
Querying the RDF: Small Case Study in the

Bicycle Sale Domain

Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{xsvao06,svatek,kavalec,labsky}@vse.cz

Abstract. We examine the suitability of RDF, RDF Schema (as simple
ontology language), and RDF repository Sesame, for providing the back-
end to a prospective domain-specific web search tool, targeted at the offer
of bicycles and their components. Actual data for the RDF repository
are to be extracted by analysis modules of a distributed knowledge-based
system named Rainbow . Attention is paid to the comparison of different
query languages and to the design of application-specific templates.

1 Introduction

The goal of semantic web initiative is to endow web data with formal syntax and
semantics and thus make them available for automated reasoning. Such reason-
ing could improve information retrieval (moving from keyword-based to content-
based retrieval), but also increase the degree of automation in data/application
integration or website design. Among the ‘semantic web’ representation lan-
guages, RDF1 has prominent position. It is used to express interconnected logical
facts, which can be semantically viewed as simple kind of structured knowledge.
On the other hand, semantic web facts may potentially arise in large quantities,
and thus, at the syntactical level, require treatment similar to traditional, tabu-
lar data. Several tools have been developed for RDF storage and retrieval, such
as Jena2, RDF Suite [1], and finally Sesame, which is the focus of this paper.
There are also multiple query languages implemented in different tools.

Although semantic annotations written by hand have the best quality, it is
unrealistic to obtain the critical mass of semantic web purely manually. Auto-
mated annotation of legacy pages (or service descriptions) by means of lingustic
or statistical techniques became a hot topic in semantic web research3. In this
paper, we analyse the applicability of RDF query languages and of the Sesame
repository for storage and retrieval of facts potentially discovered by Rainbow—a
distributed knowledge-based system for analysis of web content and structure.
1 http://www.w3.org/RDF
2 http://www.hpl.hp.com/semweb/jena2.htm
3 Cf. the workshop on ’Human Language Technology for Semantic Web and Web

Services’ at the last International Semantic Web Conference, http://gate.ac.uk/
conferences/iswc2003.

Section 2 of this paper discusses how facts (on bicycle sales) extracted by
Rainbow can be represented in RDF and shows the underlying RDF Schema.
Section 3 describes the architecture of Sesame. Section 4 compares the major
RDF query languages with respect to the given application. Finally, section 5
deals with application-specific templates that can shield a user of the (prospec-
tive) semantic search tool from the syntax of query languages.

2 Representing the Rainbow Results in RDF

2.1 Architecture of Rainbow

The loosely-coupled architecture of Rainbow consists of a web spider, a full-text
database tool, and several analytical tools, interfacing with each other by means
of web service protocols. Analytical tools specialise in different forms of web
data, such as free text, text structured with HTML tags, website topologies or
images. The semantics of services is modelled by an application ontology. In the
current state of the system, the services can only be invoked procedurally, in a
fixed order; the ontology is hence merely used indirectly, at design time of the
composed application. A more flexible composition solution (based on skeletal
planning) is envisaged for the future. More details can be found in [8] and at
the project homepage4. The current application of Rainbow aims at develop-
ment of a semantic search tool for the domain of bicycle products . Websites of
bicycle-selling companies5 are systematically analysed, with emphasis on cata-
logue information, but also including a general profile of the company.

2.2 Resource Description Framework and Vocabulary Language

Resource description framework6 (RDF) is a language developed for representing
information about resources in the World Wide Web; it can however be used as
general language for encoding facts. RDF statements, also called triples, consist
of three parts: subject, predicate (property), and object . An statement may e.g.
say that a particular web page was created by a particular human: the page
then is the subject, the human is the object, and the relation ‘created by’ is
the predicate. Any real-world entity (and even property) can be understood
as resource, whether accessible via the web or not. Object is the only part of
statement where not only a resource but also a literal (i.e. simple string or
numerical value) may appear. RDF literals can also be typed, via reference to
XML Schema datatypes. Even whole statements can be declared as resources:
this technique is called reification7, and enables to assert facts about statements
themselves. To identify a particular information resources, RDF uses URI, the
4 http://rainbow.vse.cz
5 As initial data source, we use the sites referenced by the Google Directory, namely

its node Sports/Cycling/BikeShops/Europe/UK/England.
6 http://www.w3.org/RDF
7 From Latin: res= ’thing’, since the statement thus becomes an object of discourse.

Uniform Resource Identifier . RDF statements may be encoded using varying
serialization syntax 8 but always conform to the same, graph-oriented data model ,
where subjects and objects are represented by nodes, predicates by directed arcs,
and each node-arc-node triple represents one RDF statement.

RDF is endowed with more expressive power through RDFS: the RDF Schema
[2], which plays the role of vocabulary language. Individual resources can be as-
signed types, i.e. classes ; RDFS then allows to build a hierarchical structure over
classes and properties, and to declare the domain and range of properties.

2.3 RDF Facts and RDFS Ontology on Bicycle Sites

When applied on bicycle-selling sites, analytical modules of Rainbow are typ-
ically able to extract the name of a bike, its price, details on its components
(such as fork, frame, rear derailer etc.), its picture, and possibly some infor-
mation about the company that offers it. Bikes, as well as separately-sold bike
components are associated with retail offers . Examples of information ‘triples’
(in free-text form, to avoid syntax issues) are ”Company X offers bike Y”. ”Bike
Y has name Rockmachine Tsunami”, ”Bike Y has fork Z”. ”Fork Z has name
Marzocchi Air”, ”Price of bike Y is 2500.” Furthermore, we need to represent
metadata associated with the extracted facts, such as ”Statement XY has cer-
tainty 0.75” or ”Statement XY was produced by URL analysis module”.

The RDF schema (i.e. simple ontology) of our domain uses four namespaces:
bike dealing with bikes themselves, comp dealing with (not necessarily ‘bike’)
companies, pict dealing with pictures on web pages, and meta dealing with
metadata on statements extracted by Rainbow. Its graph is shown on Fig. 1
and 2 (decomposed for easier readability). The central point of the schema is
the concept of RetailOffer. It corresponds to an offer of BikeProduct (whole bike
or component) by a Company; it is also associated with the Name under which
and Price for which it is offered, and URL of associated Picture. URI of particu-
lar RetailOffer corresponds to the URL of catalogue item containing the offer9.
BikeProduct is superclass of all bike products. Note that BikeProduct and its
subclasses only have ‘types’ of products as their instances, not individual phys-
ical entities. Such ‘type’ of product can be offered for different prices and even
under slightly different names (associated with the given instance of RetailOffer)
and accompanied with different pictures, while BikeProduct itself has a ’canoni-
cal’ name, specified e.g. by its manufacturer. Finally, let us explain the nature of
metadata. Our solution to representing them is based on reification and inspired
by the SWAP project10. In order to store metadata about e.g. origin, confidence,

8 The standard format is RDF/XML (see http://www.w3.org/RDF); there is
also a line-based encoding format, N-triples (see http://www.w3.org/TR/2002/

WD-rdf-testcases-20020429) and a format easily readable for humans, Notation
3 (N3, see http://www.w3.org/2000/10/swap/Primer).

9 Typically the place from where the core information was extracted.
10 Ongoing IST project on Semantic Web and Peer-to-Peer (knowledge nodes), see

http://swap.semanticweb.org/

security and caching of each piece of knowledge, they set up a complex meta-
data schema [3]. In contrast, we are only need a few metadata items, such as,
information on which analysis module the statement was obtained from, or its
certainty factor. Metadata are grouped under an abstract class called Meta.

3 Architecture of Sesame

Sesame allows persistent storage and querying of RDF data and schema11; it
consists of three functional modules:

– Query Module parses a query, builds the query tree to optimise it, and finally
evaluates it in a streaming fashion.

– Admin Module enables to insert and delete RDF data and schema, checks for
consistency of newly added statements with statements in the repository, and
infers entailed information. Inferencing is done according to rules and axioms
defined in [6] as well as to custom (application-specific) rules/axioms12.

– Export Module exports the content of repository (data or schema or both).

Additionally, Sesame uses a stack of SAILs (Storage and Inference Layers),
which transparently ensure access to specific implementations of repository. The
underlying repositories can be based on a (relational or object-oriented) DBMS,
RDF files cached in memory, RDF network services or existing RDF stores.

Our choice of Sesame was to some extent motivated by our close contacts
with its developers. There are at least two comparable tools for RDF storage
and retrieval. RDF Suite13 [1], developed by ICS FORTH, Greece, is potentially
faster for large queries thanks to flexible adaptation of database schema to the
given RDF schema. It supports the full RQL query language (see section 4.1),
and enables dynamic loading of multiple RDF schemata. Jena14, developed by
HP Labs, Bristol, UK, offers a user-friendly interface for writing RDF schemata,
and an API for ontology languages (OWL, DAML+OIL, RDFS). It only sup-
ports the RDQL query language (see section 4.3). Arguments in favour of Sesame
might be close adherence to the most recent ‘inference-centric’ updates of RDF,
and some features of its original query language, SeRQL (see section 4.2). Given
the experimental nature of our project, response time, reliability (typically de-
creasing with increasing role of inference), and quality of editing interface do not
play so crucial a role, and since we deal with a single RDF Schema fully under
our control, there is no need for dynamic schema integration. In our setting for
Sesame, we further opted for RDBMS back-end.To enable easy search in the bi-
cycle data repository, an HTML interface is being developed, with pre-fabricated
query templates (cf. section 5).
11 The first stable version, Sesame 1.0RC1, can be downloaded from http://

sourceforge.net/projects/sesame. Sesame is developed by the Dutch company
Aduna (earlier Aidministrator), see http://sesame.aidministrator.nl.

12 In our case, it is e.g. possible to define a rule stating that property partOfModel is
inverse to property hasBikePart.

13 http://139.91.183.30:9090/RDF
14 http://www.hpl.hp.com/semweb/jena2.htm

bike:BikeProduct�

bike:RetailOffer�

bike:BikePart�

bike:TrekModel�

bike:MTBModel�

bike:FreeRideModel�

bike:RoadModel�

bike:BikeModel�

bike:Brakes�

bike:Fork�

bike:SuspensionFork�

bike:FrontDerailer�

bike:Wheel�

comp:Company�

bike:hasBikeProduct�

rdfs:subClassOf�

rdfs:subClassOf�

bike:hasCompany�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�
rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

bike:name�

bike:partOfModel/bike:hasBikePart�

rdfs:Literal�

bike:Frame�

rdfs:subClassOf�

bike:Derailer�

rdfs:subClassOf�

bike:RearDerailer�

Fig. 1. RDF schema of bicycle domain 1/2

meta:Meta�

rdfs:Resource�

rdf:Statement�

meta:hasMeta�

meta:hasMeta�

rdfs:Literal� rdfs:Literal�rdfs:Literal�

meta:label�
meta:certainty� meta:fromModule�

pict:Picture�

pict:hasWidth�

pict.hasHeight�

pict:hasColours�

bike:RetailOffer�

bike:hasPicture�

rdfs:Literal�

rdfs:Literal�

rdfs:Literal�

bike:hasPrice�

bike:hasName�

rdfs:Literal�

rdfs:Literal�

comp:BikeCompany�

comp:email� comp:companyName�

comp:address�

comp:officePhone�

rdfs:Literal�

rdfs:Literal�rdfs:Literal�

Class�

subclassof�

property (domain/range)�

literal�

class�

LEGENDA�

comp:BikeCompany�

comp:address�

blank node in RDF graph�

rdfs:Literal�

rdfs:Literal�

rdfs:Literal�

rdfs:Literal�

comp:city�
comp:postalCode�

comp:country�
comp:street�

blank node�

Fig. 2. RDF schema of bicycle domain 2/2

4 Querying the RDF in Sesame

There are three RDF query languages implemented in Sesame: RQL, RDQL and
SeRQL. Unlike standard SQL, these languages only serve for querying and not
for data manipulation. The main accent is laid on RQL and SeRQL, which enable
querying both the RDF data and associated RDF schemata. We will demonstrate
RQL and SeRQL on examples, and attempt to expose their weak and strong
aspects. We will also briefly mention RDQL and the language implemented in
the PerlRDF tool produced by Ginger Alliance (i.e. not supported by Sesame).

4.1 RQL

RQL is a declarative query language over RDF and RDFS. It was originally
proposed in the context of RDF Suite [1]; its implementation in Sesame is only
partial and adheres more closely to the recent RDF updates by the W3C. The
building blocks of RQL are functions and path expressions . Functions enable to
directly query the RDF Schema. Examples of functions are Class (returning
the set of all classes), Property (returning the set of all properties), domain or
range (returning the domain/range of a property). They can be be combined in
many ways, even with path expressions.

RQL offers the SELECT-FROM-WHERE construct known from SQL, with
some differences. It has two obligatory and two optional parts. In the (obliga-
tory) SELECT clause, we list the variables (selected from the subsequent FROM
clause), the values of which we want in the result. We could also use an asterisk,
representing all variables. In the (obligatory) FROM part, we specify the RDF
subgraph over which we query, in the form of path expression representing a
filter on the graph. Further conditions are expressed is the (optional) WHERE
clause. A WHERE expression is typically a comparison of variables from FROM
clause and concrete values; we can also compare a variable with the result of an
embedded query (see example 2Q), and use boolean connectives . RQL offers the
comparison operators <,>,=,>=,<= and like (string matching, with possible left
or right expansion). The RQL query engine tries to convert the operands to be
compared to the same type. It is doing in this sequence: classes, properties (both
compared hierarchically), real numbers, integers, literals and finally, resources.
The last clause is (optional) USING NAMESPACE; it enables to write elements
from certain namespace in short form (prefix:local name = Qname)15.

Now we demostrate the use of RQL on examples related to our bicycle ap-
plication; they conform to the RDF Schemata in Fig. 1 and 2. Path expressions
of the queries are shown in Fig. 3.

Let us first demonstrate the use of RQL functions.
1Q: Find restrictions (domain and range) of property hasWidth.

select domain(@predicate), @predicate, range(@predicate)

from {} @predicate {}

where @predicate = pict:hasWidth

15 In all examples in this paper we omit namespace definitions, for brevity.

subject� object�predicate�

hasWidth�

literal�

RetailOf�
fer�

Picture�

literal�

hasPicture�

hasName�

predicate�

Stateme�
nt�

Subject�

Predicat�
e�

subject�
type�

Meta�

object�

literal�certainty�

BikePro�
duct�

literal�companyName�

hasPicture�

Compan�
y�

RetailOf�
fer�

literal�

hasPrice�

hasCompany�

hasBikeProduct�

name� literal�

Picture�

1Q� 2Q�

3Q� 4Q�

Fig. 3. Path expressions for sample queries

The next example already demonstrates the use of path expressions.
2Q: Find all retail offers with name starting with letter ”l” and having a picture
with width lower than 70.

select *

from {X : bike:RetailOffer } bike:hasName {name},

{X} bike:hasPicture {Y}. pict:hasWidth {width}

where name like "l*" and width < 70

We see that in RQL, a variable (denoting a resource) can be assigned class
(here, RetailOffer) using shortcut notation (with colon). This query also fea-
tures lexicographic and numerical comparisons and a slightly more complicated
path expression. It contains two paths starting from the same node specified by
variable X. In the node specified by variable Y, the path is extended across the
arc (property) hasWidth (see also Fig. 3).

RQL is however not very suitable for expressing optional path expressions,
as manifested on the following example (note the last sentence).
3Q: Find all retail offers of bicycles that have a concrete bike component. Output
the name of company that offers the bike, the picture of retail offer, the price of
bike (offer). Retrieve the retail offer even if the URL of picture is not known.

In RQL must be this type of query expressed by applying a Boolean union on
the results of two partial queries; also notice the use of operator in (reference to
embedded query) in the second subquery, in order to eliminate duplicate results
(obviously, with increasing number of optional parts of the query graph we would
face combinatorial explosion):

(select web, company, price, picture, name

from {X : bike:RetailOffer } bike:hasCompany

{web : comp:Company }. comp:companyName {company},

{X} bike:hasPrice {price},

{X} bike:hasPicture {picture},

{X} bike:hasBikeProduct {idtyp}. bike:name {name}

where idtyp=data:part1)

union

(select web, company, price, null, name

from {X : bike:RetailOffer } bike:hasCompany

{web : comp:Company }. comp:companyName {company},

{X} bike:hasPrice {price},

{X} bike:hasBikeProduct {idtyp}. bike:name {name}

where idtyp=data:part1

and not (X in select X

from {X} bike:hasPicture {picture}))

4.2 SeRQL

SeRQL [4] (”Sesame RDF Query Language”, pronounced as ‘circle’) is a declar-
ative query language over RDF and RDF Schema; in contrast to RQL, there is
explicit support for optional path expressions. There are two alternative types
of queries, SELECT and CONSTRUCT. While SELECT returns a table of re-
sults, CONSTRUCT returns again an RDF graph, which is part of the graph
being queried or derived from it via introducing new properties or classes. The
parts of SELECT have the same meaning as in RQL; the only difference of
CONSTRUCT is in the CONSTRUCT clause itself, where a structure of RDF
triples appears in the place of variable list. An analogy of RQL functions are
SeRQL built-in predicates, they however only cover some of the queries that could
not be made using the RDF representation of the schemata themselves. This is
the case of <serql:directSubClassOf>, <serql:directSubPropertyOf> and
<serql:directType>, since the information on e.g. direct vs. inferred subclass
relationship is not preserved in the repository in RDF form. In contrast to
RQL, XML datatypes can be used in queries. SeRQL does not have an im-
plicite sequence of type comparisons: unless the RDF literals themselves are
typed (contain information on their datatypes), we must explicitly say how
the query engine should compare two expressions in the WHERE clause, e.g.
WHERE width < "150"^^<xsd:positiveInteger>. In SeRQL, we can, again,
use the Boolean connectives AND, NOT and OR (in WHERE clause). In the
following, we will translate the examples (1Q, 2Q and 3Q) to SeRQL.

1Q: Find restrictions (domain and range) of property hasWidth.
There are no built-in construct for accessing the domain/range. They can how-
ever be retrieved in the RDF representation of the schema, which is a part of
the repository. We also benefit from shortcut notation: multiple edges from the
same node are separated with semicolon, and the node is not repeated any more:

select domain, range

from {<pict:hasWidth>} <rdfs:domain> {domain}; <rdfs:range> {range}

2Q: Find all retail offers that have a name starting with letter ”l” and their
picture has width lower than 70.

select *

from {X} <bike:hasName> {name},

{X} <bike:hasPicture> {Y} <pict:hasWidth> {width}

where name like "l*" and width < "70"^^<xsd:integer>

3Q: Find all retail offers of bicycles that have a concrete bike component. Output
the name of company that offers the bike, the picture of retail offer, the price of
bike (offer). Retrieve the retail offer even if the URL of picture is not known.

select prv, web, company, price, picture, name

from {prv} <serql:directType> {<bike:RetailOffer>};

<bike:hasPrice> {price};

[<bike:hasPicture> {picture}];

<bike:hasBikeProduct> {idtyp},

{idtyp} <bike:name> {name},

{prv} <bike:hasCompany> {web} <rdf:type> {<comp:Company>};

<comp:companyName> {company}

where idtyp = <data:part1>

The query shows a strong aspect of SeRQL: optional path expressions (in
brackets). Also notice the combination of shortcut and not-shortcut notations.

The last, new example (we omitted its RQL form for brevity) deals with
reified statements (with the abstract ‘meta’ resource, see section 2).
4Q: Find all statements that have certainty higher than 0.9.
Queries to reified statements may use their own shortcut form in SeRQL:

select *

from { {reifSubj} reifPred {reifObj} }

<meta:hasMeta> {obj} <meta:certainty> {certainty}

where certainty > "0.9"^^<xsd:double>

We choose SeRQL for our application, mainly because of the need for optional
path expressions (since we deal with often incomplete data extracted from HTML
pages) and shortcut querying of reified statements . The strong aspect of RQL—
functions for direct querying of RDF Schema—was found idle for our purpose,
since we deal with relatively small and stable schemata.

4.3 Comparison with Other Languages

RDQL [7] was originally developed for the Jena tool. Its version in Sesame
takes into account RDF data with schema but without inferential capability.
It allows to specify a path expression but without support for optional parts.
The SELECT clause has different syntax but usual meaning. There is no FROM
clause, and the graph pattern is specified in the WHERE clause, as list of triples;

partial paths are bound together with variables. Finally, the AND clause specifies
filters on variable values and the USING clause maps to namespaces.

Now we demonstrate RDQL on one example: find all retail offers which have
not the name liberta and their picture has width lower than 70.

SELECT ?retailoffer, ?name, ?picture, ?width

WHERE (?retailoffer, <rdf:type>, <bike:RetailOffer>) ,

(?retailoffer, <bike:hasName>, ?name) ,

(?retailoffer, <bike:hasPicture>, ?picture) ,

(?picture, <pict:hasWidth>, ?width)

AND (?width < 70 && ?name ne "liberta")

The last query language we mention is part of PerlRDF, a collection of tools
developed by Ginger Alliance (http://www.gingerall.com). It offers path ex-
pressions, comparisons, functions and namespaces; there is no support for infer-
encing nor optional path expressions. We illustrate this RDF query language on
the query: find all retail offers that have a picture with width more than 10.

Select ?retailoffer, ?name,

?picture->[http://rainbow.vse.cz/schema/picture.rdfs#hasHeight],

?picture->[http://rainbow.vse.cz/schema/picture.rdfs#hasWidth]

From bike:RetailOffer::?retailoffer->bike:hasName{?name},

?retailoffer->bike:hasPicture{?picture}

Where

?picture->[http://rainbow.vse.cz/schema/picture.rdfs#hasWidth] > ’10’

5 Query Templates for the Bicycle Application

In order to make our prospective RDF repository available for a casual user,
we decided to prepare a domain-specific HTML interface with several (SeRQL)
query templates . The templates should shield the user from the syntax of the
query language, and even offer a very simple form of navigational retrieval . Our
idea is based on two-stage querying. The template for initial query (specifying
its FROM part) is quite complicated, rich in optional path expressions:

from {idretail} <rdf:type> {<bike:RetailOffer>};

[<bike:hasCompany> {idweb}

<rdf:type> {<comp:Company>};

<comp:companyName> {company};

<comp:address> {} <comp:city> {city}];

[<bike:hasPrice> {price}];

[<bike:hasPicture> {picture}];

<bike:hasBikeProduct> {idbike}

<rdf:type> {<bike:BikeModel>};

<bike:name> {name}

[<bike:hasBikePart> {idFork}

<rdf:type> {<bike:Fork>};

<bike:name> {Fork}];

The final shape of the query will be tuned by the user, who may refine the
SELECT clause (variables), FROM clause (optional or not), and WHERE clause
(comparisons). The results of the initial query are the starting point for follow-
up querying. For example, the initial query might be: Find all bikes that are sold
by this company. The results contain various information about each retail offer
of the company. There might be e.g. the fact that some offered product has a
certain type of frame. Now the user can choose (i.e. click on) the option ‘offer’,
which means: Query on all retail offers of this product (i.e., this type of frame).
Follow-up queries will be mediated by simpler templates such as for pictures,
compaines, retail offers of a particular type of bike or component and so on.

6 Conclusions and Future Work

We discussed the way a concrete RDF storage-and-retrieval tool, Sesame, can be
used for our specific application within the Rainbow project, presented the RDF
schema for this application, and analysed the RDF query languages implemented
in Sesame Eventually, SeRQL was found suitable for our purposes. We plan to
experimentally evaluate our hypotheses on a repository filled with a solid amount
of real-world data. The data will be accessible through a domain-specific HTML
interface with pre-fabricated query templates as well as through queries manually
compiled by the user. In conjuction with this first live experiment, we will also
have to integrate the results of multiple analytical modules of Rainbow.

The project is partially supported by grant no. 201/03/1318 of the Grant
Agency of the Czech Republic.

References

1. Alexaki S., Christophides V., Karvounarakis G., Plexousakis D., Tolle K.:The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases, 2ndInternational
Workshop on the Semantic Web, in conjunction with WWW10, Hongkong, 2001.

2. Brickley D., Guha R.V.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, World-Wide Web Consortium, Feb. 2004

3. Broekstra J., Ehrig M., Haase P., van Harmelen F., Kampman A., Sabou M., Siebes
R., Staab S., Stuckenschmidt H., Tempich C.: A Metadata Model for Semantics-
Based Peer-to-Peer Systems. In: Proceedings of the WWW’03 Workshop on Se-
mantics in Peer-to-Peer and Grid Computing, Budapest, 2003.

4. Broekstra J., Kampman A.: User Guide for Sesame. http://sesame.

aidministrator.nl/publications/users/
5. Broekstra J., Kampman A.: Sesame: A generic Architecture for Storing and Query-

ing RDF and RDF Schema, On-To-Knowledge project deliverable 10, 2001.
6. Hayes P., McBride B.: RDF Semantics. W3C Recommendation, World-Wide Web

Consortium, Feb. 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.
7. Seaborne A.:A Programmer’s Introduction to RDQL, http://jena.sourceforge.

net/tutorial/RDQL, April 2002
8. Svátek V., Kosek J., Labský M., Bráza J., Kavalec M., Vacura M., Vávra V., Snášel

V.: Rainbow - Multiway Semantic Semantic Analysis of Websites. In: 2nd DEXA
Int’l Workshop on Web Semantics, Prague, IEEE Computer Society Press 2003.

