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1. Introduction

Interval linear programming in general. In linear programming (LP)
problems, the coefficients of the objective function, of the constraint matrix and
of the right-hand sides of the constraints are usually assumed to be fixed and
known input parameters. Interval linear programming relaxes this assumption
and replaces the fixed data by known intervals of possible values. From the
practical point of view, the main justification of interval linear programming is
that coefficients of LP models are often not known exactly due to elicitation by
inexact methods, due to subjective expert evaluations, or due to their inherent
vagueness, imprecision or instability. Then it is appropriate to consider intervals
of possible values of the coefficients.

When we want to use LP, it is necessary to select representatives of the
intervals, for example extreme values or average values. Afterwards, we obtain
an optimal solution which is optimal with respect to the chosen representatives;
but it is not clear whether the solution is also optimal with respect to the real
problem itself. Thus it is often appropriate to take into account all possible
choices, instead of the only one determined by the selection of the represen-
tatives. Interval linear programming is the tool for this issue. Said roughly,
interval linear programming is a possibilistic version of linear programming —
it takes into account all possible scenarios within given intervals and studies
what can happen “in the best and worst case”.

A brief review of literature. The first papers dealing with interval LP
systematically were Machost [1] and Krawczyk [2], followed by the state-of-the-
art report by Beeck [3]. In the literature, much interest has been devoted to
computing the bounds of optimal values, (see [4, 5, 6, 7, 8, 9, 10] among others).
Determining or enclosing the set of optimal solutions of all the LP problems
contained in a family of linear programming problems with interval data was
considered in [11, 3, 7, 12, 13, 14, 15, 16, 2, 1]. It turned out that the fundamental
results of the theory are Oettli-Prager theorem and Gerlach theorem [5]. Their
generalization for the case where there is a simple dependence structure between
coefficients of an interval system were derived by Hlad́ık [17, 6].

The optimal value function. Consider an LP problem in the form

min{cx | Ax = b, x ≥ 0} (1)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The results developed in this paper
apply analogously for other LP formulations as well. We denote by

f(A, b, c) := min{cx | Ax = b, x ≥ 0}, (2)

the optimal objective value of the linear program (1). We also define

f(A, b, c) =

{
+∞, if the LP is infeasible,
−∞, if the LP is unbounded.

Our goal. In this paper we investigate the optimal value function f(A, b, c)
when the entries of A, b and c are subject to independent and simultaneous
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perturbations in given intervals A = [AL, AU ], b = [bL, bU ] and c = [cL, cU ].
Thus, we have a family of LP problems

min{cx | Ax = b, x ≥ 0}, A ∈ A, b ∈ b, c ∈ c. (3)

The family (3) is called interval linear program.
We will show that under some assumptions, the function f(A, b, c) is contin-

uous. It follows that the optimal value range

f(A, b, c) = {f(A, b, c) : A ∈ A, b ∈ b, c ∈ c} (4)

is an interval and every value in the interval is attained as the optimal objective
value of some problem in the family (3). The main problem of this paper is:
we are devoted to finding a concrete problem, called scenario, in the family (3)
having a prescribed optimal value. To give a precise statement, we solve the
problem

data: AL, AU ∈ Rm×n; bL, bU ∈ Rm×1; cL, cU ∈ R1×n; θ ∈ R
goal: find A0 ∈ Rm×n, b0 ∈ Rm×1, c0 ∈ R1×n

s.t. min{c0x | A0x = b0, x ≥ 0} = θ,
AL ≤ A0 ≤ AU , bL ≤ b0 ≤ bU , cL ≤ c0 ≤ cU ,

where the relation ≤ between matrices/vectors is understood componentwise.
This problem enables a decision maker to set up free parameters (here, the

coefficients A, b, c of a linear program) t o achieve the desired optimal value
(which often measures costs or profits). Two examples of an application will
be discussed in Sections 5.2 and 5.3. The former example deals with designing
a matrix game with a prescribed value and the latter example deals with a
problem of determining an optimal fee for playing a game.

Main results. We present an algorithm based on parametric analysis in
LP [18, 19, 20, 21, 22]. This provides a new connection between parametric
analysis techniques and inverse interval LP problem which is interesting from
both computational and theoretical viewpoints. We compare it with a technique
based on binary search. Finally, we present an application in designing matrix
games. We also refer the reader to the work of Ahmed and Guam [23], which is
complementary to ours.

Further remarks. Following [23], we call our approach “Inverse Interval
LP” despite ambiguity of the word “inverse” used in optimization. Usually, “in-
verse optimization” means adjustment of cost coefficients of a given LP problem
so that a known feasible solution becomes the optimal one, and the adjustment
is minimal in some sense; see Ahuja and Orlin [24], Jiang et al. [25], or Zhang
and Liu [26, 27]. The integer programming version of inverse optimization was
studied e.g. by Schaefer [28], or Duan and Wang [29]. However, in the interval
setting, new interesting questions and problems arise. Hlad́ık [30] proposed a
method to compute tolerances for the objective function and constraint coeffi-
cients such that the optimal value does not exceed prescribed bounds. Another
problem is that one addressed in this paper, that is, to find (A0, b0, c0) in given
intervals (A, b, c) attaining the prescribed optimal value θ.
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2. Preliminaries

Interval matrices. An interval (m × n)-matrix A = [AL, AU ] is a family
of matrices

{A ∈ Rm×n | AL ≤ A ≤ AU},

where AL, AU ∈ Rm×n and AL ≤ AU . The matrices AL, AU are called lower
and upper bound of A, respectively. By

Ac :=
1
2 (A

L +AU ), A∆ := 1
2 (A

U −AL)

we denote the center matrix and radius matrix, respectively. Sometimes it is
advantageous to write A = [AL, AU ] in the form

[Ac −A∆, Ac +A∆].

The space of all interval (m× n)-matrices is denoted by IRm×n.
An interval vector is a special case of an interval matrix; its center and radius

is defined analogously.
Bounds of the optimal value range. Let A, b, c be given. Recall that

the optimal value function f(A, b, c) was defined by (2) and that the optimal
value range was defined by (4). The lower and upper bounds of the optimal
value range are denoted, respectively, by

fL = fL(A, b, c) = inf{f(A, b, c) | A ∈ A, b ∈ b, c ∈ c}, (5)

fU = fU (A, b, c) = sup{f(A, b, c) | A ∈ A, b ∈ b, c ∈ c}.

Observe that in general, the optimal value range need not be an interval (see
Example 1). In most cases, we will study the situation when f(A, b, c) is a
continuous function on the compact set A × b × c. Then the optimal value
range is denoted by [fL, fU ].

Computation of the lower and the upper bounds of the optimal value range
was addressed by many authors including Hlad́ık [6, 7], Chinneck and Ramadan
[4], Fiedler et al. [5], and Mráz [10].

Further notation. The absolute value of a vector y ∈ Rm is understood
componentwise, i.e., |y| = (|y1|, |y2|, . . . , |ym|)T. The all-one vector is denoted
by e = (1, 1, . . . , 1)T, and ek stands for the kth standard unit vector. The ith
row and column of a matrix A are respectively denoted by Ai∗ and A∗i.

In LP, it is usual to speak about a decomposition of the index set {1, . . . , n}
into a set of basic and a set of nonbasic indices. The set of basic indices is
denoted by B and the set of nonbasic indices is denoted by R. The symbols xB

and xR denote the vectors of basic and nonbasic variables, respectively.
By

Ym = {y ∈ Rm | |y| = e}

we denote the set of all ±1 vectors in Rm. (For an algorithm for enumeration
of elements of Ym consult [5].)
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Given a vector y ∈ Rm, we denote

Ty = diag(y1, y2, . . . , ym) =


y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym

 .

An algorithm for computation of bounds of the optimal value
range. The following theorem provides an explicit formula for computing the
bounds fL, fU of the optimal value range. Its proof can be found on p. 84 of [5].

Theorem 1. We have

fL = inf{cLx | ALx ≤ bU , AUx ≥ bL, x ≥ 0},
fU = sup

y∈Ym

f(Ay, by, c
U ),

where Ay = Ac − TyA∆ and by = bc + Tyb∆.

Assumption. Throughout the paper we assume that fL and fU are finite.
In particular, this means that for every A ∈ A, b ∈ b and c ∈ c, the linear
programming problem min{cx | Ax = b, x ≥ 0} is feasible and bounded.

Where the lower bound is attained. The next theorem shows that when
the lower bound fL is finite, then it is attained as the optimal value of some
problem in the family (3) with a particular structure. The structure of this
scenario will be useful later. For a proof see p. 89 of [5].

Theorem 2. Let fL be finite and let x∗ be an optimal solution of the problem

min{cLx | ALx ≤ bU , AUx ≥ bL, x ≥ 0}.

Then fL = f(Ac − TyA∆, bc + Tyb∆, c
L), where

yi =

{
(Acx

∗−bc)i
(A∆x∗+b∆)i

if (A∆x
∗ + b∆)i > 0,

1 if (A∆x
∗ + b∆)i = 0,

i = 1, 2, . . . ,m.

Notice that y need not belong to Ym in general, but clearly we have

|y| ≤ e. (6)

3. Continuity of f(A, b, c)

Continuity of the optimal value function f was studied in [31, 32], among
others. Vranka [31] studied continuity of the optimal value function for an
interval linear programming problem, under certain assumptions. Results on
the continuity of the optimal value of a linear program and of related polyhedral
valued multifunctions (determined by the constraints) were reviewed by Wets in
[32]. He proved several results implying that f(A, b, c) is a continuous function
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when for both the primal and dual programs and any (A, b, c) ∈ (A, b, c), the
optimal values and the set of optimal solutions are bounded. The proof of the
next theorem can be inferred from the results of [32], but it is not explicitly
stated there.

Theorem 3. Suppose that for every A ∈ A, b ∈ b and c ∈ c the following two
conditions hold

{x ∈ Rn | Ax = 0, x ≥ 0, cx ≤ 0} = {0}, (7)

{y ∈ Rm | ATy ≤ 0, bTy ≥ 0} = {0}. (8)

Then fL, fU are finite, f(A, b, c) is continuous on A × b × c, and the optimal
solution set is bounded.

Corollary 1. Under the assumptions (7)–(8), for every θ ∈ [fL, fU ], there are
A0 ∈ A, b0 ∈ b and c0 ∈ c such that f(A0, b0, c0) = θ.

Corollary 1 motivates us to seek for which scenario (A0, b0, c0) the prescribed
optimal value θ is attained. This problem will be addressed in Section 4. Now,
we turn our attention to methods for verification of the assumptions (7)–(8).

How to verify (7). The condition (7) holds true iff there is no scenario
such that

Ax = 0, x ≥ 0, cx ≤ 0, eTx = 1 (9)

is solvable. By using the results on solvability of interval systems from [5, 33],
we have that (7) is satisfied iff there is no solution to the linear system

ALx ≤ 0, AUx ≥ 0, x ≥ 0, cLx ≤ 0, eTx = 1. (10)

Thus, (7) is efficiently verifiable.
How to verify (8). The condition (8) holds true iff there is no scenario

such that

ATy ≤ 0, bTy ≥ 0, y ̸= 0 (11)

is solvable. Again, the results on solvability of interval systems from [5, 33]
imply that (8) is satisfied iff there is no solution to the linear system

AT
c y −AT

∆|y| ≤ 0, bTc y + bT∆|y| ≥ 0, eT|y| = 1. (12)

This system is not easily solvable (we conjecture that it is NP-hard to check
solvability). However, there is a natural approach to solve it. Consider a de-
composition into a particular orthant. Then the description becomes linear; cf.
[7]. Let s ∈ Ym be a sign vector corresponding to the orthant that Tsy ≥ 0.
Restricted to this orthant, (12) draws

(AT
c −AT

∆Ts)y ≤ 0, (bTc + bT∆Ts)y ≥ 0, (eTTs)y = 1, Tsy ≥ 0. (13)

Now we can state that (8) is satisfied iff the system (13) is infeasible for every
s ∈ Ym. This procedure requires solving 2m linear programs, which is practicable
only for mild dimensions.
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Remark 1. The general negative result does not rule out a possibility that in
particular special cases, verification of the condition (8) might be easier. We
will show an example in Proposition 2.

Example 1. Consider the interval linear program

min−x1 subject to λx1 + x2 = 6, 2x1 + x2 + x3 = 6, x1, x2, x3 ≥ 0,

where λ ∈ [1, 2]. It is easy to see that for λ ∈ [1, 2), the optimal value f(λ) = 0,
but for λ = 2 we get f(λ) = −3. Thus, the optimal value range f([1, 2]) =
{−3, 0} is discontinuous in spite of the finite extremal optimal values fL = −3
and fU = 0.

Applying our method, the condition (7) turns out to be satisfied. To check
(8), set up the system (12)

1.5y1 + 2y2 − 0.5|y1| ≤ 0,

y1 + y2 ≤ 0,

y2 ≤ 0,

6y1 + 6y2 ≥ 0,

|y1|+ |y2| = 1.

Since y2 ≤ 0, we do not have to inspect the orthants with s = (1, 1) and
s = (−1, 1). For s = (−1,−1), the system (13) is infeasible, but for s = (1,−1),
the system (13) has a solution y = 1

2 (1,−1)T.

Remark 2. If the LP problem (1) would be in the form of

min{cx | Ax ≥ b, x ≥ 0}, (14)

then the conditions (7)–(8) read

{x ∈ Rn | Ax ≥ 0, x ≥ 0, cx ≤ 0} = {0}, (15)

{y ∈ Rm | ATy ≤ 0, y ≥ 0, bTy ≥ 0} = {0}. (16)

Now, (15) is satisfied iff there is no solution to

AUx ≥ 0, x ≥ 0, cLx ≤ 0, eTx = 1,

and (16) is satisfied iff there is no solution to

(AL)Ty ≤ 0, y ≥ 0, (bU )Ty ≥ 0, eTy = 1.

Hence both assumptions are easy to verify. Indeed, the form (14) of an LP is
known to have nice properties from the interval analysis viewpoint; see [7].
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4. Inverse interval LP problem

Assumptions and goal. First we summarize our assumptions:

(i) assumptions (7)–(8) are satisfied;

(ii) the values fL and fU are known and finite;

(iii) a number θ ∈ [fL, fU ], called demand, is given;

(iv) the minimizers (A∗
L, b

∗
L, c

∗
L) ∈ (A, b, c) such that f(A∗

L, b
∗
L, c

∗
L) = fL are

known;

(v) the maximizers (A∗
U , b

∗
U , c

∗
U ) ∈ (A, b, c) such that f(A∗

U , b
∗
U , c

∗
U ) = fU are

known.

The objective is to find A0 ∈ A, b0 ∈ b, c0 ∈ c such that θ = f(A0, b0, c0).
In the next (sub)sections we will study several special cases of the inverse

interval LP problem — a problem with interval cost coefficients, a problem
with interval right-hand sides, a problem with both interval cost coefficients
and right-hand sides. Then we combine the methods to derive an algorithm for
the general case where any coefficient of a linear program may be interval.

Parametric programming. The basic (rough) idea of our approach is to
start with the scenario A∗

L, b
∗
L, c

∗
L corresponding to the best case optimal value

fL and then “shift” the data towards the worst case scenario A∗
U , b

∗
U , c

∗
U . By

the continuity of f , the value θ is attained at some moment.
To achieve our goal, we apply parametric analysis techniques for linear pro-

gramming. We will build on the classical basis stability approach [18, 19, 20, 21]
despite the recent progress in alternative ways [34, 35, 36, 37]. Since we need
to use parametric programming with large perturbations, and not just a local
sensitivity analysis, the classical approach is the right tool for our problem.

Recall that the index sets B,R ⊆ {1, . . . , n} denote the basic and nonba-
sic variables, respectively. By AB we denote the restriction of A to the basic
columns, and similarly for cB . Analogous notation is used for the nonbasic
indices.

A basis B is optimal if the following two conditions simultaneously hold:

1. feasibility condition: A−1
B b ≥ 0,

2. optimality condition: cR − cBA
−1
B AR ≥ 0.

The first condition ensures that the vector x∗ defined as x∗
B := A−1

B b, x∗
R =

0 is feasible and the second one implies that x∗ is optimal. In parametric
programming, these conditions are utilized to characterize stability regions for
maximal admissible perturbations of the entries of A, b and c preserving the
optimality of B.
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Suppose that A, b and c are not constant, but depend on a parameter λ, so
we denote them by A(λ), b(λ) and c(λ). The region of admissible values of λ,
for which B remains optimal, is then described by the inequality system

A(λ)−1
B b(λ) ≥ 0, (17)

c(λ)R − c(λ)BA(λ)
−1
B A(λ)R ≥ 0 (18)

4.1. Case I: Only cost coefficients are interval

First, we start with the case A = AL = AU and b = bL = bU . Only the
objective vector c can vary in c = [cL, cU ].

In Case I, and also in the subsequent Case II, just the finiteness of both fL

and fU implies continuity of the optimal value function [31]. So the conditions
(7)–(8) need not be verified.

Theorem 1 tells us that

fL(A, b, c) = f(A, b, cL), fU (A, b, c) = f(A, b, cU ).

From Assumption (i) we also know that f(A, b, cL) and f(A, b, cU ) are finite.
We try to find λ ∈ [0, 1] such that

θ = f(A, b, (1− λ)cL + λcU ) = f(A, b, cL + λ(cU − cL)).

So we are perturbing c along the direction cU −cL = 2c∆. Notice that in Case I,
the system (17)–(18) reads

A−1
B b ≥ 0, (19)

cLR + λ(cUR − cLR)− (cLB + λ(cUB − cLB))A
−1
B AR ≥ 0, (20)

and it is a linear system in λ.
Let LP (A, b, c) denote the linear program min{cTx : Ax = b, x ≥ 0}. Defin-

ing
θ(λ) = f(A, b, (1− λ)cL + λcU ),

we have

θ(0) = f(A, b, cL) = cLx1,

θ(1) = f(A, b, cU ) = cUx∗

for some x1, x∗ ∈ X := {x | Ax = b, x ≥ 0}.
Denote byB1 an optimal basis corresponding to x1, and define λ1 = max{λ ∈

[0, 1] : B1 is an optimal basis for LP (A, b, (1 − λ)cL + λcU )}. The value λ1 is
easily calculated from (19)–(20). For λ ∈ (λ1, 1], the basis B1 is no longer op-
timal. (Note that x1 still can be an optimal solution corresponding to another
optimal basis.) For λ := λ1, a new adjacent basis B2 becomes optimal. (B2

can be easily found by the simplex method.) With B2 we establish a new basis
stability interval [λ1, λ2]. The process is repeated until we reach an LP the
objective value of which is ≥ θ.
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It is easy to see that θ(λ) is a continuous and piecewise linear function of λ.
Moreover, it is linear on each stability region [λk−1, λk] with the basis Bk since

c(λ)xk = cLxk + λ(cU − cL)xk,

where xk is the optimal solution corresponding to Bk.
Clearly, θ(λk−1) ≤ θ ≤ θ(λk) for some k. Setting

µ =
θ − θ(λk−1)

θ(λk)− θ(λk−1)
,

we have

θ = (1− µ)θ(λk−1) + µθ(λk)

= ((1− µ)((1− λk−1)c
L + λk−1c

U ) + µ((1− λk)c
L + λkc

U ))xk

= (((1− µ)(1− λk−1) + µ(1− λk))c
L + ((1− µ)λk−1 + µλk)c

U )xk.

This in turn implies that

θ = f(A, b, α1c
L + α2c

U ),

where

α1 = (1− µ)(1− λk−1) + µ(1− λk),

α2 = (1− µ)λk−1 + µλk.

Observe that 0 ≤ µ ≤ 1, α1 + α2 = 1, α1 ≥ 0 and α2 ≥ 0. The scenario c ∈ c,
for which the optimal value θ is attained, is c := α1c

L + α2c
U .

Example 2. Consider the following interval LP problem:

min [−1, 5]x1 + [−3, 0]x2

subject to x1 + x2 ≤ 6
−x1 + 2x2 ≤ 6
x1 ≥ 0

x2 ≥ 0.

The lower bound and the upper bound of the cost vector are, respectively,

cL = (−1,−3), cU = (5, 0).

Now we have

fL = f(A, b, cL) = −14, fU = f(A, b, cU ) = 0

and

• the argmin of the LP problem min{cLx : Ax ≤ b, x ≥ 0} is x1 = (2, 4)T,
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• the argmin of the LP problem min{cUx : Ax ≤ b, x ≥ 0} is x∗ = (0, 0)T.

Let the demand θ = −2 be given. We want to find c0 ∈ [cL, cU ] such that
f(A, b, c0) = −2. We try to obtain a suitable λ ∈ [0, 1] for which

θ(λ) = f(A, b, (−1 + 6λ,−3 + 3λ)) = −2.

The optimal solution corresponding to θ(λ) with λ = 0 is x1 = (2, 4)T. From
(20) we calculate that the current solution x1 remains optimal for each λ ∈
[0, λ1] = [0, 1

3 ]. Since θ(λ1) = −6 < −2, we proceed to the neighboring stability
interval. In λ1 we move to the adjacent basic solution x2 = (0, 3)T. From (20)
we get that x2 is optimal for each λ ∈ [λ1, λ2] = [ 13 , 1]. Thus, the desired value
of λ lies within this interval. On [λ1, 1], the optimal value is given by

θ(λ) = c(λ)x2 = −9 + 9λ,

so the goal −2 is attained at λ = 7
9 . The appropriate cost coefficient vector is

c0 = 2
9 (−1,−3) + 7

9 (5, 0) = ( 113 ,−2
3 ),

and the corresponding scenario reads

−2 = min 11
3 x1 − 2

3x2

subject to x1 + x2 ≤ 6
−x1 + 2x2 ≤ 6
x1 ≥ 0

x2 ≥ 0.

4.2. Case II: Only right-hand sides are interval

Now we inspect the case A = AL = AU and c = cL = cU . Only the
right-hand side vector b can be perturbed over b = [bL, bU ].

Suppose also that we have

• an optimal basis B1 of the problem min{cx | Ax = b∗L, x ≥ 0} (= fL),

• an optimal basis B∗ of the problem min{cx | Ax = b∗U , x ≥ 0} (= fU ).

Given θ ∈ [fL, fU ], we aim at finding λ ∈ [0, 1] such that

θ = θ(λ),

where

θ(λ) = f(A, (1− λ)b∗L + λb∗U , c) = f(A, b∗L + λ(b∗U − b∗L), c).

Thus, the right hand side is perturbed along the vector b∗U − b∗L. Notice that
the system (17)–(18) reads

A−1
B b∗L + λA−1

B (b∗U − b∗L) ≥ 0,

cR − cBA
−1
B AR ≥ 0,
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and it is a linear system in λ. Thus, we easily determine the largest interval
[0, λ1] for which B1 remains optimal. If θ(λ1) < θ, we proceed to the adjacent
basis B2 and the corresponding stability interval [λ1, λ2]. We repeat the process
until we arrive at a basis Bk and the corresponding stability interval [λk−1, λk]
such that

θ(λk−1) < θ ≤ θ(λk).

On this interval, the optimal solution is

xk
Bk

(λ) = A−1
Bk

(b∗L + λ(b∗U − b∗L))

and the optimal value is

θ(λ) = cxk(λ) = cBk
A−1

Bk
(b∗L + λ(b∗U − b∗L)) .

Hence, θ is attained at

λ =
θ − cBk

A−1
Bk

b∗L

cBk
A−1

Bk
(b∗U − b∗L)

.

4.3. Case III: Both right-hand sides and cost coefficients are interval

In this section we inspect the case where A = AL = AU , and both the right-
hand side vector b and the objective vector c are interval-valued. A value θ ∈
[fL, fU ] is given and we want to find b0 ∈ b and c0 ∈ c such that f(A, b0, c0) = θ.

Let
fL(A, b, c) = f(A, b∗L, c

L), fU (A, b, c) = f(A, b∗U , c
U ).

The optimal value function with respect to λ reads

θ(λ) = f(A, (1− λ)b∗L + λb∗U , (1− λ)cL + λcU )

= f(A, b∗L + λ(b∗U − b∗L), c
L + λ(cU − cL)).

The vector cL is perturbed along the direction cU − cL and simultaneously the
vector b∗L is perturbed along the direction b∗U − b∗L. In this case, the conditions
(17)–(18) reduce to

A−1
B b∗L + λA−1

B (b∗U − b∗L) ≥ 0, (21)

cLR + λ(cUR − cLR)− (cLB + λ(cUB − cLB))A
−1
B AR ≥ 0. (22)

Again, this is a linear system of inequalities with respect to λ, so we can proceed
in the same manner as for Cases I and II. On each stability interval, the optimal
solution corresponding to a basis Bk is

xk
Bk

(λ) = A−1
Bk

(b∗L + λ(b∗U − b∗L))

and the optimal value is

θ(λ) = c(λ)xk(λ) =
(
cLBk

+ λ(cUBk
− cLBk

)
)
A−1

Bk
(b∗L + λ(b∗U − b∗L)) .

Herein, θ(λ) is a quadratic function, but determining for which value λ the value
θ is attained is still an easy task.
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Example 3. Consider the following problem:

min [−1, 5]x1 + [−3, 0]x2

subject to x1 + x2 + x3 = [1, 6]
−x1 + 2x2 + x4 = [6, 10]

x ≥ 0.

We have

fL(A, b, c) = f(A, bU , cL) = −50
3 , fU (A, b, c) = f(A, bL, cU ) = 0.

That is, in this example, the lowest optimal value is attained for b∗L := bU and
the greatest one for b∗U := bL.

Let the demand θ = −7 be given, so we are requested to find b0 ∈ b and
c0 ∈ c such that f(A, b0, c0) = −7. The right-hand side vector is perturbed
along the direction b∗U − b∗L = (−5,−4)T and the vector of cost coefficients is
perturbed along the direction cU − cL = (6, 3). At λ = 0, the optimal basis is
B1 = {1, 2}. From (21)–(22) we compute the stability interval, under which B1

remains optimal, to be [0, λ1] = [0, 1
3 ].

At λ1, we switch to the adjacent basis B2 = {2, 4}. The stability interval is
[λ1, λ2] = [13 , 1] and the optimal value function on this interval draws

θ(λ) = c(λ)x2(λ) = −18 + 33λ− 15λ2.

The value of θ = −7 is attained at λ ≈ 0.41. That is, the scenario in question is

−7 = min 1.46x1 − 1.77x2

subject to x1 + x2 ≤ 3.95
−x1 + 2x2 ≤ 8.36
x1 ≥ 0

x2 ≥ 0.

4.4. The general case — all coefficients are interval

Herein, we present a general method for determination of a scenario (A0, b0, c0)
in (A, b, c) with the prescribed optimal value θ ∈ [fL, fU ]. First, we show that
the desired scenario may be searched for in a specific subset of A× b× c.

Proposition 1. Every θ ∈ [fL, fU ] is attained for an LP in the form

c = (1− λ)cL + λcU , A = Ac − TyA∆, b = bc + Tyb∆, (23)

where λ ∈ [0, 1] and y ∈ [−1, 1]m.

Proof. By Theorems 1 and 2, fL is attained for

c = cL, A = Ac − Ty1A∆, b = bc + Ty1b∆,

where y1 ∈ [−1, 1]m, and fU is attained for

c = cU , A = Ac − Ty2A∆, b = bc + Ty2b∆,

13



where y2 ∈ {±1}m ⊂ [−1, 1]m. Due to the continuity of f(A, b, c), the value of θ
is attained for a convex combination of these scenarios, which can be expressed
as (23).

Proposition 1 (and its proof) will help us design a parametric method for
finding the desired scenario. Denote by A1, b1 and c1 the scenario for which fL

is attained, and by A2, b2 and c2 the scenario corresponding to fU .
It is tempting to consider the convex combination

A = (1− λ)A1 + λA2, b = (1− λ)b1 + λb2, c = (1− λ)c1 + λc2,

of the above two scenarios, where λ ∈ [0, 1] is a parameter. However, dealing
with such parametric programs is difficult in general despite the fact that there
is only one parameter. A tractable case is for example when rank((A1 | b1) −
(A2 | b2)) ≤ 1, that is, the parameter appears only in one constraint or in the
coefficients corresponding to one variable.

We propose the following method, which is based on a movement from (A1 |
b1) to (A2 | b2) sequentially row by row, and not at once. Thus, the parameter is
situated in one constraint only, which is easier to handle; see also Grygarová [38].

The method. First, consider the parametric program with

A = A1, b = b1 c = (1− λ)c1 + λc2.

We solve this problem in the same manner as in Section 4.1. If θ is at-
tained for some value of the parameter λ ∈ [0, 1], then we are done. Notice
that f(A1, b1, (1 − λ)c1 + λc2) is an increasing function of λ. Therefore, when
f(A1, b1, c2) < θ, solving this parametric program is not necessary.

Otherwise, we sequentially for k = 1, . . . ,m run the following two procedures
until θ is achieved. In the first stage, consider the parametric program with

Ai∗ = A2
i∗, bi∗ = b2i∗, i = 1, . . . , k − 1,

bk∗ = (1− λ)b1k∗ + λb2k∗,

Ai∗ = A1
i∗, i = k, . . . ,m,

bi∗ = b1i∗, i = k + 1, . . . ,m,

c = c2.

The parameter λ appears only in the right-hand side in the kth entry. Thus,
it is easily solved by the lines of Section 4.2. In the second stage, consider the
parametric program with

Ai∗ = A2
i∗, i = 1, . . . , k − 1, (24)

bi∗ = b2i∗, i = 1, . . . , k,

Ak∗ = (1− λ)A1
k∗ + λA2

k∗, (25)

Ai∗ = A1
i∗, i = k + 1, . . . ,m, (26)

bi∗ = b1i∗, i = k + 1, . . . ,m,

c = c2.

14



Now, the parameter λ appears only in the kth constraint in the left hand side.
The stability region of λ for a basis B is determined according to the feasibility
and optimality criteria (17)–(18), which take the form

A(λ)−1
B b ≥ 0,

cR − cBA(λ)
−1
B A(λ)R ≥ 0.

We have to explicitly compute the inverse of the parametric matrix A(λ)B . Since
the matrix has the form of A(λ)B = M + λekd

T for some vector d ∈ Rm and
some matrix M ∈ Rm×m, we can employ the well-known Sherman–Morrison
formula to express the inverse matrix. Then the first criterion reads

A(λ)−1
B b = (M + λekd

T)−1b = M−1b− λ

1 + λdTM−1
∗k

M−1
∗k dTM−1b ≥ 0,

The denominator should be positive, giving raise to the restriction

λ < − 1

dTM−1
∗k

(27)

provided dTM−1
∗k < 0. Next, the inequalities can be rewritten as

M−1b+ λ(M−1bdTM−1
∗k −M−1

∗k dTM−1b) ≥ 0.

To obtain the stability interval for λ is a trivial task now.
Similarly we proceed for the optimality criterion:

cR − cBA(λ)
−1
B A(λ)R

= cR − cB(M + λekd
T)−1A(λ)R

= cR − cB

(
M−1 − λ

1 + λdTM−1
∗k

M−1
∗k dTM−1

)
A(λ)R ≥ 0.

This can be simplified to a system of inequalities

cR − cBM
−1A(λ)R

+ λ
(
(cR − cBM

−1A(λ)R)d
TM−1

∗k − cBM
−1
∗k dTM−1A(λ)R

)
≥ 0.

Since A(λ)R depends linearly on λ, the system contains quadratic functions
with respect to λ, and the stability interval for B can be straightforwardly
determined.

Singularity. If the stability interval for λ is closed, we can simply move to
the neighboring stability interval by a basis change. If the stability interval is
semi-closed due to the restriction (27), then it has the form [λ1, λ2), and the
basis A(λ)B is singular for λ := λ2. However, on [λ1, λ2), the optimal value
reads

cBA(λ)
−1
B b = cBM

−1b− λ

1 + λdTM−1
∗k

cBM
−1
∗k dTM−1b.
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The denominator tends to zero as λ → λ2, but the optimal value function
f(A, b, c) is continuous, which implies that the second term vanishes and the
optimal value is constant on [λ1, λ2). Due to continuity of f(A, b, c) again, we
have that it is constant on [λ1, λ2], and we can move to the neighboring stability
interval based on a basis corresponding to λ := λ2.

Summary. Our method requires solving up to 2m + 1 one-parametric LP
problems. Notice that the optimal value function needn’t be non-decreasing,
but the intermediate value theorem ensures that each value θ ∈ [fL, fU ] is
eventually reached.

Example 4. Consider the following interval LP problem:

min
[−2,−1]x1 + [−1, 1]x2 + [−1, 2]x3 + [−2,−1]x4 + [ 2, 4]x5 + [ 0, 0]x6

subject to
[ 2, 3]x1 + [ 1, 4]x2 + [ 2, 7]x3 + [ 1, 1]x4 + [−2,−2]x5 + [ 0, 1]x6 = [6, 8]
[−1, 1]x1 + [ 1, 3]x2 + [ 1, 3]x3 + [ 2, 3]x4 + [−2, 1]x5 + [−1, 0]x6 = [6, 10]
[ 1, 1]x1 + [ 1, 2]x2 + [ 2, 3]x3 + [−1, 1]x4 + [ 1, 1]x5 + [ 1, 1]x6 = [8, 12]

x1, x2, x3, x4, x5, x6 ≥ 0.

By using the formulas provided in Theorem 1, the lower bound and the upper
bound of the optimal value range are fL = −112 and fU = 128, respectively.
Let θ = 50 ∈ [−112, 128] be given. We want to find a scenario (A0, b0, c0)
such that f(A0, b0, c0) = 50. We easily observe that f(A1, b1, c2) = 20 and
f(A2, b2, c2) = 128, where

A1 = Ac − Ty1A∆,

b1 = bc + Ty1b∆ = (8, 10, 12)T,

A2 = Ac − Ty2A∆,

b2 = bc + Ty2b∆ = (6, 10, 12)T,

y1 = (1, 1, 1),

y2 = (−1, 1, 1),

c2 = (−1, 1, 2,−1, 4, 0).

Note that the values f(A1, b1, c2) = 20 and f(A2, b2, c2) = 128 are already
available when computing the upper bound by Theorem 2.

Since f(A1, b1, c2) = 20 < 50 = θ, the value θ is not attained by solving the
parametric problem f(A1, b1, (1− λ)c1 + λc2). We proceed to the first stage of
the iterative process. By setting k = 1, we have

min −x1 + x2 + 2x3 − x4 + 4x5

subject to 2x1 + x2 + 2x3 + x4 − 2x5 = 8− 2λ
−x1 + x2 + x3 + 2x4 − 2x5 − x6 = 10
x1 + x2 + 2x3 − x4 + x5 + x6 = 12
x1, x2, x3, x4, x5, x6 ≥ 0.
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Notice that the right-hand-side of the first constraint in f(A1, b1, c2) has been
changed to (1− λ)8 + λ6 = 8− 2λ. For λ = 0, the optimal solution is

x1 = (0, 0, 0, 36, 14, 34)T

with the optimal objective value of 20, and the corresponding optimal basis is
B = {4, 5, 6}. This basis remains optimal for each λ ∈ [0, 1]. Since θ(1) = 26 <
50 = θ, we proceed to the second stage, where the left-hand side of the first
constraint is replaced by a convex combination of A1

1∗ and A2
1∗. We have the

following problem:

min −x1 + x2 + 2x3 − x4 + 4x5

subject to (2 + λ)x1 + (1 + 3λ)x2 + (2 + 5λ)x3 + x4 − 2x5 + λx6 = 6
−x1 + x2 + x3 + 2x4 − 2x5 − x6 = 10
x1 + x2 + 2x3 − x4 + x5 + x6 = 12

x1, x2, x3, x4, x5, x6 ≥ 0.

For λ ≥ 0, we have

A(λ)B =

 1 −2 λ
2 −2 −1

−1 1 1

 .

By using the Sherman-Morrison formula for the inverse matrix, we obtain

A(λ)−1
B =

 −1 λ+ 2 2λ+ 2
−1 λ+ 1 2λ+ 1
0 1 2

 .

To obtain the stability region on which this basis is dual feasible (the optimality
criterion is satisfied), first we find

c2R − c2BA(λ)−1
B A(λ)R

= (−1, 1, 2)− (−1, 4, 0)

 −1 λ+ 2 2λ+ 2
−1 λ+ 1 2λ+ 1
0 1 2

 2 + λ 1 + 3λ 2 + 5λ
−1 1 1
1 1 2


= (5, 0, 2)

≥ 0.

This implies that dual feasibility holds for each λ ∈ [0, 1]. To check the feasibility
criterion, we have to calculate

A(λ)−1
B b =

 −1 λ+ 2 2λ+ 2
−1 λ+ 1 2λ+ 1
0 1 2

 6
10
12

 =

 38 + 34λ
16 + 34λ

34

 .

For each λ ∈ [0, 1] the current basis is primal feasible. Hence, for each λ ∈ [0, 1]
the basis B remains optimal. The optimal objective value θ(λ) on this interval
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is given by

θ(λ) = c2BA(λ)
−1
B b = (−1, 4, 0)

 38 + 34λ
16 + 34λ

34

 = 26 + 102λ.

The desired λ ∈ [0, 1] for which θ(λ) = 50 is simply λ = 4
17 .

Therefore, the problem in the family with the optimal value equal to 50 is

50 = min −x1 + x2 + 2x3 − x4 + 4x5

subject to 38
17x1 + 29

17x2 + 54
17x3 + x4 − 2x5 + 4

17x6 = 6
−x1 + x2 + x3 + 2x4 − 2x5 − x6 = 10
x1 + x2 + 2x3 − x4 + x5 + x6 = 12
x1, x2, x3, x4, x5, x6 ≥ 0.

5. An application and comparison with Binary Search

We continue with the notation of Section 4.4. In particular, (A1, b1, c1) is
the scenario under which the lower bound fL is attained, and (A2, b2, c2) is the
scenario under which the upper bound fU is attained.

The method of Section 4.4 can be understood as a method for step-by-
step movement from the point (A1, b1, c1) to the point (A2, b2, c2) in the space
A×b×c. By continuity of f onA×b×c, we are sure that we pass through every
value θ ∈ [fL, fU ]. To recall how we make the steps: in the space A× b× c we
first move in the c-subspace in the direction c2−c1. Then, for each k = 1, . . . ,m,
we make steps as follows: for a given k, a walk in the b-subspace in the direction
bk (“First Stage”) is followed by a walk in the A-subspace in the direction
A2

k∗ −A1
k∗ (“Second Stage”).

5.1. A drawback of Binary Search

In Section 4.4 we have already mentioned that it is tempting to go straight
from (A1, b1, c1) to (A2, b2, c2) in A×b×c. Indeed, this can be done with Binary
Search, using Bolzano’s Intermediate Value Theorem. Given θ ∈ (fL, fU ),
define

Θ(λ) = f((1− λ)A1 + λA2, (1− λ)b1 + λb2, (1− λ)c1 + λc2)− θ

and run Binary Search over λ ∈ [0, 1]. Since Θ(0) < 0 < Θ(1), the procedure
finds a zero point λ0 of Θ up to any given precision ε > 0. (Here it is interesting
to note that f is a polynomial-time function. Therefore we can expect that one
iteration of the Binary Search procedure will be computationally fast.)

The Binary Search procedure has some advantages and some drawbacks.
The main problem is that it may happen that the procedure finds a scenario

A0 := (1− λ0)A
1 + λ0A

2, b0 := (1− λ0)b
1 + λ0b

2, c0 := (1− λ0)c
1 + λ0c

2
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such that the value |f(A0, b0, c0)− θ| is small, but the distance

min
λ∈[0,1]

{|λ0 − λ| : f(A∗
0, b

∗
0, c

∗
0) = θ, A∗

0 = (1− λ)A1 + λA2,

b∗0 = (1− λ)b1 + λb2, c∗0 = (1− λ)c1 + λc2}

is large. The problem is illustrated by Figure 1. The Binary Step procedure
finds an ε-approximate solution (A0, b0, c0) in one step, but the correct scenario
(A∗

0, b
∗
0, c

∗
0) is “far” from (A0, b0, c0).

0 1

λ

fU

fL

Θ(λ)

1/2

θ

by Binary Search
correct

ε

“far”

scenario
(A∗

0
, b∗

0
, c∗

0
)

scenario (A0, b0, c0) found

{

Figure 1: Illustration of possible imprecision of the Binary Search procedure.

Remark 3. The function Θ of Figure 1 is nondecreasing. Observe that this
does not hold in general. For example, consider the problem max{x2 : x2 ≤
(1− 2λ)x1; x1 ≤ −1 + 20λ; x1 ≤ 5− 4λ; x1 ≥ −10; x2 ≥ −10}, whose function
Θ has a graph with an increasing-decreasing-increasing shape. This shows that
it will be difficult to bound the number of steps of the Binary Search procedure,
necessary to achieving ε-convergence, a priori.

Remark 4. To achieve the increasing-constant-increasing shape of the func-
tion Θ, illustrated by Figure 1, consider the problem min{x1+x2 : x1 ≥ 1−2λ;
(10− 9λ)x1 + 2x2 ≥ 0; x2 ≥ 0}.

The main advantage of the method of Section 4.4 is that it finds a scenario
(A∗

0, b
∗
0, c

∗
0), such that f(A∗

0, b
∗
0, c

∗
0) = θ, exactly. Nevertheless, both methods —

the method of Section 4.4 and Binary Search — are complementary. In the next
section we will illustrate when either the first or the latter can be chosen and
how their results differ.

Complexity. As for computational complexity, neither of the methods is a
winner, showing their complementarity again. Binary Search usually converges
within fewer iterations, but the work in one iteration is greater since a full linear
program must be solved. On the other hand, the parametric programming
technique usually requires more iterations, but one iteration just amounts to
a basis switch.

19



5.2. Example: A matrix casino

Consider a zero-sum matrix game with the payoff matrix A. The columns
represent the strategies of Player I and the rows represent the strategies of
Player II. It is well known that for finding the Nash mixed strategy for Player I
it suffices to solve the linear program

max γ subject to ATx ≥ γe, eTx = 1, x ≥ 0.

The optimal value γ∗ is the value of the game — it is the best achievable average
win/loss when both players obey their Nash strategies.

A matrix casino is a casino where matrix games of chance are played. We
will consider a well-known and ancient game, called Morra [39]. To recall: each
player throws out a hand, showing from one to five fingers, and calls out loud his
guess on the number of fingers shown by the other player. If both players guess
right or none of them does, nobody wins and nothing is paid. If only one player
guesses right, he wins an amount of dollars equal to the sum of fingers shown
out by both players. (Here we write “he” instead of the usual gender-correct
expression “(s)he” since a woman is less likely to be a gambler.)
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The game is symmetric for both players and hence its value is zero. Each
player has 25 possible strategies: a strategy (S,G) with S ∈ {1, . . . , 5} and
G ∈ {1, . . . , 5} means that the player showed out S fingers and guessed that the
enemy will show G fingers. The payoff matrix is shown in Table 1.

Now we turn to the formulation of our problem. Our casino wants to attract
new gamblers and it decides to introduce Morra as a new game. Say that a
gambler acts as Player I and the casino acts as Player II. However, for a casino
it is not acceptable to play a zero-valued game. We need to modify the payoff
matrix A into a form such that the value of the game becomes slightly negative
for the gambler. For example, we might need to adjust A to achieve the value
of the game θ := − 1

37 . This is reasonable when we want to have, on average,
the same profit as from roulette.1 If we introduced a new game in the casino,
with a different value than roulette has, players would systematically prefer the
game with the better value and this would be undesirable.

We will proceed as follows. We allow a perturbation of the elements of the
payoff matrix A and find a scenario attaining θ. It is natural to consider (at
least) the following possibilities:

(a) Absolute perturbations of nonzero elements: each nonzero element aij of
A is allowed to be perturbed by a fixed amount δ > 0. That is, we set
aLij = aij − δ and aUij = aij + δ if aij ̸= 0 and aLij = aUij = 0 otherwise.

(b) Relative perturbations: each element aij of A is allowed to be perturbed
by a given relative amount 0 < ϱ ≤ 1. That is, we set aLij = (1 − ϱ)aij ,

aUij = (1 + ϱ)aij for aij ≥ 0, and aLij = (1 + ϱ)aij , a
U
ij = (1 − ϱ)aij for

aij < 0.

In the sequel, we will continue with the approach (a) only; the analysis of
the case (b) would be analogous.

So we are to find a matrix A0 ∈ [AL, AU ] such that

θ = max{γ : AT
0 x ≥ γe, eTx = 1, x ≥ 0}. (28)

Remark 5. Formally, the method of Section 4.4 requires a linear program in
the form min{c̃x : Ãx = b̃, x ≥ 0}. We can use a traditional trick: we choose a
sufficiently large number κ > 0, say κ = 1 +maxi,j |Aij |, and

replace AL, AU by AL + κeeT, AU + κeeT, respectively. (29)

This assures that for every admissible A, the value of the game is nonnegative,
and hence we can add the constraint γ ≥ 0. We can also add slacks for the
inequalities and obtain the equality form with all variables nonnegative. We
used the fact that addition of a constant κ to each element of A increases the
value of the game by κ.

1To be more precise, say that we have the roulette with numbers 0, . . . , 36, where 0 is green
and 1, . . . , 36 are red and black. For simplicity say that a player can only bet red or black.
Due to the presence of the green zero, the value is indeed − 1

37
.
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The trick (29) also allows us to prove the following proposition which guar-
antees continuity of the objective value function f(A, b, c).

Proposition 2. The conditions (7) and (8) are satisfied.

Proof. By the trick (29) we may assume that γ ≥ 0. The linear program (28)
can be written as

min

(−1, 0, 0)

γ
x
s

 :

(
e −AT I
0 eT 0

)γ
x
s

 =

(
0
1

)
,

γ
x
s

 ≥ 0

 .

Then, system (9) has the form

γe−ATx+ s = 0, eTx = 0, γ ≥ 0, x ≥ 0, s ≥ 0, −γ ≤ 0, γ + eTx+ eTs = 1.

Since x ≥ 0 and eTx = 0, we have x = 0, and the first equality states that
s = −γe. Since γ ≥ 0 and s ≥ 0, we have s = 0 and γ = 0. Then γ+eTx+eTs =
0 ̸= 1. Hence (7) holds true.

To prove (8), observe that system (11) has the form

eTy1 ≤ 0, −Ay1 + y2e ≤ 0, y1 ≤ 0, y2 ≥ 0,

(
y1
y2

)
̸= 0.

By the trick (29) we may assume that AL ≥ 0. Then also A ≥ 0. Since y1 ≤ 0,
we have −Ay1 ≥ 0. Thus we have 0 ≤ −Ay1 ≤ −y2e ≤ 0e = 0, implying that
y1 = 0 and y2 = 0.

In this example we will compare the results obtained by the method of
Section 4.4 and the Binary Search procedure. Since there are intervals neither
in the objective function nor in the right-hand sides, only the “Second Stage”
of the method of Section 4.4 is applicable.

Observe that a positive perturbation of any element of A cannot decrease
the value of the game. It follows that fL is attained in AL and fU is attained
in AU , so both extremal optimal values and the corresponding scenarios are
computable efficiently.

The method of Section 4.4 perturbs the lines of AT one by one, until the
demand θ = − 1

37 is attained. To visualize the trajectory of the method, we
define the function θ∗(µ) with µ ∈ [1, 26] as follows. Given k ∈ {1, . . . , 25}
and λ ∈ [0, 1], let Ak(λ) denote the matrix defined by (24), (25), (26) with
A1 = (AL)T and A2 = (AU )T. The function

θk(λ) = max{γ : Ak(λ)
Tx ≥ γe, eTx = 1, x ≥ 0}, λ ∈ [0, 1]

describes the changes in the value of our game when k-th line of AT is being
λ-perturbed. By continuity, we have θk(1) = θk+1(0). It is natural to join the
graphs of θ1, θ2, . . . , θ25 and define the function

θ∗(µ) := θ⌊µ⌋(µ− ⌊µ⌋), µ ∈ [1, 26].
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Figure 2: The function θ∗(µ) of the method of Section 4.4 and the function β(λ) of Binary
Search.

We have θ∗(1) = fL and θ∗(26) = fU . For example, the fact θ∗(8.4) = θ tells us
that the desired value of the game has been achieved when the procedure was
processing 8th line of AT with perturbation λ = 0.4.

In this example we consider absolute perturbations of nonzero elements with
the tolerance rate δ = 0.15. Figure 2 shows the function θ∗ and its comparison
with the “trajectory” of Binary Search defined as

β(λ) = max{γ : (1− λ)(AL)Tx+ λ(AU )Tx ≥ γe, eTx = 1, x ≥ 0}, λ ∈ [0, 1].

The resulting perturbed payoff matrices are shown in Tables 2 and 3.
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We summarize the main differences between the two methods. Binary Search
processes the matrix AT globally — it perturbs all elements simultaneously. On
the other hand, the method of Section 4.4 makes the perturbation strategy-by-
strategy: it attempts to perturb payoffs of as few strategies as possible. Hence
we can say that it attempts to process the matrix AT locally. Moreover, the
method of Section 4.4 does not rely on a particular ordering of rows of AT.
Hence the rows of AT can be permuted. This is useful when there are strategies
the payoffs of which are more preferred for perturbation than other strategies,
the payoffs of which are preferred to be kept unchanged.

5.3. Example: How to determine a fee for playing a game in the matrix casino

Here we continue with the example of the previous section.
There is another interesting strategy to achieve the value − 1

37 of Morra.
The gambler is to pay a fee for a game in which nobody wins. (Observe that
introduction of the fee can change the pair of Nash strategies.) So we are to
perturb the zero elements of A slightly by the same amount. Here we can
take the advantage of the Binary Search technique that it perturbs all elements
simultaneously. In particular, we define AU = A and

aLij =

{
−∆ if aij = 0,
aij if aij ̸= 0,

where ∆ is a sufficiently large number chosen in advance, such that fL < − 1
37 .

Now the Binary Search will perturb all zero elements of A identically. We find
out that the value of the fee is 0.0263. Note that this value is different from
1
37 = 0.0270.

6. Conclusions

We designed a new method for solving the inverse interval LP problem when
the coefficients can be selected from given intervals. This is interesting when
the coefficients of the LP act as “controlling variables” and the optimal value
is prescribed. There are various examples — we illustrated the approach by
the Matrix Casino example, where the task is to design a suitable matrix game.
More precisely, the task is to find a payoff matrix from a given neighborhood of
a given matrix such that the resulting game has a prescribed value. There are
many more examples; for instance, we can seek for a network with a prescribed
maximal flow, when the capacities of edges can be chosen from given intervals.

To find the appropriate scenario, we employed and extended parametric
analysis concepts of LP. Our approach also provides a new connection between
inverse optimization and parametric analysis in LP theory.

We also compared our method with Binary Search. The main drawback of
Binary Search is that is finds only an ε-approximate solution, and the optimal
one can be far away. On the other hand, from a practical perspective, Binary
Search often gives a good estimate in only a small number of iterations (unless
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the optimal value function is “wild”). Thus, an efficient combination of both
approaches may be promising and deserves to be a subject of the future research.

It is also interesting to reformulate the method for linear programming prob-
lems when the coefficients need not be intervals, but polytopes, or — more
generally — compact convex sets.

The solution of the inverse LP problem need not be unique. Hence it is also
interesting to ask which of the solutions is “better” or “worse” and give a precise
definition of what “being a better solution” exactly means. (Such a definition
may differ problem by problem.) Of course, it is then natural to adapt the
method for finding the “better” solutions.
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