Citace:

BRABEC, Tomas, BUCHALCEVOVA, Alena. Suitability of XP for service-based application
development. Praha 10.06.2007 — 12.06.2007. In: &&yss Integration 2007. Praha : KIT VSE, 2007, s.
109-116. ISBN 978-80-245-1196-2.

Suitability of XP for service-based application
development

Tom4as Brabec, Alena Buchalcevova

Dept. of IT, Prague University of Economics
Winston Churchill sq. 4
130 67 Prague 3
brabec@vse.¢buchalc@vse.cz

Abstract

In recent decade the process of developing of mftware product versions has speed up rapidly.
The necessity of flexible and particularly prompsponses to the changes triggered off genesis of
new technologies, software architectures and metlogies. One of the most significant new
concepts in IS/ICT became services. The Servicen@d Architecture (SOA) allows defining
services operation environment, web services tbem bne of the available technologies for SOA
realization. The rigidity of original plan-driven ethodologies for software development limits the
possibilities of adapting the development processthe changes and up-to-date requests.
Nevertheless, this problem might be solved eitheratoption of any agile methodologies —
represented among others by eXtreme Programming €XBr by updating original plan-driven
methodology with agile principles — as e.g. the Ridigs. This article contributes on the theme how
XP supports service-based application developmemiparing to SOA plug-in for RUP.

Keywords
SOA, eXtreme Programming, RUP, Web services, Seivacsed application life cycle.

1 Introduction

During past decade significant changes have oatwvithin the approach to the business application
development. There are many causes, to the mosiderable belongontinual changesn the
application environment (business areas and gdatfislation, competition, custom practices,
preferences and demands of customers) and necessgtigpond immediately, effort tdilize off-the-
shelf systems, applications and components asasdhe need for rapid and eastegration of new
customers and suppliers into both business pros@ssksupporting information systems.

The integration demand of external and internaljesttb into corporate business has resulted in
rejection of distributed applications with tightuming, such as CORBA or DCOM, and opened
territory for new open standards and technologies.

The effort to high utilize present software produict conjunction with integration demands caused
the enforcement of service oriented architectut®A)Sthat uses loose couple to bind individual
elements. Many applications and information systbme started to operate in the form of services
or at least to employ services. Thus services bec&imdamental building blocks for these

applications and systems. Web services then regraseisable technology to implement application
based on SOA.

As a result of continuous changes and the needsoond to them new kind of methodologies — so
called agile — appeared. Existing plan-driven metihagies based upon strict, exactly followed

processes and policies, turned up inflexible. Agitethodologies attempt to minimize risk by

developing software in short timeboxes, calledatiens, emphasize real-time communication and
working software as the primary measure of progrigish respect to that many originally plan-

driven methodologies started to adopt agile priesipin the first place short iteration cycles and
periodic updates of project plans.

1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) defines usafjasely coupled software services to support
the requirements of business processes and softwars. In this architecture two computing entjties
such as programs, interact in such a way as tdeoak entity to perform a unit of work on behdlf o
second entity. Similarly the second entity couldvide certain functionality to third entity and
become all at once provider even consumer of acgerv

Service interactions on lowest — message — leweldafined using a description language (mainly

WSDL) that describes the public interface, protdaobings and message formats required to interact
with a web service. Conversation interaction oi/ees can be captured with process languages like
BPEL. Each interaction is self-contained and lopselupled, so that each interaction is independent
of any other interaction. SOA also attends to tlay that services are described and organized to
support real-time automated discovery in repogtofe.g. in UDDI registry) and usage of suitable

services.

There are several conditions that must be fulfitteduccessfully operate SOA [5]:

1) All functions (business functions, business tratisas composed from low-level functions,
system functions) are defined in the form of sersic

2) All services are independent and outward act ackdlaxes. External components do not care
how they are implemented internally if they retexpected results.

3) In the most general sense, the services are inlmkaAb an architectural level, it is irrelevant,
whether services are local or remote or what int@mect scheme and protocols were used.

1.1.1 SOA Life Cycle

High et al. in [4] start SOA life cycle with moded the business (Model phase) and continue with
translating the model into an information systensigie (Assembly phase), deploying the system

(Deploy phase), managing that deployment and usiagesults coming out of that environment to

identify ways to refine the business design (Manpbase). These four phases are cycled into
iterative steps. The life cycle is then layered abackdrop of a set of governance processes
(Governance & Processes).

Model

Primary purpose of this phase is to capture busimesign, translate that into a specification of

business processes and their activities, goalsaaadmptions and thus create a model of business.
Activities will be within SOA architecture realizeds services. The model should also capture
business metrics to measure performance and eitigief the business.

Outside of documenting current business architedtue model can be used to simulate how business
processes will actually run and to optimize theraribg this phase we should obtain the answer to
guestion of what kind of services will we need artat data will services work with.

Assembly

The goal of this phase is to assemble the infoonatiystem artifacts that will implement business
schema resulted from previous phase. The busiressgrdis converted into a set of business process
definitions and activities deriving the requiredvsges from the activity definitions.

Existing asset inventories (legacy programs) asecbed to find application components that already
meet the needs. In some case an adoption for névoement is needed.

Deploy

During this phase the hosting environment (confagnintegration and security requirements) for
applications is created and those applicationddaptoyed. This includes the application’s resource
dependencies, operational conditions, capacityireapents, and integrity and access constraints. The
techniques for ensuring availability, reliabilitintegrity, efficiency and service ability are to be
considered.

Manage

This phase is focused on maintaining the operdtiengironment and the policies expressed in the
assembly of the SOA applications deployed to thavirenment. This includes monitoring
performance of service requests and timelinesemice responses; detect failures in various system
components; detecting and localizing those faituresiting work around them; recovering work
affected by those failures; correcting problems} astoring the operational state of the system.

Managing includes also tuning the operational emritent to meet the business objectives expressed
in the business design, and measuring succes#urefep meet those objectives.

Governance & Processes

The processes of this phase ensure that complemdeoperational polices are enforced, and that
change occurs in a controlled fashion and with epate authority as envisioned by the business
design.

2 Service-based application life-cycle

Service-based application life cycle phases ardlasirto other types of applications. We can find
Analysis & Design phase, Realization phase, Depttrphase and Operation & Maintenance phase.
However, the content of those phases is ratherifapelated just to the services natdréThe
activities and deliverables of individual phases @escribed in Table 1.)

Analogous to the life cycle of whole SOA (see [dither a service-based application life cycle must
involve a set of processes focused on Control &geamance. Such a phase guarantees that changes to
an application will be introduced in controlled man It is about establishing who has the authority
and the processes they use, to decide what chavildse made. Processes and subprocesses for
decision making must be defined (including the kedimam paths for resolving conflicting decisions
and goals) as well as a blend of policy againstivishange must conform ([4]).

2.1 Application types

As a matter of form we can identify three typesypplications to be built on web services:

! One can point out the requirements analysis pisaséssing. With respect to the SOA, we may asstimae
business design and business processes modeligarediminary requirements and jobs for the analghase.

I. Composite application that is a set of related amdgrated services that support a business
process built on SOA ([4]).

Il. Single service application formed by an elementagice that represents an access point to
a specific functionality and that does not relyamy other service.

Ill. Adapter like application representing a serviceduse make accessible legacy systems by
adapting their incompatible interfaces in such & that application clients are able to avalil.

We have to say, of course, that composite appdicatmay be composed from services of another two
types to form a service with higher value.

2.2 Life-cycle phases

Due to the different nature of service-based appbo types mentioned in 2.1 individual life cycle
phases differ both in the activities to be undemaland their contents. A brief summary brings

Table 1.

Phase

Deliverables and activities

Application typ

D

Control &
Governance

Organizational aspects — planning and deliveratitbedule;
project team and roles establishing; definitiotroth decision
processes and guidelines to respond to speciajzauific
situations; setting up a policy against which atufe changes
must conform.

X

X

X

Control aspects — governance, management and tiegudd life-
cycle.

Analysis &
Design

Analysis of either requirements or process opematto be
realized by services.

Analysis of legacy system interfaces and functiiyal

Identification and hierarchical categorization efdces ([1]).

Partitioning service portfolfo([6]).

Specification of integration needs and patternp.([3

Detailed specification of services (structural sfiesttions,
behavioral spec., policy spec.) and individual congnts.

><><O><

Design of interfaces, messages structure and format

Model of service interactions within realized pre&¢BPEL),
service choreography and coordination (WS-Chorgagya
transactions (WS-Transaction).

Security model (WS-Security).

Realization

Implementation of new services inclgdilescription and
semantics.

Localization of proper existing services, eithéemal or
external; contract with service provider (QoS, SLA)

Refactoring existing services from their originaitrh to fit the

2 Organizing (recently) identified services intoila) partitions (without needing the services ta,&dened” by

any one patrtition) to be available for other prgec

Phase Deliverables and activities Application typg

desired form ([6]).
Assignment of services and components into appatgpplaces o] o] 0
within SOA.
Services and components functional testing. X X X
Assembly.
Integration testing.

Deployment | Deployment into a secured and integratetronment, relevant
data migration.
Availability and performance testing.) p
Service publishing.

Operation & [Monitoring performance of service requests andltimess of X X X

Maintenance |service responses.
Maintaining problem logs to detect failures. X X K
Detecting and localizing failures; routing work anal them; X X X
recovering work affected by failures.
Tuning the operational environment to meet therinss X X X
objectives.
Routine maintenance, administering and securirappfications | X X X
and users.
Feedback evaluation and continuous business process X
improvement.

Table 1 - life cycle activities and deliverables

Due to the limited scope of this contribution theble 1 lists only key activities and deliverablathw
no detailed description. Character ,x" in the cofupApplication type* stands for that performing an
activity is essential, ,,0" stands for an optionaight be beneficial).

3 The level of support of application life-cycle byXnethodology

SOA and web services originated from the need teptca call of unsteady and versatile business
environment with the aim to allow enterprises fasted accordingly respond to the business changes
while achieving maximum reusability of existing tsedire. Likewise agile methodologies aim to
quickly and flexible respond to the requirementrajes.

The eXtreme Programming methodology (see [1], §5]nfiore details), probably the best known agile
methodology in CR, builds on simplicity (the smatléut still functional deliverable), small versgn
metaphor (XP equivalent of an analysis), desamd its everyday improvement, continuous testing,
periodic source code revisions, pair programmingllective ownership of code, continuous
integration, customer attendance in the workpld@ehour working week and standards for writing
code.

Basic activities of XP are: Planning, Designing,d®g, and Testing. With regard to described
properties of XP and to the fact that XP repre$§€est-Driven-Development” approach, one can with

3 XP does not have isolated steps of analysis asigiuieboth are solved within an implementation step

some exaggeration claim that any iteration of desgd implementation is done only to such
a degree we are able to run an appropriate test.

In our evaluation of the level of XP support forvdiwpment and operation of service-based
applications we start from the service-based apiptio life cycle described in section 2.2, or with
life-cycle activities, to be more precise. For gvactivity/deliverable we consider how pure XP (wit

no additional modifications) solves or supportst taativity in comparison the RUP methodology

enhanced with special

SOA modeling plug-in.

Activity/deliverable

RUP for SOA*

XP°®

Organizational
aspects

TheProject Managemerdand
Configuration & Change

Control aspects

Managemendtlisciplines involve
activities, artifacts and workflow
fulfill “Control & Governance”
life-cycle phases aspects.

Version plan% team composition;
standards for writing code.

Collective ownership; Planning game
control phase; customer in the
workplace; collective appraisal and
decision making of changes.

Requirements or
process analysis

TheRequirementandAnalysis &
Designdisciplines cover tasks of
business processes and legacy

Legacy systems
analysis

Research and Engagement steps of
Planning game; initial architecture
design and its continuous improveme

nt.

systems analysis.

-do-.

Services identificatio
and categorization

nSupported by thédentify Services
activity of RUP’s SOA plug-in

Partitioning service
portfolio

Partial support within design step; no
appropriate method is available.

belonging to thé\nalysis &
Designdiscipline.

No explicit support.

Specification of
integration needs an(
patterns

limplementatiordiscipline related
to the integration.

Supported by those activities of fido explicit support.

Detailed specificatior
of services

Supported by th8ervice Design
activity of RUP’s SOA plug-in

Design of interfaces,
messages structure
and format

Part of design step.

belonging to thé\nalysis &
Designdiscipline and by other
activities of theRequirementand

Model of services
interoperability and
cooperation

-do-

Analysis & Desigrdisciplines.

Formally part of design step, partly
related to the integration.

Security model

Covered Wnalysis & Design
discipline.

Securing individual services.

Implementation of

Supported by activities of the

n&mation of particular service

* The ,RUP for SOA® column lists disciplines of tlRRUP methodology enhanced with specific SOA modeling
plug-in that are related to the acitvities and/elivetrables of a service-based application lifeleyc

®> The ,XP* column briefly describes how XP might gapt individual activities of a service-based apglion

life-cycle.

® The first version should contain only those jdimt tforce” us to set up a skeleton of a whole ayibn.

Activity/deliverable

RUP for SOA*

XP°

new services incl.
description, semantic

Reuse and/or
localization of
existing services

Refactoring existing
services

Implementatiordiscipline.
S

description documents can be
automated by appropriate tools.

Reuse of existing services and their
integration into an application.

Can take place within periodic
revisions.

Assignment of
services and
components into
appropriate places
within SOA.

Part of thddentify Servicectivity.

No explicit support.

Functional tests

Integration tests

Availability and
performance testing

Tests are implemented within t
Implementatiordiscipline

N€ests are written before core
functionality is implemented.

activities and processed within
activities of theTestdiscipline.

Run whenever new addition is
available.

Testingactivity.

Application assembly

Performed within integration
activities of thdmplementation
discipline.

Continuous integration (end of a day
integration tests).

Deployment of the
services into operatir
environment

Service publishing

Supported by activities of the
Deploymentiscipline.

If version is finished and integration
tests passed; data migration; operati(
tests.

Might be run as a part of final end-of-
the-day work upload.

Operation monitoring

Maintaining problem
logs

Detecting, localizing
and solving failures

Tuning the
operational
environment

Routine maintenance

Feedback evaluation
and process
improvements

The RUP methodology life-cycl

gYes, supported.

ends with théransitionphase ang
there are no further guidelines

iImplementation made ready for
automated recording.

related to the product operations

Hot-line, Help desks etc.

Yes, supported.

Yes, supported.

Focused more on developed softwarg
than the business process
improvements.

14

Table 2 - level of support application life cycle XP and RUP for SOA

4 Conclusion

The XP methodology as a representative of agilehaaetiogies is primarily focused on as soon as
possible, relatively small and frequent, softwaebwries. The core sequence of activities consikts

creating tests, implementing functionality, pres¢ioh to the customer and usage of feedback in the
next iteration.

From the perspective of a service-based applicaterelopment and operation, the methodology is
suitable mainly for application types Il and lleés2.1) — adapters and single service applicatians.
those cases XP covers all (or almost all) lifeleyaxctivities and there is no need to support those
activities related to composite applications, likecess modeling, service integration and coopmrati
within a process, putting a service into SOA orlighiing of a service.

In case of composite application, RUP for SOA plugiuides developers through the development
process by supporting all the life-cycle activitiegcept “Operation & Maintenance” tasks. In
addition, there is a special plug-in of RUP focusedeXtreme Programming, thanks to which RUP
can turn to account XP advantages.

5 Bibliography

[1] Arsanjani, A.:Service-oriented modeling and architectuilM developerWorks, IBM, 2004.
URL http://www-128.ibm.com/developerworks/webserviabsary/ws-soa-designl/

[2] Beck, K.:Extrémni programovanPraha, Grada 2002. ISBN 80-247-0300-9.

[3] Benatallah, B., Casati, F., Nezhad, H. R. M. andriiani F.:.Developing Adapters for Web
Services IntegratiarAdvanced Information Systems Engineering, 17tarimational
Conference, CAISE 2005, Porto, June 13-17, 2005.

URL http://www.hpl.hp.com/personal/Fabio_Casati/docE€&ab-adapters.pdf

[4] High, R., Kinder, S. and Graham, 8M’s SOA Foundation: An Architectural Introduction
and OverviewlIBM, November 2005.
URL http://www-128.ibm.com/developerworks/webserviabsdry/ws-soa-whitepaper/

[5] Channabasavaiah, K., Holley, K. and Tuggle Migrating to a service-oriented architecture,
Part 1 IBM developerWorks, IBM, 2003.
URL http://www-128.ibm.com/developerworks/webservidbsdry/ws-migratesoa/

[6] Johnston, SModeling Service-oriented solutiariBM Rational, IBM developerWorks. 2005.
URL http://www-128.ibm.com/developerworks/rational/Aiy/jul05/johnston/

