
Citace:

BRABEC, Tomáš, BUCHALCEVOVÁ, Alena. Suitability of XP for service-based application
development. Praha 10.06.2007 – 12.06.2007. In: Systems Integration 2007. Praha : KIT VŠE, 2007, s.
109–116. ISBN 978-80-245-1196-2.

Suitability of XP for service-based application
development

Tomáš Brabec, Alena Buchalcevová

Dept. of IT, Prague University of Economics
Winston Churchill sq. 4

130 67 Prague 3
brabec@vse.cz, buchalc@vse.cz

Abstract
In recent decade the process of developing of new software product versions has speed up rapidly.
The necessity of flexible and particularly prompt responses to the changes triggered off genesis of
new technologies, software architectures and methodologies. One of the most significant new
concepts in IS/ICT became services. The Service Oriented Architecture (SOA) allows defining
services operation environment, web services then form one of the available technologies for SOA
realization. The rigidity of original plan-driven methodologies for software development limits the
possibilities of adapting the development process to the changes and up-to-date requests.
Nevertheless, this problem might be solved either by adoption of any agile methodologies –
represented among others by eXtreme Programming (XP) – or by updating original plan-driven
methodology with agile principles – as e.g. the RUP does. This article contributes on the theme how
XP supports service-based application development comparing to SOA plug-in for RUP.

Keywords
SOA, eXtreme Programming, RUP, Web services, Service-based application life cycle.

1 Introduction
During past decade significant changes have occurred within the approach to the business application
development. There are many causes, to the most considerable belong continual changes in the
application environment (business areas and goals, legislation, competition, custom practices,
preferences and demands of customers) and necessity to respond immediately, effort to utilize off-the-
shelf systems, applications and components as well as the need for rapid and easy integration of new
customers and suppliers into both business processes and supporting information systems.

The integration demand of external and internal subjects into corporate business has resulted in
rejection of distributed applications with tight coupling, such as CORBA or DCOM, and opened
territory for new open standards and technologies.

The effort to high utilize present software products in conjunction with integration demands caused
the enforcement of service oriented architecture (SOA) that uses loose couple to bind individual
elements. Many applications and information systems have started to operate in the form of services
or at least to employ services. Thus services became fundamental building blocks for these

applications and systems. Web services then represent advisable technology to implement application
based on SOA.

As a result of continuous changes and the need to respond to them new kind of methodologies – so
called agile – appeared. Existing plan-driven methodologies based upon strict, exactly followed
processes and policies, turned up inflexible. Agile methodologies attempt to minimize risk by
developing software in short timeboxes, called iterations, emphasize real-time communication and
working software as the primary measure of progress. With respect to that many originally plan-
driven methodologies started to adopt agile principles, in the first place short iteration cycles and
periodic updates of project plans.

1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) defines usage of loosely coupled software services to support
the requirements of business processes and software users. In this architecture two computing entities,
such as programs, interact in such a way as to enable one entity to perform a unit of work on behalf of
second entity. Similarly the second entity could provide certain functionality to third entity and
become all at once provider even consumer of a service.

Service interactions on lowest – message – level are defined using a description language (mainly
WSDL) that describes the public interface, protocol bindings and message formats required to interact
with a web service. Conversation interaction of services can be captured with process languages like
BPEL. Each interaction is self-contained and loosely coupled, so that each interaction is independent
of any other interaction. SOA also attends to the way that services are described and organized to
support real-time automated discovery in repositories (e.g. in UDDI registry) and usage of suitable
services.

There are several conditions that must be fulfilled to successfully operate SOA [5]:

1) All functions (business functions, business transactions composed from low-level functions,
system functions) are defined in the form of services.

2) All services are independent and outward act as black-boxes. External components do not care
how they are implemented internally if they return expected results.

3) In the most general sense, the services are invokable. At an architectural level, it is irrelevant,
whether services are local or remote or what interconnect scheme and protocols were used.

1.1.1 SOA Life Cycle

High et al. in [4] start SOA life cycle with modeling the business (Model phase) and continue with
translating the model into an information system design (Assembly phase), deploying the system
(Deploy phase), managing that deployment and using the results coming out of that environment to
identify ways to refine the business design (Manage phase). These four phases are cycled into
iterative steps. The life cycle is then layered on a backdrop of a set of governance processes
(Governance & Processes).

Model

Primary purpose of this phase is to capture business design, translate that into a specification of
business processes and their activities, goals and assumptions and thus create a model of business.
Activities will be within SOA architecture realized as services. The model should also capture
business metrics to measure performance and efficiency of the business.

Outside of documenting current business architecture the model can be used to simulate how business
processes will actually run and to optimize them. During this phase we should obtain the answer to
question of what kind of services will we need and what data will services work with.

Assembly

The goal of this phase is to assemble the information system artifacts that will implement business
schema resulted from previous phase. The business design is converted into a set of business process
definitions and activities deriving the required services from the activity definitions.

Existing asset inventories (legacy programs) are searched to find application components that already
meet the needs. In some case an adoption for new environment is needed.

Deploy

During this phase the hosting environment (conforming integration and security requirements) for
applications is created and those applications are deployed. This includes the application’s resource
dependencies, operational conditions, capacity requirements, and integrity and access constraints. The
techniques for ensuring availability, reliability, integrity, efficiency and service ability are to be
considered.

Manage

This phase is focused on maintaining the operational environment and the policies expressed in the
assembly of the SOA applications deployed to that environment. This includes monitoring
performance of service requests and timeliness of service responses; detect failures in various system
components; detecting and localizing those failures; routing work around them; recovering work
affected by those failures; correcting problems; and restoring the operational state of the system.

Managing includes also tuning the operational environment to meet the business objectives expressed
in the business design, and measuring success or failure to meet those objectives.

Governance & Processes

The processes of this phase ensure that compliance and operational polices are enforced, and that
change occurs in a controlled fashion and with appropriate authority as envisioned by the business
design.

2 Service-based application life-cycle
Service-based application life cycle phases are similar to other types of applications. We can find
Analysis & Design phase, Realization phase, Deployment phase and Operation & Maintenance phase.
However, the content of those phases is rather specific, related just to the services nature.1 (The
activities and deliverables of individual phases are described in Table 1.)

Analogous to the life cycle of whole SOA (see [4]) either a service-based application life cycle must
involve a set of processes focused on Control & Governance. Such a phase guarantees that changes to
an application will be introduced in controlled manner. It is about establishing who has the authority,
and the processes they use, to decide what changes will be made. Processes and subprocesses for
decision making must be defined (including the escalation paths for resolving conflicting decisions
and goals) as well as a blend of policy against which change must conform ([4]).

2.1 Application types

As a matter of form we can identify three types of applications to be built on web services:

1 One can point out the requirements analysis phase is missing. With respect to the SOA, we may assume that
business design and business processes models contain preliminary requirements and jobs for the analytic phase.

I. Composite application that is a set of related and integrated services that support a business
process built on SOA ([4]).

II. Single service application formed by an elementary service that represents an access point to
a specific functionality and that does not rely on any other service.

III. Adapter like application representing a service used to make accessible legacy systems by
adapting their incompatible interfaces in such a way that application clients are able to avail.

We have to say, of course, that composite applications may be composed from services of another two
types to form a service with higher value.

2.2 Life-cycle phases

Due to the different nature of service-based application types mentioned in 2.1 individual life cycle
phases differ both in the activities to be undertaken and their contents. A brief summary brings
Table 1.

Phase Deliverables and activities Application type

I II III

Control &
Governance

Organizational aspects – planning and deliverables schedule;
project team and roles establishing; definition of both decision
processes and guidelines to respond to special and specific
situations; setting up a policy against which all future changes
must conform.

x x x

Control aspects – governance, management and regulation of life-
cycle.

x x x

Analysis &
Design

Analysis of either requirements or process operations to be
realized by services.

x x

Analysis of legacy system interfaces and functionality. x

Identification and hierarchical categorization of services ([1]). x

Partitioning service portfolio2 ([6]). o o o

Specification of integration needs and patterns ([3]). x o o

Detailed specification of services (structural specifications,
behavioral spec., policy spec.) and individual components.

x x x

Design of interfaces, messages structure and format. x x x

Model of service interactions within realized process (BPEL),
service choreography and coordination (WS-Choreography),
transactions (WS-Transaction).

x

Security model (WS-Security). x x x

Realization Implementation of new services including description and
semantics.

o o x

Localization of proper existing services, either internal or
external; contract with service provider (QoS, SLA).

o o

Refactoring existing services from their original form to fit the o o

2 Organizing (recently) identified services into logical partitions (without needing the services to be „owned“ by
any one partition) to be available for other projects.

Phase Deliverables and activities Application type

desired form ([6]).

Assignment of services and components into appropriate places
within SOA.

o o o

Services and components functional testing. x x x

Assembly. x

Integration testing. x o o

Deployment Deployment into a secured and integrated environment, relevant
data migration.

x x x

Availability and performance testing. x x x

Service publishing. o o o

Operation &
Maintenance

Monitoring performance of service requests and timeliness of
service responses.

x x x

Maintaining problem logs to detect failures. x x x

Detecting and localizing failures; routing work around them;
recovering work affected by failures.

x x x

Tuning the operational environment to meet the business
objectives.

x x x

Routine maintenance, administering and securing of applications
and users.

x x x

Feedback evaluation and continuous business process
improvement.

x

Table 1 - life cycle activities and deliverables

Due to the limited scope of this contribution the Table 1 lists only key activities and deliverables with
no detailed description. Character „x“ in the column „Application type“ stands for that performing an
activity is essential, „o“ stands for an optional (might be beneficial).

3 The level of support of application life-cycle by XP methodology
SOA and web services originated from the need to accept a call of unsteady and versatile business
environment with the aim to allow enterprises faster and accordingly respond to the business changes
while achieving maximum reusability of existing software. Likewise agile methodologies aim to
quickly and flexible respond to the requirement changes.

The eXtreme Programming methodology (see [1], [5] for more details), probably the best known agile
methodology in CR, builds on simplicity (the smallest but still functional deliverable), small versions,
metaphor (XP equivalent of an analysis), design3 and its everyday improvement, continuous testing,
periodic source code revisions, pair programming, collective ownership of code, continuous
integration, customer attendance in the workplace, 40-hour working week and standards for writing
code.

Basic activities of XP are: Planning, Designing, Coding, and Testing. With regard to described
properties of XP and to the fact that XP represent “Test-Driven-Development” approach, one can with

3 XP does not have isolated steps of analysis and design, both are solved within an implementation step.

some exaggeration claim that any iteration of design and implementation is done only to such
a degree we are able to run an appropriate test.

In our evaluation of the level of XP support for development and operation of service-based
applications we start from the service-based application life cycle described in section 2.2, or with
life-cycle activities, to be more precise. For every activity/deliverable we consider how pure XP (with
no additional modifications) solves or supports that activity in comparison the RUP methodology
enhanced with special SOA modeling plug-in.

Activity/deliverable RUP for SOA4 XP5

Organizational
aspects

The Project Management and
Configuration & Change
Management disciplines involve
activities, artifacts and workflow to
fulfill “Control & Governance”
life-cycle phases aspects.

Version plans6; team composition;
standards for writing code.

Control aspects Collective ownership; Planning game
control phase; customer in the
workplace; collective appraisal and
decision making of changes.

Requirements or
process analysis

The Requirements and Analysis &
Design disciplines cover tasks of
business processes and legacy
systems analysis.

Research and Engagement steps of
Planning game; initial architecture
design and its continuous improvement.

Legacy systems
analysis

-do-.

Services identification
and categorization

Supported by the Identify Services
activity of RUP’s SOA plug-in
belonging to the Analysis &
Design discipline.

Partial support within design step; no
appropriate method is available.

Partitioning service
portfolio

No explicit support.

Specification of
integration needs and
patterns

Supported by those activities of the
Implementation discipline related
to the integration.

No explicit support.

Detailed specification
of services

Supported by the Service Design
activity of RUP’s SOA plug-in
belonging to the Analysis &
Design discipline and by other
activities of the Requirements and
Analysis & Design disciplines.

Part of design step.

Design of interfaces,
messages structure
and format

-do-

Model of services
interoperability and
cooperation

Formally part of design step, partly
related to the integration.

Security model Covered by Analysis & Design
discipline.

Securing individual services.

Implementation of Supported by activities of the Generation of particular service

4 The „RUP for SOA“ column lists disciplines of the RUP methodology enhanced with specific SOA modeling
plug-in that are related to the acitvities and/or deliverables of a service-based application life-cycle.
5 The „XP“ column briefly describes how XP might support individual activities of a service-based application
life-cycle.
6 The first version should contain only those jobs that “force” us to set up a skeleton of a whole application.

Activity/deliverable RUP for SOA4 XP5

new services incl.
description, semantics

Implementation discipline. description documents can be
automated by appropriate tools.

Reuse and/or
localization of
existing services

Reuse of existing services and their
integration into an application.

Refactoring existing
services

Can take place within periodic
revisions.

Assignment of
services and
components into
appropriate places
within SOA.

Part of the Identify Service activity. No explicit support.

Functional tests Tests are implemented within the
Implementation discipline
activities and processed within
activities of the Test discipline.

Tests are written before core
functionality is implemented.

Integration tests Run whenever new addition is
available.

Availability and
performance testing

Testing activity.

Application assembly Performed within integration
activities of the Implementation
discipline.

Continuous integration (end of a day
integration tests).

Deployment of the
services into operating
environment

Supported by activities of the
Deployment discipline.

If version is finished and integration
tests passed; data migration; operation
tests.

Service publishing Might be run as a part of final end-of-
the-day work upload.

Operation monitoring The RUP methodology life-cycle
ends with the Transition phase and
there are no further guidelines
related to the product operations.

Yes, supported.

Maintaining problem
logs

Implementation made ready for
automated recording.

Detecting, localizing
and solving failures

Hot-line, Help desks etc.

Tuning the
operational
environment

Yes, supported.

Routine maintenance Yes, supported.

Feedback evaluation
and process
improvements

Focused more on developed software
than the business process
improvements.

Table 2 - level of support application life cycle by XP and RUP for SOA

4 Conclusion
The XP methodology as a representative of agile methodologies is primarily focused on as soon as
possible, relatively small and frequent, software deliveries. The core sequence of activities consists of

creating tests, implementing functionality, presentation to the customer and usage of feedback in the
next iteration.

From the perspective of a service-based application development and operation, the methodology is
suitable mainly for application types II and III (see 2.1) – adapters and single service applications. In
those cases XP covers all (or almost all) life cycle activities and there is no need to support those
activities related to composite applications, like process modeling, service integration and cooperation
within a process, putting a service into SOA or publishing of a service.

In case of composite application, RUP for SOA plug-in guides developers through the development
process by supporting all the life-cycle activities except “Operation & Maintenance” tasks. In
addition, there is a special plug-in of RUP focused on eXtreme Programming, thanks to which RUP
can turn to account XP advantages.

5 Bibliography
[1] Arsanjani, A.: Service-oriented modeling and architecture. IBM developerWorks, IBM, 2004.

URL http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

[2] Beck, K.: Extrémní programování. Praha, Grada 2002. ISBN 80-247-0300-9.

[3] Benatallah, B., Casati, F., Nezhad, H. R. M. and Toumani F.: Developing Adapters for Web
Services Integration. Advanced Information Systems Engineering, 17th International
Conference, CAiSE 2005, Porto, June 13-17, 2005.
URL http://www.hpl.hp.com/personal/Fabio_Casati/docs/Caise05-adapters.pdf

[4] High, R., Kinder, S. and Graham, S.: IBM’s SOA Foundation: An Architectural Introduction
and Overview. IBM, November 2005.
URL http://www-128.ibm.com/developerworks/webservices/library/ws-soa-whitepaper/

[5] Channabasavaiah, K., Holley, K. and Tuggle, E.: Migrating to a service-oriented architecture,
Part 1. IBM developerWorks, IBM, 2003.
URL http://www-128.ibm.com/developerworks/webservices/library/ws-migratesoa/

[6] Johnston, S.: Modeling Service-oriented solutions. IBM Rational, IBM developerWorks. 2005.
URL http://www-128.ibm.com/developerworks/rational/library/jul05/johnston/

