
Benchmark of Rule-based Classifiers in the News
Recommendation Task

Tomáš Kliegr1,3 and Jaroslav Kuchař2,3

1 Multimedia and Vision Research Group
Queen Mary, University of London

t.kliegr@qmul.ac.uk

United Kingdom
2 Web Engineering Group, Faculty of Information Technology,

Czech Technical University in Prague
Czech Republic

jaroslav.kuchar@fit.cvut.cz
3 Dep. of Information and Knowledge Engineering,

Faculty of Informatics and Statistics, University of Economics Prague
Czech Republic

Abstract. In this paper, we present experiments evaluating Associa-
tion Rule Classification algorithms on on-line and off-line recommender
tasks of the CLEF NewsReel 2014 Challenge. The second focus of the
experimental evaluation is to investigate possible performance optimiza-
tions of the Classification Based on Associations algorithm. Our findings
indicate that pruning steps in CBA reduce the number of association
rules substantially while not affecting accuracy. Using only part of the
data employed for the rule learning phase in the pruning phase may also
reduce training time while not affecting accuracy significantly.

Keywords: recommender, association rules, rule learning, decision trees

1 Introduction

The large amount of content to choose from causes the Information Overload
problem for visitors of news websites. Based on the analysis of past usage pat-
terns, recommender systems can make a personalized list of preselected content,
alleviating the users of the effort entailed in the process of choosing the content
they should consume next and limiting the number of choices they need to make.

In this paper, we present experiments evaluating Association Rule Classifi-
cation (ARC) algorithms on on-line and off-line recommender task of the CLEF
NewsReel 2014 Challenge (further only Challenge). This research aims to in-
vestigate the execution time and accuracy of ARC algorithms on datasets with
many target class values. For the on-line task with 100 millisecond response limi-
tation, we received the best results with an association rule-based recommender,
securing a 3rd place in the contest.

Obtaining promising results with a simple association rule learning approach
deployed within our InBeat.eu open source recommender in the on-line task,

Preprint - final publication is available at http://dx.doi.org/10.1007/978-3-319-24027-5_11 
Appeared in: Experimental IR Meets Multilinguality, Multimodality, and Interaction 
: 6th International Conference of the CLEF Association, CLEF'15, Toulouse, France, September 8-11, 2015



we hypothesize that Association Rule Classification (ARC) algorithms can yield
improved results over direct application of association rules. Our benchmark also
involves related symbolic machine learning algorithms – standard rule induction
(FOIL) and decision tree induction (ID3).

The second focus of the experimental evaluation is to investigate possible
performance optimizations of the Classification Based on Associations (CBA)
ARC algorithm – through removal of its individual pruning steps or through
the use of lower amount of data for pruning. There are practical problems with
real time processing that are not encountered when there is “unlimited time” to
provide the recommendation.

This paper is organized as follows. Section 2 presents the InBeat.eu rec-
ommender system in the on-line task. Section 3 briefly introduces the CBA
ARC algorithm and presents the results on the off-line task. Finally, Section 4
summarizes the results and outlines future work.

2 On-line task: Setup and Results

This section gives a short introduction of the CLEF-NEWSREEL: News Recom-
mendation Evaluation Lab4, which aimed at evaluating recommender systems
on the task of recommending news articles on real websites. A major constraint
imposed by the Challenge was a limitation on response time. Recommendations
had to be provided in real-time (within 100ms). The main evaluation metric
was the total number of successful recommendations, rather than the prediction
accuracy (clickthrough rate).

Inputs: The main inputs are the users’ interactions and news item descriptions.

– interaction(type, userId, itemId, context)
where type = {impression|click} and context describes the features of the
user (e.g. browser version, geolocation, etc.) and special features related to
items and their presentation (e.g. keywords, position).

– item(itemId, domain, description)
where domain is the identifier of items from the same group (e.g. news portal)
and description provides more detailed information about items (e.g. title,
text, time of last update).

Outputs: Set of recommended items for the specific user who is reading the
item within a given context.

– (userId, itemId, context) → {itemx, itemy, ...}

2.1 Algorithms

As the baseline, we used two simple algorithms top interacted and most recent,
which we found as very effective for the given domain in the News Recommender

4 http://www.clef-newsreel.org/



Challenge’13 (our submission obtained a runner-up award).5 The main focus of
our evaluation were association rules.

Top Interacted This algorithm is based on the daily popularity of news items.
To avoid excessive effect of high short-time popularity of one item the interac-
tions are aggregated on a daily basis. This approach addresses the evolution of
popularity over time and decreases the influence of short-time peaks.

Most Recent The recency of an article plays an important role in the news
domain. Our baseline recency-based algorithm uses a simple heuristic based on
the newest news item within the same group as the group of the item the user
is reading at the time of the request. The results is ordered list of items sorted
by creation time.

Association Rules For each interaction(type, userId, itemId, context) stored
in our database, we prepared one entry in the training dataset as described
in Table 1. Interactions are described only by the contextual features that are
provided by the platform (e.g. Location, Browser, ...) and by an identifier of the
item the user interacted with.

Table 1. Two instances from the CLEF#26875 offline dataset.

context class
browser isp os geo weekday lang zip item

312613 281 431229 19051 26887 49021 62015 127563250
457399 45 952253 18851 26887 48985 65537 45360072

The training dataset was used to learn association rules. The contextual
features could appear only in the rule body (antecedent) and the identifier of the
item only on the right side of rule (consequent). We used the apriori algorithm
[1] available within the arules package of R [6]. Example of a rule:

isp = “281” ∧ os = “431229” → item = “1124541”

Additional mining setup is as follows. We used latest five thousand interac-
tions as training dataset from our database. The apriori algorithm is run with
minimum support of 0.1% (five interactions) and minimum confidence of 2%.

All discovered rules are imported into our simple rule engine. The engine finds
all rules that match the contextual features of a recommendation request. The
consequent of each matching rule represents a recommended item. The output
is a list of unique item identifiers from the right side of the matching rules.

5 https://sites.google.com/site/newsrec2013/challenge



2.2 Performance

In this section, we present the performance of our InBeat recommender in the
Challenge. The metric used in the Challenge to select the winning recommender
systems was the cumulative number of clicks (number of successful recommen-
dations) over the three different evaluation periods. The additional metrics pro-
vided by the organizers include number of impressions and click-through rate.

Sum of the number of impressions with the number of clicks can be in-
terpreted as the ability of the systems to process large number of interaction
observing the response time limitation.

Table 2. Leaderboard with cumulative number of clicks and average click-through rate
per team in the Challenge - last evaluation period (2014-05-25 – 2014-05-31). Source:
http://orp.plista.com

team requests clicks ↓ CTR

labor 285533 5614 1.97%
abc 206330 3653 1.77%
inbeat 268611 3451 1.28%
insight 508851 2012 0.4%
ba214 158593 1828 1.15%
uned 370510 1215 0.33%
riemannzeta 99920 1156 1.16%
plista GmbH 9112 137 1.5%

Table 2 presents the results for the last evaluation period. The table is sorted
by the cumulative number of clicks. InBeat team is on the third position (total
clicks) and on the fourth position with respect to the click through rate (CTR).

The CTR reported in Table 2 is the average for all algorithms. We also report
the numbers for the individual algorithms:

– Top Interacted : 1.4% CTR,
– Most Recent : 0.8% CTR,
– Association Rules: 1.5% CTR.

The best CTR was obtained with a margin of 0.1% by Association Rules,
which we explain by the fact that this algorithm takes into account both popu-
larity (as reflected in the support score) and contextual features (the condition
expressed by the antecedent of the rule). Most Recent is influenced only by
temporal aspects and Top Interacted takes into account only the popularity.

3 Off-line task: Setup and Results

The objective of our experimental evaluation is to investigate the performance of
Association Rule Classification (ARC) algorithms on the recommender problem
cast as a standard classification task, and to compare the results with related
mainstream classification algorithms.



3.1 Data and task

We used the data published within the off-line task of CLEF-NEWSREEL’14.
The entire dataset consisted of 84 million records collected across multiple news
portals [8]. We selected the website with the smallest amount of data (26,875
records) denoting the resulting dataset as CLEF#26875.

The dataset consists of instances described by a fixed number of attributes.
In our evaluation we process the data with standard machine learning algorithms
that require data in tabular form.

The task is to predict the class label (item viewed). The CLEF#26875 off-
line dataset has 1,704 distinct items (target class values). This is an unusually
high number in comparison with other datasets typically used for evaluation of
machine learning algorithms, such as the most frequently cited datasets from
the UCI repository.6 This distributional characteristic has an impact both on
execution time and accuracy of the evaluated algorithms. The second notable
feature of the dataset is that all its attributes are nominal. This is a favourable
property for ARC algorithms in general, since they typically require that numer-
ical attributes are discretized prior mining. The discretization algorithm and its
parameters may have substantial impact on both accuracy and execution time.

The problem is cast as a standard machine learning classification task, where
each row corresponds to a separate training instance. We also provide comparison
with related mainstream machine learning algorithms that create rule or tree-
based models (decision trees are convertible to rules).

3.2 Algorithms

The main focus of our evaluation is the Classification Based on Associations
(CBA) ARC algorithm [10] and its two candidate successors – CMAR [9] and
CPAR [16]. We compare the results with related symbolic machine learning
algorithms, namely rule induction (FOIL, CPAR) and decision tree algorithms
(ID3, CHAID).

The primary difference between ARC algorithms and rule induction is that
the former class of algorithms first generates all association rules in the training
data, and then performs pruning, while the rule learning algorithms add rules
to the model one-by-one. The CPAR algorithm has some features of both ARC
and rule induction algorithm, we list it under rule induction.

Association Rule Classifiers In 1998, Liu et al. introduced CBA, the first
association rule classifier according to [15]. The first step in CBA is association
rule learning with a modified apriori algorithm. The learning is constrained
to produce rules that have an item corresponding to a class label value in the
consequent.

In the second step, the resulting rules are subject to several pruning algo-
rithms:

6 https://archive.ics.uci.edu/ml/datasets.html



1. Pessimistic pruning (optional). This pruning method attempts to simplify
discovered rules by removing individual conditions from the rule antecedent.
The rule is pruned if the pessimistic error rate [14] of the original rule is
higher than that of the pruned rule.

2. Data coverage pruning7. This method removes rules preserving the following
two conditions: i) each training case is covered by the rule with the highest
precedence over other rules covering the case and ii) every rule in the classifier
correctly classifies at least one training case.

3. Default rule pruning8. Rules pruned with data coverage pruning are ordered
and all rules after the first rule with the lowest total error are replaced by
a rule with empty antecedent predicting the majority class in the remaining
data.

The gist of the CBA algorithm are the latter two pruning methods. The final
ordered rule set is used as the classifier. Rules are sorted according to confidence,
support and antecedent length. CBA performs single rule classification: for a
given unlabeled instance, the first highest ranked rule whose antecedent matches
the instance is selected, and its consequent is used to label the instance.

The CMAR algorithm is based on similar principles as CBA, but uses the
newer FP-Growth [7] algorithm for association rule generation. In addition to
data coverage pruning, CMAR performs also pruning based on chi-square test.
The rule is pruned if the correlation between the rule’s body and and the rule’s
head is not statistically significant. The data coverage pruning in CMAR is
slightly different from CBA as it requires at least δ rules to cover an instance
before the instance is removed from training data (in CBA, δ = 1).

In our benchmarks, we used the LUCS-KDD implementations of the ARC al-
gorithms available from http://cgi.csc.liv.ac.uk/~frans/KDD/Software/.
According to the implementations’ author the software matches the description
in the original papers introducing the respective algorithms, apart from that in
the first rule generation step, the Apriori-TFP algorithm [2] is used instead of
the modified apriori algorithm (CBA) or FP-Growth (CMAR).

It should be also noted that the LUCS-KDD implementation of CBA does
not include pessimistic pruning. In evaluations on 20 UCI datasets reported
in [10] CBA with pessimistic pruning had exactly the same accuracy as CBA
without pessimistic pruning, but order of magnitude smaller number of rules in
the classifier.

For part of the experiments with CBA, we used our own implementation
of CBA. While this is not as efficient as the LUCS-KDD implementation, this
allows us to test the effect of the individual pruning stages in CBA on accu-
racy and rule count of the resulting classifier. For rule generation phase, our
implementation uses the apriori algorithm from the arules package followed
by a filtering step which retains only rules that have one of the class labels in

7 We adopt the name for this method from [15].
8 This pruning type is omitted from the review [15], but we are of the opinion that

”default rule pruning“ could be perceived as a separate step from data coverage
pruning.



the consequent. For the rule generation phase we implemented the version M1 of
CBA [10]. The most simplified form of the classifier has a learning phase roughly
corresponding to the execution of the apriori algorithm.

Rule learning (baseline) As a second set of baseline algorithms, we selected
the First-Order Induction Learner (FOIL) [13] and the Classification based on
Predictive Association Rules (CPAR) algorithm. It was shown that FOIL is
prone to overfitting the training data as the size of the theory learned by FOIL
can grow with the number of training examples [4]. For this reason, we tried to
include Repeated Incremental Pruning to Produce Error Reduction (RIPPER)
[3] algorithm, which effectively addresses the overfitting problem [5]. We did
not include RIPPER, because on the CLEF#26875 data the RapidMiner 5
implementation9 of the algorithm did not finish within a 12 hour time limit.

Finally, CPAR was designed to combine advantages of rule learning algo-
rithms with association rule classifiers. The algorithm tests more rules than
traditional rule-based classifiers which is claimed to ensure it does not miss im-
portant rules.

We used again the LUCS-KDD implementation of FOIL and CPAR.

Decision trees Decision tree induction algorithms produce models that to an
extent resemble those produced by ARC algorithms. Each path from the root of
the tree to the leaf in a decision tree corresponds to a classification rule.

Out of the multiple proposed decision tree algorithms, we included those
implemented in the RapidMiner 5 open source data mining suite: ID3, Rapid-
Miner’s ”Decision Tree“ and CHAID.

ID3 [12] is a frequently used baseline decision tree algorithm. Since all input
attributes in CLEF#26875 are nominal, the algorithm can be used directly on
input data without any preprocessing.

The RapidMiner’s Decision Tree operator was found to be the most accu-
rate decision tree classifier in [11], which evaluated decision tree learning algo-
rithms in three common data mining suites: SPSS-Clementine, RapidMiner and
Weka. This implementation supports prepruning and postpruning methods.

The RapidMiner’s CHAID implementation uses the chi-square test as a
goodness criterion, otherwise it is the same as Decision Tree.

3.3 Experimental evaluation

The algorithms described in the previous subsections were executed with param-
eters set according to Table 3.

The support and confidence parameters of CBA and CMAR had to be
changed from the default values (of 20% and 80% respectively), since otherwise
no rules were generated (no class item in the data had at least 20% support).
The maximum number of frequent sets for CBA and CMAR was increased

9 http://sourceforge.net/projects/rapidminer/



Table 3. Algorithm parameters used in the off-line evaluation.

method parameters

CBA support = 2 records (0.008%), confidence = 2.0%, max size of
antecedent = 6, max number of CARS = 80000, max number of
frequent sets = 1,000,000

CMAR support = 2 records (0.008%), confidence = 2.0%, max size of
antecedent = 6, min cover (δ) = 1

CPAR default values: K value = 5, min. best gain = 0.7, total weight
factor = 0.05, decay factor = 1/3, gain similarity ratio = 0.99

Decision Tree,
CHAID

default values: criterion = gain ratio (Decision Tree), Chi-square
test (CHAID), minimal size for split = 4, minimal leaf size = 2,
minimal gain = 0.1, maximum depth = 20, confidence = 0.25,
no prepruning, postpruning enabled

ID3 default values: criterion = gain ratio, minimal size for split = 4,
minimal leaf size = 2, minimal gain = 0.1

FOIL max number of attributes per rule = 6

to 1,000,000 since for support threshold lower then approximately 0.01%, the
default limit of 500,000 prevented further improvements of the classifier. For
DecisionTree, we initially obtained very low accuracy of 2%. This was caused
by the prepruning step, which is enabled in RapidMiner by default. The resulting
tree was composed of only one leaf class, which is the most frequent class label
in the training data. The (post)pruning feature had a small but positive impact
on accuracy and model size, therefore we left it enabled. For CPAR the default
parameters produced acceptable results. Additional parameter tuning could have
improved the performance of the algorithm.

The data were preprocessed to the form shown at Table 1 and randomly split
to a training dataset (90%) and test dataset (10%). The experiments were run
on Intel core i5 3320M CPU@2.6 GHz with 16 GB of RAM.

Table 4. Model benchmark on CLEF#26875 dataset (single 90/10 split). Model size
refers to the number of rules for rule models and number of leaves for decision trees.
Time is measured in seconds.

time
algorithm train test accuracy model size

DecisionTree 273 4 23.0 13496
ID3 290 4 22.8 13579
CHAID 284 3 25.4 13224
FOIL 815 1.5 24.7 18047
CPAR 87 1.23 4.6 18907
CBA 279 0.25 21.2 3681
CMAR 205 1.781 16.9 22516



The results depicted in Table 4 indicate that the overall best accuracy was
obtained by the CHAID decision tree algorithm. CBA obtained accuracy close
to the decision tree classifiers, however, with smaller training times and - for the
on-line setting most significantly - shorter testing times. There are several factors
contributing to the fast testing: a) the fact that CBA performs single rule clas-
sification, b) small number of rules in the classifier (compared to models created
by other algorithms). The difference in test times between decision trees and the
rule learning algorithms might be to a large extent caused by implementation-
specific issues. Our impression is that additional optimization for the evaluation
of the decision tree models could lead to substantially shorter test times.

Trading speed for accuracy Speed of training can be important in on-line
recommender setting. Fast training also typically entails simpler models that are
faster to apply. The accuracy/execution time balance can be controlled by the
minimum leaf size and/or maximum depth parameters for decision trees and by
the minimum support parameter for ARC classifiers.

Table 5. Effect of support threshold - CBA (ten-fold shuffled cross-validation). Time
is measured in seconds.

metric 0.10% 0.09% 0.08% 0.07% 0.06% 0.05% 0.04% 0.03% 0.02% 0.01%

accuracy 6.68 6.88 7.07 7.64 8.1 8.65 9.48 10.4 13.47 17.55
train time 1.8 2.3 3 4.56 5.6 8.7 14.6 30.5 172 477
test time 0.02 0.03 0.03 0.04 0.03 0.04 0.05 0.05 0.1 0.19
rule count 148 178 193 228 270 317 452 576 1100 2303

Table 6. Effect of support threshold - CMAR (ten-fold shuffled cross-validation). Time
is measured in seconds.

metric 0.10% 0.09% 0.08% 0.07% 0.06% 0.05% 0.04% 0.03% 0.02% 0.01%

accuracy 4.82 5.12 5.28 5.78 6.12 6.59 7.48 8 10.23 13.84
train time 0.744 0.89 1 1.39 1.75 2.13 3.83 6.5 36.34 178.92
test time 0.11 0.115 0.14 0.144 0.18 0.2042 0.32 0.46 1.05 2.26
rule count 834 999 1177 1557 1863 2251 3581 5116 11450 20561

Tables 5 and 6 show the impact of varying the support threshold on the
accuracy and execution time of the CBA and CMAR classifiers. To obtain
more reliable estimates especially at higher support thresholds, we performed
ten-fold cross-validation. Table 7 shows the impact of minimum leaf size on the
ID3 results.

The comparison between ID3 and CBA at 13% accuracy level shows that
ID3 has much shorter training time (8.58s vs 172s), but it also produces more



Table 7. Effect of minimum leaf size - ID3 (ten-fold shuffled cross-validation, *based
on one 90/10 split). Time is measured in seconds.

metric 100 90 80 70 60 50 40 30 20 10

accuracy 13.67 13.89 14.1 14.4 14.7 14.9 15.3 16.2 17 18.7
train time 8.58 8.58 9.04 9.57 10.57 12.17 13.93 18.09 25.4 80.66
test time 2.36 1.41 1.36 1.35 1.34 1.43 1.29 1.3 1.28 3.9
number of leaves* 3278 3362 3427 3522 3708 3959 4167 4817 5596 7389

complex models (3278 leaf nodes vs 1100 rules for CBA). The more compact
model size contributes to fast test times for CBA.

Optimizing CBA In the field of decision tree induction, one of the main-
stream pruning techniques is reduced error pruning, which uses different sets of
data for learning the classifier and for pruning. Our experiments with CBA on
CLEF#26875 showed that dividing available training data into a training set
and a holdout set for pruning (validation data) does not have a positive effect
on classifier accuracy. We tried multiple ratios of training set/holdout set size
without obtaining a notable increase in accuracy.

An interesting finding follows from results presented in Table 8: if only part
of the data used for the rule learning phase (i.e. apriori in CBA) is used for
the pruning phase (i.e. data coverage and default pruning in CBA), the impact
on accuracy is small. The training time can be reduced substantially as smaller
amount of data is processed.

Table 8. Effect of pruning data set size. 100% of training data were used for rule
generation, only x% used for pruning. For this experiment, we used our implementation
of CBA M1.

metric 1% 2% 5% 10% 20% 30% 50% 75%

rule count 38 48 78 96 125 138 151 166
accuracy [%] 4.5 5.6 6.6 6.8 7.1 7 6.9 6.9

Table 9. Impact of pruning steps in CBA. Minimum support set to 0.1% and minimum
confidence set to 2%.

algorithm accuracy rules

no pruning, direct use of association rules 6.4 1735
data coverage pruning 6.9 497
data coverage, default rule pruning 7 175



The results of the experiments with omission of individual pruning steps
from CBA (Table 9) indicate that both data coverage pruning and default rule
pruning not only reduce the size of the rule set, but also slightly improve the
accuracy of the model. Interestingly, the absolute difference in accuracy between
direct use of association rules (as in the on-line challenge) and CBA is very
small. However, the order of magnitude decrease in the number of rules in the
classifier justifies the use of CBA in on-line setting which puts emphasis on fast
prediction times.

4 Conclusion and Future Work

This paper presented evaluation of multiple Association Rule Classification (ARC)
algorithms in the CLEF NewsReel’14 challenge. The on-line track of the chal-
lenge required the competing systems to balance the architecture and technolo-
gies with the complexity of the involved algorithms. The practical experience
that we obtained with our InBeat.eu recommender system underpin the choice
of association rules as a fast on-line recommender algorithm. The experiments
performed on the off-line dataset indicate that the CBA association rule classi-
fier can further improve the results in terms of accuracy and especially speed, as
it significantly reduces the size of the rule set. The best accuracy in our bench-
mark on the off-line dataset was obtained by the CHAID decision tree induction
algorithm.

We further investigated the options for optimizing the pruning workflow in
the CBA algorithm. The results indicate that the primary effect of the CBA
pruning is the reduction of the number of rules in the model and that the impact
on classifier accuracy is small. However, the potential saving in training time
resulting from omission of these pruning steps might be offset by the increase of
prediction time due to increased model size. Experiments showed that a viable
direction of training time optimization might be using only part of the available
training data for pruning. Further decrease in the number of rules could be
attained by applying pessimistic pruning, an optional step in CBA, which was
not covered in our evaluation.

Our benchmark on the off-line dataset was methodologically limited with
respect to the typical setting for evaluation of recommender algorithms a) by
ignoring the temporal dimension associated with the instances in the dataset
and b) by providing results in terms of accuracy. Since recommender systems
are frequently used as rankers other evaluation metric than accuracy could be
more suitable. Future work could thus aim at addressing these limitations.

Acknowledgement. The authors would like to wish the anonymous reviewers
for their helpful feedback. The participation in the CLEF recommender challenge
was supported by the EC project FP7-287911 LinkedTV. The experimental eval-
uation of the CBA method was performed within grant IGA 20/2013. Tomáš
Kliegr benefited in writing this paper from “long term institutional support for
research activities” of the Faculty of Informatics and Statistics, UEP.



References

1. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. SIGMOD Rec., 22(2):207–216, Jun. 1993.

2. F. Coenen, P. Leng, and S. Ahmed. Data structure for association rule mining:
T-trees and p-trees. IEEE Transactions on Knowledge and Data Engineering,
16(6):774–778, June 2004.

3. W. W. Cohen. Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning (ML’95), pp. 115–123. Morgan Kaufmann, Lake
Tahoe, CA, 1995.

4. J. Fürnkranz. Fossil: A robust relational learner. In Proceedings of the European
Conference on Machine Learning on Machine Learning (ECML-94), pp. 122–137.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1994.

5. J. Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of Rule Learning.
Springer-Verlag, 2012.

6. M. Hahsler, B. Grün, and K. Hornik. arules - a computational environment for
mining association rules and frequent item sets. Journal of Statistical Software,
14(15):1–25, 9 2005.

7. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD Rec., 29(2):1–12, May 2000.

8. B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz. The plista dataset. In Proceed-
ings of the International Workshop and Challenge on News Recommender Systems,
NRS’13, p. 14–22. ACM, 10 2013.

9. W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In N. Cercone, T. Y. Lin, and X. Wu, (eds.) The
2001 IEEE International Conference on Data Mining (ICDM’01), pp. 369–376.
IEEE Computer Society, 2001.

10. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proceedings of the 4th international conference on Knowledge Discovery and
Data mining (KDD’98), pp. 80–86. AAAI Press, August 1998.

11. I. Moghimipour and M. Ebrahimpour. Comparing decision tree method over three
data mining software. International Journal of Statistics and Probability, 3(3),
2014.

12. J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
13. J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5(3):239–266, Sep. 1990.
14. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
15. K. Vanhoof and B. Depaire. Structure of association rule classifiers: a review.

In International Conference on Intelligent Systems and Knowledge Engineering
(ISKE), pp. 9–12. Nov 2010.

16. X. Yin and J. Han. CPAR: Classification based on predictive association rules. In
Proceedings of the SIAM International Conference on Data Mining, pp. 369–376.
SIAM Press, San Franciso, 2003.


