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Abstract. UTA is a method for learning user preferences originally
developed for multi-criteria decision making. UTA expects that the
input attributes are monotone with respect to preferences, which lim-
its the applicability of the method and requires manual input for each
attribute. In this paper, we propose a heuristic attribute preprocess-
ing algorithm that transforms arbitrary input attributes into a space
approximately monotone with respect to user preferences, thus mak-
ing it suitable for UTA. In an experimental evaluation on several
real-world datasets, preprocessing the input data with the proposed
algorithm consistently improved the results in comparison with the
UTA-ADJ variation of the UTA STAR algorithm.

1 Introduction
The UTA (UTilités Additives) method (Jacquet-Lagreze [9]) learns
an additive piece-wise linear utility model. Although a relatively old
approach, it is used as a basis for many recent utility-based prefer-
ence learning algorithms, e.g. [8]. UTA takes a set of alternatives
ordered according to user’s preferences, and learns utility functions
for each attribute. Using these functions, the utility for individual at-
tribute values are combined into the overall utility for a given object.

UTA expects that the input attributes are monotone with respect
to preferences, which not only requires manual input for each at-
tribute, but also limits the applicability of the method. In this paper,
we propose a heuristic attribute preprocessing algorithm that trans-
forms arbitrary input attributes into a space approximately monotone
with respect to user preferences, thus making it suitable for UTA.

This paper is divided into four sections. Section 2 describes the
UTA method with focus on its monotonicity constraints. The pro-
posed algorithm for learning local preferences is introduced in Sec-
tion 3. Experimental evaluation of the algorithm is presented in Sec-
tion 4, and the concluding remarks are in Section 5.

2 Related Work
UTA method [9] draws inspiration from the way humans handle de-
cision making tasks at a level of abstraction provided by the microe-
conomic utility theory. The principal inductive bias used in the UTA
method is the monotonicity of utility functions. The UTA method
also incorporates additional assumptions, particularly piece-wise lin-
earity and additivity of utility functions.

UTA method aims at inferring one or more additive value func-
tions from a given ranking (weak ordering) on the reference set X of
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objects3. Each object is described by N criteria G = {g1, . . . , gN}.
The evaluation scales of each criterion is given by the real-valued
function gi : X → [gi∗, g

∗
i ]. The value gi∗ is considered the worst

level of the worth of the object from the decision maker’s point of
view with respect to criterion gi and g∗i the best level, gi(x) denotes
the evaluation of object x ∈ X in criterion gi. The method uses lin-
ear programming to find such N partial value functions ui that best
explain given preferences. The overall preference rating for an object
x is computed as a sum of utility values across all criteria:

U(x) =

N∑
i=1

ui(x)

where x is an object and ui are nondecreasing marginal value
functions, which we call partial utility functions. It should be noted
that the partial utility functions are piece-wise linear. For each
criterion, the interval [gi∗, g

∗
i ] is cut into αi − 1 equal intervals

[gi∗, g
2
i ], . . . , [gαi−1

i , g∗i ]. This discretization is not significant for
nominal criteria; for these, the number of breakpoints αi (includ-
ing the end points gi∗, g∗i ) corresponds to the number of values of
the criteria. However, for cardinal criteria, the marginal value of an
object gi(x) ∈ [gji , g

j+1
i ] is approximated using linear interpolation

between the two nearest breakpoints gji , gj+1
i .

The condition of the monotonicity requires that if for x, x′ ∈ X ,
object x is weakly preferred to object x′, then for another object x′′ ∈
X , such that gh(x′′) ≥ gh(x), for all h = 1, . . . , N , object x′′ should
be also weakly preferred to object x′ [2].

In the area of Multi-Criteria Decision Making (MCDM), it is the
role of the expert to derive the set of criteria from the properties of the
object. The expert not only checks that the criteria meet the mono-
tonicity requirement, but also orders the domain so that value gi∗ is
considered the worst and value g∗i the best for criterion i.

If UTA is to be applied in wider machine learning context, rather
than in the narrow area of decision support systems, a manual ap-
proach to transforming attributes to criteria is not feasible.

Kliegr in [10] proposed a non-monotonic extension of the UTA
Star algorithm, called UTA-NM, which allows ui to change direc-
tion from ascending to descending, thus allowing to use criteria4 that
do not meet the monotonicity requirement. Every change of the di-
rection within one partial utility function is penalized to ensure that
the resulting model is not overly complex and overfitted to the data.

In this paper, we investigate another option for dealing with non-
monotonicity, which is based on an automatic transformation of the
original, potentially non-monotonic attributes of the input objects

3 Usually referred to as “actions” or “alternatives” in the UTA literature.
4 Since the notion of criterion is closely tied with the monotonicity require-

ment, it would be more precise to speak of “attributes”.
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into criteria. The algorithm is heuristic, i.e. the resulting criteria are
not guaranteed to meet the condition of monotonicity. The perfor-
mance of this preprocessing step is evaluated against a baseline ob-
tained with a non-monotonic UTA implementation coming out of
UTA-NM.

3 Heuristic Algorithm for Transformation of
Attributes to Criteria

Modern preference learning research deals directly with properties
of input objects, an object x is typically described by a vector of at-
tribute values (x1, . . . , xN ), no special requirements on the attribute
values are typically made [7]. In contrast, the original UTA model,
and MCDA in general, abstracts from the original attributes of the
object. It is already assumed that the expert has used these attributes
to construct the criteria set G; each object is represented by crite-
ria values (g1(x), . . . , gN (x)). The individual criteria are assumed
to meet several properties, including the condition of monotonicity
introduced in the previous section.5

In this section, we present a heuristic algorithm that transforms the
original values of the attributes, so that the result better meets the key
requirement put on criteria addressed in this paper – the condition
of monotonicity. Since the input for the algorithm is the preference
rating of one user6, we call it local preference transformation.

Using DAi to denote the domain of the original attribute i, the
local preferences transformation can be viewed as function fi :
DAi → [gi∗, g

∗
i ], which is a “concretization” of the criterion func-

tion gi : X → [gi∗, g
∗
i ] in the formal UTA model.

Each object x originally described by attribute values x1, . . . , xN
is now described by values f1(x1), . . . , fN (xN ). The intuition is that
fi(xi) is an “average” of ratings of the particular user across objects
that have value xi in attribute i, we denote this average as r(x). Since
the preference information which is consumed by the UTA method
is in the form of weak order of alternatives rather than ratings, for the
purpose of the local transformation algorithm this weak order needs
to be transformed to ratings. A straightforward approach is to assign
values in the [0, 1] range corresponding to the position of the object
in the weak preference order, with the best ranked object retrieving
the highest rating 1 and the worst ranked object the lowest ranking 0,
with the remaining ranks equidistantly distributed in the [0, 1] range.

The definition of the transformation function fi depends on the
type of the input attribute, which can be either nominal or cardinal.
In our present work ordinal attributes are not addressed, however,
they can be cast to integer and handled as a cardinal data type. In the
remainder of this section, we discuss definition of the local transfor-
mation function fi first for nominal and then for cardinal attributes.

3.1 Nominal Attributes

“Representants” is a method for finding preferences over nominal
attributes, which we proposed in [4]. It is based on the analysis of the
distribution of ratings. The local preference function for a nominal
attribute Ai has the following form:

fi(a) =

∑
{x|xi=a} r(x)

|{x|xi = a}| ,

where a is an attribute value.

5 In this paper, we make the assumption that the original N input attributes
are converted to the same number of criteria.

6 Decision maker in the MCDA terminology.

Figure 1 illustrates the computation on the notebook choice prob-
lem. Ratings of three hypothetical users with respect to the nominal
notebook colour attribute are presented. For each user and colour, a
frequency distribution of ratings is shown. Let us focus on one value
only, e.g. black. Black-coloured notebooks are highly preferred for
users 1 and 2. The vertical line in the histogram represents the av-
erage rating of each object with colour black - for both users, the
average is close to 1. The average will be used as the representa-
tive rating of the value black for the given user, or in other words,
preference of black colour.

Formally, the set of black objects is denoted as

{x|xcolour = black}

and the sum of ratings of black objects is then∑
{x|xcolour=black}

r(x)

.
The resulting representative ratings do not necessarily maintain

the monotonicity of ratings. Consider five objects (given in the order
of increasing stated preference by the user) x1, x2, x3, x4, x5 with
two attributes colour and price. The description of these objects
with respect to these attributes is given by Table 1. Once the stated
preference, originally given in terms of stars, is converted to a nu-
merical rating, the original attributes can be transformed with the
local preferences function obtaining fcolour(black) = 0.375 and
fcolour(red) = 0.58, fcpu(intel) = 0.25 and fcpu(amd) = 0.5,
fcpu(motorola) = 1.0.

This example can be also used to illustrate the fact that the result of
the local preferences transformation is not guaranteed to not violate
the condition of monotonicity: x4 is preferred to x3, for x2 it holds
that gh(x2) ≥ gh(x4), for all h = 1, . . . , N , therefore x2 should also
be weakly preferred to x3. Since this is not satisfied, the condition of
monotonicity is violated.

Table 1. Notebook choice example – nominal attributes.

object
x1 x2 x3 x4 x5

stated order * ** *** **** *****
rating 0 0.25 0.5 0.75 1

original attribute values
colour black red red black red
cpu intel amd intel amd motorola

transformed values (criteria)
colour 0.375 0.58 0.58 0.375 0.58
cpu 0.25 0.5 0.25 0.5 1

3.2 Cardinal Attributes

This section describes the proposed approach for transformation of
cardinal (numerical) attributes.

Linear regression is a very useful method that finds a relation in
a data set in the form of a linear function. In the local preferences
transformation, univariate linear regression is used to find a rela-
tionship between each cardinal input attribute and the rating as the
dependent variable. Expanding our notebook example, consider ad-
ditional notebook price attribute. Applying the local transformation
for cardinal attributes, notebook price is used as a regressor and the
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Figure 1. Illustrative ratings of three users for the notebook colour attribute.

user rating as the dependent variable. The result of the regression is
a linear function of the form:

fprice(price) = α ∗ price+ β

.
If the underlying attribute is of so called cost type, i.e. user prefer-

ence decreases with increasing attribute value, a direct use of the at-
tribute value xi in place of the criterion value gi(x) would violate the
condition that the value gi∗ is considered the worst level of the worth
of the object from the decision maker’s point of view with respect to
criterion gi and g∗i the best level (Figure 2b). Linear regression will
generally solve this problem, rearranging the values appropriately.
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Figure 2. Four basic types of preference over cardinal domains

However, the weakness of linear regression is that it finds only
linear orderings, therefore it does not generally fix a violation of the
condition monotonicity. Figure 2 shows four typical types of pref-
erences over cardinal attributes. Only two of them are linear. Linear
regression is not able to find “hill” and “valley” types. These types
can be learned using our method “Peak” proposed in [5].

We have considered also other possibilities for finding preferences
over cardinal attributes. In our preliminary experiments on small
training sets, using quadratic regression consistently worsened the
results.

4 Experiments

4.1 Performance measures

We will use the following notation: r(o) is the user’s rating of object
o, r̂(o) is the rating predicted by the method.

Tau coefficient expresses the similarity of two ordered listsL1, L2.
In our case, the first list L1 is ordered according to the user’s rat-
ing and the second list L2 according to the rating estimated by the
method. The lists are sorted in decreasing order, so that the most pre-
ferred objects are on the top of the lists. In the simplest case, the lists
consist only of ids of objects. The tau coefficient is then computed
according to the number of concordant pairs. A pair of objects o,p
is concordant, if either o is before p in both lists, or p is before o
in both lists. A pair that is not concordant, is discordant. Then, tau
coefficient can be computed as follows:

τ(L1, L2) =
nc − nd

1/2 ∗ n ∗ (n− 1)
,

where nc is the number of concordant pairs and nd is the number
of discordant pairs. δ in following formula stands for Kronecker delta
- δ(condition) = 1 if condition is true, 0 otherwise.

nc =
∑
o,p∈X

δ(sgn(L1(o)− L1(p)) = sgn(L2(o)− L2(p)))

Another measure expressing the similarity of two lists is Pearson
correlation. This measure is often used in machine learning for study-
ing the dependency of two variables. If the correlation is high, the
two lists are similar, if the correlation is low, the lists are different.
The value of the correlation coefficient ranges from -1 to 1. Value -1
means lists with exactly inverse ordering, 1 corresponds to the same
ordering. Correlation 0 means there is no connection between the two
orderings.

corr(r, r̂) =

∑
o∈X

(r(o)− r̄)(r̂(o)− ¯̂r)

(n− 1)srs
r̂

,

where r̄ is the average rating, ¯̂r is the average predicted rating, sr is
the standard deviation of the original ratings and s

r̂
is the standard

deviation of the predicted ratings.
UTA method is focused on preserving the order of objects rather

than estimating their ratings, so it does not make sense to use the
Root Mean Square Error (RMSE) metric, which is commonly used
for other methods.

Two measures of computational performance will be studied. The
first measure is the time required to train the method on a set of
ranked objects. The second one is the time required to evaluate a
testing object.



Table 2. Datasets with monotone class attribute from the UCI repository.

Dataset name
Car Evaluation

Contraceptive Method Choice
Nursery

Poker Hand
Post-Operative Patient

Teaching Assistant Evaluation
Wine

Wine Quality[1]

4.2 Datasets
UCI [6] contains a number of datasets with different properties. We
were most concerned in classification tasks, where there is an or-
dering of classes. For evaluation of the UTA method, only datasets
suitable for the object ranking task were relevant. E.g. the famous
Iris dataset were excluded, because we are not able to order the three
classes - Iris Setosa, Iris Versicolour and Iris Virginica - in a mean-
ingful way. Every classification dataset of UCI was studied for the
presence of monotonicity in the class attribute. The chosen datasets
from UCI repository are in Table 2.

We acknowledge that using UCI for validation of user preference
learning methods may not give representative results, since these are
not real-world preference datasets.

4.3 Experimental Implementation
For the experimental evaluation, we used our implementation of non-
monotonic UTA called UTA-ADJ. It is a based on similar ideas as the
UTA-NM algorithm, introduced in our earlier work [10]. UTA-NM
removes the monotonicity constraints imposed by the UTA Star al-
gorithm. A penalization element is added to prevent overfitting by
excessive number of changes in shape of partial utility functions,
however, the penalization entails an excessive computational cost.

To remedy the computational issue, UTA-ADJ takes a different
route to allow non-monotonicity in partial utility functions. UTA-
ADJ runs the standard UTA Star algorithm multiple times, gradually
testing the influence of placing a change of shape at individual break-
points across all partial utility functions. The breakpoint in which the
change of shape yields the largest increase in the objective function
in comparison with the baseline, is retained.

This procedure is repeated until the preset threshold of maximum
number of changes in shape is retained or the improvement in the
objective function is lower than a preset minimum increase. In the
first iteration, the baseline is the objective value attained by a fully
monotonic run of the UTA Star algorithm, in subsequent iterations it
is the best objective value from the previous iteration.

The computational costs of multiple runs of the UTA Star algo-
rithm is in our experience much lower than the cost of a single UTA-
NM run with the penalization constraints. Nevertheless, it should be
noted that the computational advantage of UTA-ADJ over UTA-NM
is inversely related to the maximum number of changes in shape
threshold.

UTA-ADJ algorithm closely resembles the method proposed by
Despotis and Zopounidis [3], with the difference that breakpoints,
where the change of shape occurs, are not externally set parameters,
but are determined automatically. Also, more changes of shape per
partial utility functions are allowed.

The UTA-ADJ implementation is available as an interactive on-
line application at http://nlp.vse.cz/uta.

4.4 Experimental Results
This section describes our experiments on the UCI datasets. The re-
sults are averaged across all the datasets listed in Table 2. For the
given training set size, 20 different (randomized) training sets were
used for each dataset. We compare UTA-ADJ with the (possibly) im-
proved UTA+Local, which is also an UTA-ADJ run, but involving the
local preferences transformation. The maximum number of changes
in shape threshold was set to 2 for all experiments.
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Figure 3. Tau rank coefficient for all datasets.
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Figure 4. Correlation for all datasets.

Figure 3 presents a comparison of performance on individual
datasets in terms of the tau coefficient. Here, the advantage of us-
ing local preferences is clear, the improvement of the value of tau
coefficient for moderate train size is around 0.05. A comparable re-
sult for Pearson correlation can be observed in Figure 4. The relative
increase in correlation and tau coefficient is about 28%.

The results are convincing - using local preferences with the UTA-
ADJ variant of the UTA method significantly improved its perfor-
mance in all performance measures compared to UTA-ADJ only
baseline. Moreover, the time to train the classifier has also decreased.
All results were significant at the level p < 0.05.

5 Conclusion
We proposed a preprocessing algorithm called local preferences
transformation, which allows to use the UTA method with non-
monotone attributes.

http://nlp.vse.cz/uta


The experimental results confirm the benefits of the proposed
approach as a preprocessing step for UTA-ADJ, a variant of the
UTA method, which already has some adjustments to handle non-
monotone attributes. We assume the effectiveness of our local pref-
erences preprocessing algorithm to hold also for the common UTA
Star algorithm. Nevertheless, an experimental evaluation of this hy-
pothesis is a priority for future work.

A promising direction for extending our research is using more
elaborate methods than linear regression for preprocessing cardinal
attributes. Regarding nominal attributes, further work should be di-
rected at investigation of circumstances, in which the proposed algo-
rithm is and is not effective in maintaining the condition of mono-
tonicity.

It would also be interesting to find out the relation between the
degree of monotonicity of the data and the performance of UTA
with/without applying the proposed local preferences transformation
in the preprocessing phase.

The UTA method implementation used in the experiments is avail-
able in a form of an interactive web application at http://nlp.
vse.cz/uta. We plan to make the local transformation algorithm
available to the community by integrating it with this software.
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[4] Alan Eckhardt and Peter Vojtáš, ‘Considering data-mining techniques
in user preference learning’, in 2008 International Workshop on Web
Information Retrieval Support Systems, pp. 33–36, (2008).
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[10] Tomáš Kliegr, ‘UTA - NM: Explaining stated preferences with additive
non-monotonic utility functions’, in Proceedings of Workshop Prefer-
ence Learning in ECML/PKDD’09, (September 2009).

http://nlp.vse.cz/uta
http://nlp.vse.cz/uta

	Introduction
	Related Work
	Heuristic Algorithm for Transformation of Attributes to Criteria
	Nominal Attributes
	Cardinal Attributes

	Experiments
	Performance measures
	Datasets
	Experimental Implementation
	Experimental Results

	Conclusion

