
UTA - NM: Explaining Stated Preferences with

Additive Non-Monotonic Utility Functions

Tomáš Kliegr

Department of Information and Knowledge Engineering, Faculty of Informatics and

Statistics, University of Economics, Winston Churchill sq. 4, 130 67 Prague, Czech Republic

tomas.kliegr@vse.cz

Abstract. UTA methods use linear programming techniques for finding additive utility

functions that best explain stated preferences. However, most UTA methods including

the popular UTA-Star are limited to monotonic preferences. UTA-NM (Non

Monotonic) is inspired by UTA Star but allows non-monotonic partial utility

functions if they decrease total model error. The shape of the utility functions is

determined automatically while overfitting is prevented by balancing the model error

with model simplicity. The resulting program is linear and convex, but it requires

significantly more CPU time than other UTA methods. The evaluation of the method

on a synthetic task achieves the same Pearson Coefficient between the model and

stated preferences as Despotis Non-Monotonic UTA. Unlike this method, UTA-NM

does not require the provision of information on the shape of the utility function

neither is it restricted to one change of shape per criterion.

Keywords: UTA methods, linear programming, preference analysis, utility theory

1 Introduction

In many applications, it is possible to acquire information about preferences of an

individual user in the form of a stated order of alternatives (e.g. products) – from the

most preferred alternative to the least preferred one. One of the most suitable

approaches for processing data of this kind is represented by UTA methods [3, 5],

whose output are models explaining user preferences in the form of utility (value)

functions. Most UTA methods are not, however, applicable in presence of non-

monotonic preferences.

Non-monotonic preferences are not only a theoretical problem known from

economics, but also a significant practical issue: consider the notion of the ideal room

temperature, one’s utility from temperature typically rises up to a certain point after

which it again drops [4]. The work presented in this paper studies the problem of

non-monotonicity in UTA-methods as represented by the well known UTA-Star [6]

method. The monotonicity assumption of the UTA Star is relaxed and the

consequential issues with overfitting and normalization tackled. The result of these

changes is an experimental method dubbed UTA Non-Monotonic (UTA-NM).

This paper is organized as follows. Section 2 introduces UTA-NM and compares it to

the popular UTA-star method. Sections 3 and 4 describe in greater detail the main

differences between the two methods: shape penalization and normalization. Section 5

gives an account of the related research in this field. Section 6 presents an example

on which UTA-NM is compared and benchmarked with two other UTA methods. The

main contribution of the paper is summarized in Section 7 Conclusions.

2 Description of the UTA-NM

The proposed UTA-NM method is inspired by existing UTA-class methods,

specifically by the UTA Star [6] algorithm. UTA methods (from french UTilités

Aditives) are based on ordinal regression and fall within the framework of multi-

criteria decision making. In contrast to many other multi-criteria methods, UTA

methods do not expect input from the Decision Maker (DM) in the form of explicitly

expressed preferences. The input for the method is constituted by the easier to acquire

implicit preferences in the form of a preorder of reference alternatives.

The DM orders the alternatives from the one bringing the highest utility, down to the

least preferred one, which is put on the last position. For ordering, the DM uses

relations for expressing the preference of alternative x before y and the

equivalence relation x y for expressing the indifference of alternatives. The DM

does not typically order all alternatives, but only their subset of K reference

alternatives ; the remaining alternatives are evaluated by the discovered model.

The DM establishes the order of the alternatives based on their description by n

criteria . Every criterion is a non-decreasing real function defined on the

final set of alternatives A: where is a value of alternative a

in criterion i and denotes the vector of values of alternative a on all n criteria.

UTA Star assumes monotonic utility functions: the borders of the image of

function constitute the worst () and the best () values of the criterion. The

more is closer to , the better is alternative evaluated in criterion i.

UTA-NM does not assume monotonic utility functions: the worst and the best value

of each criterion can be found anywhere in the image of function .

Remaining differences between the methods are a result of relaxing the

assumption of monotonicity.

The second important assumption – the additivity of utility functions is preserved

in UTA-NM: the utility from alternative a is given by the sum of utilities from the

individual criteria . The utility from criterion i is expressed

by partial utility function .

Partial utility functions are piecewise linear; consists of linear intervals:

[,], …, [,], . The domain of is thus { , ,.. ,…, }.

In order to unambiguously determine function it is necessary to find the utilities

that correspond to the interval borders, also called breakpoints, . These values are

determined through variables , .

Variables represent marginal utilities1, since they can be computed

as a difference of utilities at two consecutive breakpoints .

UTA-NM allows, in contrast to UTA Star, negative marginal utilities.

The value of partial utility function for a is approximated with linear interpolation:

(1)

Values of utility functions are subject to normalization: a) the utility from the

worst possible alternative is equal to zero and b) the utility from the best possible

alternative, which has the best values in all criteria, is equal to one.

Achieving normalization in UTA Star is simple due to the monotonicity

assumption: ,

In the case of UTA-NM the following holds

 (2)

 (3)

The way in which UTA-NM ensures the validity of Equations 2 and 3 using the

means of linear programming is described in Section 4.

UTA Star is not always able to find a solution that would be fully compatible2

with the DM preferences. To find some solution when there is none completely

compatible, both UTA Star and UTA-NM add error variables , to the

partial utility function of alternative . These variables express the above- and

underestimation error of alternative a.

A nonzero value of or of in the solution indicates that the values of

utilities from the alternatives computed from the model need to be adjusted for the

errors and , so that we get the same order of alternatives as stated by the

1 Variables are a special case covered to later in this section.
2 The solution is compatible when the order of alternatives stated by the DM is the same as the

order arrived at by sorting the alternatives according to the utilities computed from

discovered partial utility functions (the model).

 (4)

DM. The sum of these errors indicates the quality of the solution found. In UTA, this

sum constitutes the whole utility function.

The goal of both UTA and UTA-NM is to find such set of partial utility functions

fully determined by values of variables that - if used to assign utilities to

reference alternatives - would lead to the order of alternatives as close as possible to

stated preferences.

Values of variables are set based on pair-wise comparisons of two consecutive

(in the order stated by DM) alternatives . If DM stated that , then

, and if DM stated that , then .

Parameter is a small positive number that expresses the minimum difference of

utilities of two consecutive alternatives.

In UTA-NM, the utility curve is constituted not only by the sum of errors

and across all alternatives as in UTA Star, but also by the element E, which

penalizes the complexity of the discovered model. Without this element UTA-NM

would have the tendency to find overfitted solutions. A characteristically trait of an

overfitted solution in context of UTA is a high number of changes in the shape of

partial utility functions. For the definition of the change in shape refer to Section 3.

An outline of the resulting linear program follows:

 (5)

s.t.

 (6)

(7)

The principle differences of UTA-NM compared to UTA Star are:

 Admission of negative marginal utilities

 Penalization for shape of partial utility functions

 More sophisticated normalization

Negative marginal utilities were discussed in this section; Section 3 focuses on the

penalization element and Section 4 focuses on ensuring the normalization constraints.

3 Shape Penalization

The penalization element E increases the value of the utility function for each point,

in which the shape of the partial utility function changes from increasing to

decreasing or vice versa (in the following we will refer to this change as a change of

shape). Change of shape can occur only in the internal points. Since utility functions

are piecewise-linear, it suffices to consider the internal breakpoints

.

For this purpose, the signs associated with marginal utilities that are

adjacent to are determined. The sign is coded using two binary variables

and , ,

. The assignment of values is done through the following linear subprogram:

(8)

Symbol M (so called Big M) is a constant set to a high number, while constant I is set

to very small positive number.3 Constants M and I are used in the linear program for

linearization of certain non-linear functions.

The shape of the function between breakpoints and can be derived from

the sign of which is the nearest non-zero marginal utility preceding breakpoint .

The following subprogram sets the vector of auxiliary binary variables

, so that the index r of that variable which is nonzero

is equal to the sought index l.

(9)

The process of finding the index l is depicted on Figure 1.

3 The values used in the example in Section 6 were and .

q 4 3 2 1 0

 0 1 1 0 0

 0 0 0 0 0

 0 0 1 0 0

 1 1 1 0 0

Figure 1. The process of setting for index j=4. Since the nearest previous nonzero

marginal utility at is , the value of is set to 1 and index l to 2.

Values of signs belonging to are saved to binary variables and with the

help of auxiliary binary variables :

Variables and express the shape of the function before the breakpoint . These

variables code signs with the same combinations of values as variables and

introduced above.

In order to express the shape of the function after the breakpoint it suffices to

use the sign of that is coded by binary variables . It is not necessary to

introduce sophisticated handling of the situation when , since it is clear that

in this case the shape does not change.

The change of shape in from increasing to decreasing or from decreasing to

increasing is characterized by the opposite signs of , which are coded by

the following two combinations of the auxiliary binary variables holding signs

The respective linear subprogram uses two vectors of auxiliary binary variables

 + - = 1

 + - = 1

 + + - = 1

+ - = 1

(11)

(10)

This subprogram ensures that the vector is zero only for the two combinations of

values indicating the change of shape. In this case the binary variable , which

indicates the change of shape in breakpoint , is set to 1.

(12)

Finally, the penalization element E is constructed as a weighted sum of variables

across internal breakpoints of all criteria:

 (13)

The penalization weights for individual interval borders can be set by an expert

on the basis of the knowledge of the typical shape of the utility functions.

Alternatively, all these weights can be set to the same value . The value

expresses the preference between the simplicity of the model and its ability to

reconstruct the stated preferences on the training set . Generally, penalizes

the occurrence of a change of shape less than a swapping of two alternatives in the

final ranking; value then expresses the opposite.

4 Ensuring Normalization

UTA-NM normalizes the maximum and minimum value of utility functions in a

similar way as the original UTA method: the utility from the worst criterion value is 0

and the sum of utilities from the best values of all criteria is 1. Hence, the worst

possible alternative has utility of 0 and the best possible of 1.

Ensuring these constraints is easy under the assumption of monotonicity. In this

subsection, it is shown how this can be achieved in the general case, when the

position of the best and the worst criterion value is not known beforehand. UTA-NM

applies the following procedure: the value of the global extreme is found for each

partial utility function and consequently the normalization constraints are enforced.

Normalization of Maximum Values. The global maximum is sought through

comparisons of utilities at breakpoints. First, for each breakpoint the highest utility

obtained at this and all previous breakpoints is found and saved to the

variable . Variable is set through pair-wise comparison of utility

 and , the highest obtained utility up to the previous

breakpoint. Variable is set to utility at the first breakpoint of criterion i.

(14)

The maximum utility at a criterion is then equal to the value of variable .

The description of the linear subprogram ensuring this procedure follows. First,

the binary variable expresses which of the members , represents the

maximum. If , then , if then . The value of is

not important when .

For each

(15)

Auxiliary variables are set based on the value of For :

. For is and

The sought maximum is thus given by the sum of values and . This process

is realized by the following linear program:

For each

(16)

The maximum value of utility reached at criterion i is thus . Once

variables are set, ensuring the normalization is straightforward:

 (17)

Normalization of Minimum Values. According to the principles of the method set in

Section 1, the worst value of each criterion should be assigned the utility of 0. In

order to achieve this, it suffices to ensure that the utility at least one breakpoint of

each criterion is equal to zero. This can be achieved by first finding out if the utility at

breakpoint is equal to zero or not and storing the result into the binary variable :

 iff . The following linear subprogram ensures that is set:

For each

(18)

Once variables are set, ensuring the normalization is again straightforward:

 (19)

5 Related Research

There is a large amount of both theoretical research and applications relating to UTA-

class methods. However, according to the authoritative survey [3] the only research

in the area of dealing with non-monotonicity has been undertaken by Despotis and

Zopounidis. Their algorithm [4] (Despotis UTA) is a modification of the UTA Star

algorithm. Despotis UTA is based on the assumption that each partial utility function

is non-decreasing in the interval to and non-increasing in the interval to .

The point at which the function changes its shape is a parameter of the method,

which needs to be set for each of the criterions from outside. In contrast to UTA-NM,

Despotis UTA is limited to partial utility functions with maximum one change of

shape per partial utility function. The position of these points as well as the shape of

the functions needs to be known beforehand. Despotis UTA does not ensure the

normalization of maximum utility values. The advantage is significantly lower

computation complexity compared to UTA-NM. The example described in Section 6

includes a comparison with Despotis UTA.

Although a non-monotonic model may yield a smaller error on the set of

reference alternatives, it may suffer from overfitting. For example, in [2] the UTA

Star algorithm was applied to a set of individual stated preference data obtained from

freight transport managers of Belgian shipping companies, who were interviewed

about the importance they gave to six transport attributes: frequency, time, reliability,

flexibility, loss, and cost. Two main results were obtained from the analysis: relative

weights of the transportation service attributes and partial utility functions for each

attribute in the individual shipping companies. The task was performed with the

MUSTARD Software [1].

Interestingly, the Kendall coefficient between the ranking of the model and the

original ranking didn’t reach 1 in any presented individual case, which indicates that

it was not possible to fully explain the managers’ preference using piece-wise linear

monotonic functions. It is likely that less constrained utility functions (e.g. non-

monotonic) would lead to better results on concerning Kendall coefficient.

However, it is questionable if the underlying managers’ preferences were indeed non-

monotonic in some criterion. If it were so, a non-monotonic model would help.

Another explanation is that the rankings were inconsistent due to the excessive

number of alternatives. In this case, introducing non-monotonicity would lead to

overfitting rather than to more accurate models.

6 Example

The goal of the example was to carry out the disaggregation analysis of DM

preferences using UTA Star, Despotis UTA and UTA-NM and to compare their

results with respect to compatibility with stated and implicit preferences, the shape of

the discovered utility curves and time taken to solve the model.

The following case from the domain of dating was selected for the example:

woman interested in meeting a new partner (DM) is confronted with the choice of five

possible partners, each described in three criteria: : looks, wittiness, sports.

Possible values for criteria and are {0,1,2,3} and for criterion

{0,1,2,3,4}. All three criteria are for the sake of simplicity ordinal and it can be

assumed that generally the higher the value of a criterion the better. Due to the

ordinal character of the criteria, the criterion values could also be expressed in a more

friendly form e.g. = {couch potato, walker, casual runner, frequent runner,

professional runner}.

The most important criterion for DM was , where she most preferred medium

value of sport endorsement casual runner, her second priority was looks. In

and the preferences were known to be monotonic. This explicit information about

the preferences of a DM was not generally accessible to the investigated methods

directly, but it was used for creating the stated order of alternatives and for evaluation

of the resulting models.

There are five persons - alternatives - between that the DM chooses. Each person

is described by a different set of criteria values (Table 1). The hypothetical DM sorted

these alternatives in a way reflecting her preferences.

Table 1. Experimental Data

Stated order Name Looks Wittiness Sport

1. John 3 1 0

2. Ashley 1 0 1

3. Peter 2 2 2

4. Martin 1 3 3

5. Stan 1 3 4

All the methods were run with parameters . For

Despotis UTA it was necessary to provide an additional parameter locating

the position of the point in which the change of shape occurs. The criteria values were

sorted from to .

For UTA-NM two tasks were formulated. The Task 1 was regular UTA-NM Task.

In Task 2, UTA-NM was constrained by variables set to zero (as in UTA Star). In

both UTA-NM tasks, the cost of change of shape was set by .

The results of individual experiments represented in the form of partial utility

functions are presented on Figures 1-4. As seen from Table 2, only UTA-NM

produced solutions fully compatible with the stated preferences. The model found by

the regular UTA-NM Task 1 was also monotonic4, but not well reflecting the

explicitly stated preferences. The UTA-NM Task 2 with preserved constraint

produced a non-monotonic model closely matching explicit preferences.

Table 2. Method comparison

Method Inferred order of alternatives Sum

of

Pearson

coeff.

Changes

of shape

Stat.

pref.

Time5

[s]

DM NA NA NA NA NA

UTA* 0,15 0,73 0 no 0

Despotis 0,1 0,96 1 yes 0

NM T1 0 1 0 No 40

NM T2 0 1 1 Part. 20

Figure 2. Utility functions found by UTA Star

Figure 3. Utility functions found by Despotis Method

4 UTA-NM found a monotonic solution, because UTA-NM was allowed to choose the shape of

partial utility functions (by allowing non-zero), while UTA-Star was restricted to

increasing partial utility functions. Making and decreasing was in this case sufficient to

find a solution fully compatible with DM preferences – there was no need for UTA-NM to

introduce non-monotonicity (for which the objective function would be penalized).
5 Time for NM T1 is for LPSolve. The Time for NM T2 was achieved in Frontline Solver.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

u1(0) u1(1) u1(2) u1(3)

0

0,2

0,4

0,6

0,8

1

u2(0) u2(1) u2(2) u2(3)

0

0,1

0,2

0,3

0,4

0,5

u3(0) u3(1) u3(2) u3(3) u3(4)

0

0,05

0,1

0,15

0,2

0,25

u1(0) u1(1) u1(2) u1(3)

0

0,2

0,4

0,6

0,8

1

u2(0) u2(1) u2(2) u2(3)

0

0,05

0,1

0,15

0,2

u3(0) u3(1) u3(2) u3(3) u3(4)

Figure 4. Utility functions found by UTA-NM with

Figure 5. Utility functions found by UTA-NM

Performance. The performance of UTA-NM is significantly slower than of other

UTA-class algorithms. This can be mainly attributed to the linearizations needed to

count the number of breakpoints in which the shape of change occurs and to

consequent costly normalization.
The experiments with UTA-Star, Despotis UTA and UTA-NM Task 2 were run in

Frontline Solver6. UTA-Star and Despotis UTA finished in less than 1 second, UTA-

NM Task 2 took 20 seconds to finish. The UTA-NM Task 1 and also UTA-NM Task

2 were also run in LPSolve7. UTA-NM Task 1 took 40 seconds to complete. UTA-

NM Task 2 did not finish within one hour. The performance of the algorithms can be

significantly improved by lifting normalization constraints. When normalization of

maximum values was omitted from the linear program, the time to complete UTA-

NM Task 1 decreased to 5 seconds. When both normalizations were omitted, the

program finished in 2 seconds. The experiments were run on a 32 bit OS on 3 GHz

Intel Core2Duo (both solvers utilized only one CPU core).

It should be noted that the performance of UTA-NM, although inferior to other

evaluated UTA methods, poses a significant improvement over a baseline scenario,

when the number of breakpoints was counted with the help of non-linear functions

such as maximum or absolute value and hence the problem could not be solved by

linear programming and non-linear optimization methods had to be applied. In this

case, the Frontline GRG Solver and Evolutionary Solver were not able to find an

optimal solution even after several hours.

6 http://www.solver.com
7 http://sourceforge.net/projects/lpsolve

0

0,2

0,4

0,6

0,8

1

u1(0) u1(1) u1(2) u1(3)

0

0,000005

0,00001

0,000015

0,00002

0,000025

u2(0) u2(1) u2(2) u2(3)

0

0,05

0,1

0,15

0,2

u3(0) u3(1) u3(2) u3(3) u3(4)

0

0,001

0,002

0,003

0,004

u1(0) u1(1) u1(2) u1(3)

0

0,001

0,002

0,003

u2(0) u2(1) u2(2) u2(3)

0

0,25

0,5

0,75

1

u3(0) u3(1) u3(2) u3(3) u3(4)

7 Conclusions

This paper introduced a generalization of UTA method for searching for non-

monotonic utility functions with unknown shape. The main focus of the new method

is on ensuring the balance between the ability of the model to reconstruct the stated

preferences and its complexity. This problem was solved through inclusion of an

element penalizing the model complexity into the objective function.

The resulting method, called UTA-NM, keeps, with the exception of the

monotonicity, all basic principles of the UTA method. Similarly as UTA, UTA-NM

leads to a set of equations that are solvable by linear programming methods. The

main contribution of this paper is the expression of the penalization element as a

linear programming problem.

The method is available in a form of a Java implementation8. The evaluation on a

small synthetic dataset indicates that more work remains to be done on performance

optimization, since even trivial tasks take tens of seconds to complete.

A possibly fast heuristics inspired by UTA-NM and Despotis-UTA may be based

on assuming a maximum number of changes of shape per partial utility function or

per all partial utility functions. Once the problem space is limited, it may be feasible

to iteratively try all breakpoints in place of , changing the partial utility function

shape only if it yields a substantial drop in the value of the objective function.

Acknowledgment

 This work has been partly supported from grant GACR 201/08/0802 of Czech Grant Agency.

Literature

1. Beuthe, M., Scanella, G.: MUSTARD – User’s Guidebook. Le Mons: GTM FUCaM.

(2004).

2. Beuthe, M., Bouffioux, Ch., De Maeyer, J., Santamaria, G., Vandresse, M., Vandaele, E.

& Witlox, F. "A multi-criteria methodology for stated preferences among freight transport

alternatives". In: Reggiani, A. & Schintler, L.A. (Eds.) Methods and Models in Transport

and Telecommunications: Cross Atlantic Perspectives. Berlin-Heidelberg-New York,

Springer Verlag, pp. 163-179. (2005)

3. Beuthe, M., Bouffioux, C., Krier, C., Michel, M. A comparison of conjoint, multi-criteria,

conditional logit and neural network analyses for rank-ordered preference data.

MOPGP’06 7th Int. Conf. on Multi-Objective Programming and Goal Programming.

Tours, France (2006)

4. Despotis, D., Zopounidis, C.. Building additive utilities in the presence of non-monotonic

preferences. Advances in Multicriteria Analysis, pp. 101-114. Kluwer, Dordrecht (1993)

5. Siskos, Y. UTA Methods. Multiple Criteria Decision Analysis: State of the Art suveys, pp.

297-334. Springer, New York (2005)

6. Siskos, Y., Yannacopoulos, D. UTASTAR: An ordinal regression method for building

additive value functions. Investigação Operacional 5 (1) , 39–53 (1985)

8 http://nb.vse.cz/~klit01/uta The program uses the LPSolve open-source library.

http://nb.vse.cz/~klit01/uta

