness the information
about image content contained in named entities and un-
common words appearing in free-text annotations while not
constraining the set of classification categories.

Experiments 1 and 2 showed that Targeted Hypernym
Discovery is an effective tool for mapping uncommon enti-
ties to Wordnet. The current implementation of THD heav-
ily relies on the first-sense assumption: the system processes
articles in the order returned by Wikipedia search, mapping
the first hypernym found to its first Wordnet synset. Relax-
ing this assumption could perhaps improve the THD perfor-
mance. It is however the Semantic Concept Mapping that
should be the primary focus of further work since it was re-
sponsible for the largest portion of error in the experiments.

The fact that hypernyms extracted from Wikipedia are
too fine-grained for classification to general categories used
in the NER task has been already noticed in [17] and the
same apparently applies to the set of classes used in our
experiments. Another problem is highlighted in Section 2.1,
which recommends to use a different set of classes in SCM
than in the image classifier, since the results of the similarity
function used are very sensitive to the position of the class
in the Wordnet hierarchy.

We suggest that future work should focus on replacing
the Lin similarity, which we used in the experiments, with
a more robust measure. Recent results achieved in the NLP
community [24] demonstrated the superior performance of

combining similarity measures based on semantic networks
(e.g. Lin or JCn) with measures that use textual concept
definitions (such as the Lesk similarity).

The original Lesk similarity computes the overlap between
the Wordnet definitions of the compared concepts [3]. In-
spired by the Extended Lesk similarity [3], we suggest to
represent each concept (i.e. entity or class) with multiple
Wikipedia articles related to it. We hope that the larger
amounts of text thus provided by Wikipedia might provide
results less dependent on the exact position of the compared
entities in Wornet. A less volatile measure would also allow
to define a minimum similarity threshold under which an
entity would be classified as unknown. This should help re-
move the need to specify different classes for SCM than are
used for image classification.

The soft output of SCM and the fact that it makes differ-
ent errors than the image classifier, as shown in Experiments
2 and 3, facilitates the application of classifier fusion [22].
Experiment 4 demonstrated the positive impact of combin-
ing SCM with KAA, a region-based image classifier, using a
simple classifier fusion algorithm. Investigation of effective
approaches to fusion of SCM with a general image classifier
was left for future research.

8. CONCLUSIONS
The paper presented an approach to utilizing textual an-

notations to complement image classification. Our contri-
bution is two-fold.

First, our system uses Semantic Concept Mapping to ex-
press entities occurring in free-text image annotations in
terms of custom-defined Wordnet synsets, and Targeted Hy-
pernym Discovery to map named entities and uncommon
words occurring in the text to Wordnet by extracting hy-
pernyms from Wikipedia using lexico-syntactic patterns.

Second, we experimentally demonstrated the positive im-
pact of complementing content-based image classification
with entities extracted from free-text image annotations.

Further research will particularly focus on improving the
accuracy of our SCM system by employing word sense dis-
ambiguation algorithms and on evaluating the benefits of the
proposed approach for multi-class classification of images.
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