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Abstract

We introduce the tolerance approach to the construction of fuzzy regression
coefficients of a possibilistic linear regression model with fuzzy data (both input
and output). The method is very general: the only assumption is that the
fuzzy data are unimodal and their α-cuts are efficiently computable. We take
into account possible prior restrictions of the parameters space: we assume that
the restrictions are given by linear and quadratic constraints. The method for
construction of the possibilistic regression coefficients is in a reduction of the
fuzzy-valued model to an interval-valued model on a given α-cut, which is further
reduced to a linear-time method computing with endpoints of the intervals. The
speed of computation makes the method applicable for huge datasets.

Unlike various approaches based on mathematical programming formula-
tions, the tolerance-based construction preserves central tendency of the result-
ing regression coefficients. In addition, we prove further properties: if inputs
are crisp and outputs are fuzzy, then the construction preserves piecewise lin-
earity and convex shape of fuzzy numbers. We derive an O(n2p)-algorithm for
enumeration of breakpoints of the membership function of the estimated coeffi-
cients. (Here, n is the number of observations and p is the number of regression
parameters). Similar results are also derived for the fuzzy input-and-output
model.

We illustrate the theory for the case of triangular and asymmetric Gaussian
fuzzy inputs and outputs of an inflation-consumption model.
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1. Introduction

1.1. Traditional regression with crisp data. Notation.

General formulation. We consider the linear regression model

yi = xT
i β + εi, i = 1, . . . , n, (1)

where the vector of regression parameters β = (β1, . . . , βp)
T is unknown and is

to be estimated. The data y = (y1, . . . , yn)
T are called outputs and the data xi =

(xi1, . . . , xip)
T, i = 1, . . . , n, are called inputs. The matrix X = (x1, . . . , xn)

T is
the matrix of regressors. The symbol εi stands for the random error.

Parameter space. The parameter space is denoted by B. It formalizes
prior information about β: it is assumed that β ∈ B. The structure of B

usually arises from the physical, technical or economic meaning of regression
parameters.

We consider either the unconstrained case, where B = R
p, or the constrained

case, where we assume constraints of the form

B = {b | Ub ≤ z, ‖Cb− d‖2 ≤ g}

with known U, z, C, d, g. (Inequalities are understood componentwise.) For
example, when the regression parameters are a priori known to be nonnegative,
then Y = −Ip×p, z = 0p×1 and C, b, g are empty.

A regression problem is then given by a triple (y,X,B).

1.2. The possibilistic regression concept with crisp data.

In traditional regression the task is to estimate the parameters β ∈ B from
the data (y,X). In possibilistic regression, the task is to compute a feasible
solution of the problem (y,X), which is a set B ⊆ B such that

(∀i)(∃b ∈ B) yi = xT
i b︸ ︷︷ ︸

(?)

. (2)

In addition, the task is to find a feasible solution which is, in a sense, minimal,
or “the best”; this will be formalized later in Sections 3.2 and 3.3.

The condition (?) tells us that the i-th data point (yi, xi) is covered by B.

Remark 1. Possibilistic regression has been studied by several authors (see
e.g. [21]) as a method complementary to traditional regression. The main goal
of traditional regression is to capture the average behavior of the system mod-
eled by (1); this is how estimators, such as least squares, are usually designed.
Possibilistic regression belongs to the class of data envelopment methods, where
the main goal is to capture also the best-case and worst-case behavior of the
system under consideration. This viewpoint is useful e.g. in civil engineering —
when building bridges, we usually prefer that they would not fall down even in
the worst case, rather than on average.
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2. Possibilistic regression with fuzzy data: Problem formulation

2.1. Notation.

For a fuzzy number ã, let µã denote its membership function. We restrict
ourselves to the class of fuzzy numbers with unimodal membership functions.
Then, modã is the unique modus. We say that ã is piecewise linear if µã is a
piecewise linear function. We say that ã is convex-shaped if the function µã is
convex on the interval (−∞,modã) as well as on the interval (modã,∞). We

define ã ⊆ b̃ if µã(ξ) ≤ µ
b̃
(ξ) for all ξ.

Closed intervals are denoted in boldface. They can be represented either by
endpoints or by the center and radius:

a = [a, a] = [ac ± a∆].

A similar notation A, A,A,Ac, A∆ is used for an interval matrix (or vector) A.
The space of (m×n) interval matrices is denoted by IR

m×n. Interval arithmetic
is defined naturally [1, 19]:

a± b = [a± b, a± b], a · b = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)].

The α-cut of a fuzzy number ã is an interval denoted by aα = [aα, aα],
where aα = infξ µã(ξ) ≥ α and aα = supξ µã(ξ) ≥ α. We say that ã is bounded
if aα=0 is bounded; otherwise ã is unbounded. Arithmetic on fuzzy numbers is
defined via α-cuts: for fuzzy numbers ã, b̃, c̃ and an operation ◦ ∈ {+,×} we

have c̃ = ã ◦ b̃ iff cα = aα ◦ bα for every α ∈ (0, 1].
The absolute value |A| of a real-valued matrix (vector) A is understood

componentwise.

2.2. Feasibility.

We follow the traditional possibilistic approach to fuzzy regression. In the
context of fuzzy data, this model was studied in [2, 3, 5, 7, 20, 21, 22, 25],
among many others. We naturally generalize the feasibility concept to take into
account the (possibly) restricted parameter space B.

First we define the notion of feasibility for the special case when X is crisp
(“crisp-input-fuzzy-output model”).

Definition 2. A fuzzy vector b̃ is a feasible solution of the possibilistic regres-
sion problem (ỹ, X,B) if

(i) ỹ ⊆ Xb̃ and (ii) bα=0 ⊆ B. (3)

Remark 3. We could have used a more general definition: a set is γ-feasible
if ỹ ⊆ Xb̃ and bα ⊆ B for all α ≥ 1 − γ. Here, 1-feasibility is the same as
feasibility in the sense of Definition 2. The γ-definition would not make any
difference in the forthcoming theory; it is straightforward to generalize it from
1-feasibility to γ-feasibility and this is left to the reader.
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Condition (i) in (3) can be restated in terms of α-cuts:

(∀α)(∀y ∈ yα)(∀i)(∃b ∈ bα) yi = xT
i b,

showing that Definition 2 indeed generalizes (2) in the sense that “all data must

be covered by b̃, on every α-level”.
When both (ỹ, X̃) are fuzzy (“fuzzy-input-fuzzy-output model”), we make

another natural step in generalization of the definition.

Definition 4 (fuzzy-input-fuzzy-output model). A fuzzy vector b̃ is a feasible

solution of the possibilistic regression problem (ỹ, X̃,B) if

(i) (∀α)(∀y ∈ yα)(∀X ∈ Xα)(∀i)(∃b ∈ bα) yi = xT
i b and (ii) bα=0 ⊆ B.

Observe that Definition 2 is a special case of Definition 4 for X crisp. Defi-
nition 4 again follows the possibilistic paradigm and tells us that every possible
data point X ∈ Xα and y ∈ yα must be covered.

2.3. Organization of the paper.

We consider separately two questions: (i) testing whether a given solution is

feasible for the model (X̃, ỹ); and (ii) how to find a feasible solution b̃ which is
in a sense “the best one”, or “the minimal one”. Step (ii) will be done in terms
of the tolerance approach in Section 3.3.

First we develop the tolerance approach for crisp-valued data (Section 3) and

interval-valued data (Section 4). Then, its application to α-cuts of (ỹ, X̃) yields
the method for fuzzy data. We will prove several interesting properties of the
constructed coefficients b̃. Section 5 is devoted to the crisp-input-fuzzy-output
model and Section 6 is devoted to the most general fuzzy-input-fuzzy-output
model.

3. Crisp data

3.1. Feasibility.

We are to test whether a given B ⊆ R
p is feasible for a given crisp dataset

(y,X). For the forthcoming theory it will be sufficient to restrict to the case
when B is a p-dimensional interval (but the question is interesting for more
general sets B, too).

Theorem 5. Let B = {b | Ub ≤ z, ‖Cb − d‖ ≤ g}. Then an interval vector
b ∈ IR

p is feasible if and only if the following system is solvable:

Xbc − |X |b∆ ≤ y ≤ Xbc + |X |b∆, (4a)

Ubc + |U |b∆ ≤ z, (4b)

Cbc + |C|b∆ − d ≤ h, (4c)

−Cbc + |C|b∆ + d ≤ h, ‖h‖ ≤ g. (4d)
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Proof. The constraint (4a) follows from the reformulation of y ⊆ Xb as y ∈
Xb = [Xbc − |X |b∆, Xbc + |X |b∆]; see e.g. [1, 19].

The condition Y b ≤ z ∀b ∈ b can be reformulated as Y bc + |Y |b∆ ≤ z since
again Y b = [Y bc − |Y |b∆, Y bc + |Y |b∆].

Eventually, the third condition ‖Cb− d‖ ≤ g ∀b ∈ b can be reformulated as
|Cb − d| ≤ h, ‖h‖ ≤ g ∀b ∈ b. Since maxb∈b |Cb − d| = |Cbc − d| + |C|b∆, the
remaining constraints follows.

Notice that (4) are linear and convex quadratic constraints, which are easily
checked for solvability. Provided B contains linear inequalities only, then all
constraints in (4) are linear, too.

3.2. Finding a solution: General discussion.

If (4) is solvable, then it typically has infinitely many solutions. That is why
a suitable solution must be chosen. In accordance with [14, 17, 20, 23, 25], we
can utilize the linear programming problem

min

p∑

i=1

b∆i subject to (4), (5)

or the convex quadratic programming problem

min

p∑

i=1

(b∆i )
2 subject to (4).

As it was several times mentioned [10, 16, 22, 23], these approaches suffer from
several drawbacks. In particular, they often do not respect the central tendency.
Central tendency is the following property: given a solution b, its center bc

should provide a reasonable fit for data (y,X) with respect to the traditional
goodness-of-fit measures, such as R-squared.

That is why we employ the successful tolerance approach developed in [10]:
first, we fix the center bc by traditional crisp-data fitting methods and then we
extend the centers to intervals, assuring feasibility and minimality.

3.3. Tolerance approach.

Step 1. First we determine the center bc, whose central tendency we want
to respect, by traditional data fitting methods. For example, we can use the
least squares bc = (XTX)−1XTy.

Step 2. Let a scaling vector c ≥ 0, c 6= 0, called tolerance vector, be given
by a user. We seek for bδ ∈ IR

p in the form

b
δ = [bc ± δc],

The coefficient δ ≥ 0 is called tolerance quotient. We say that δ is feasible if bδ

is feasible.
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By introduction of the user-specified tolerance vector c we can control the
widths of the resulting intervals bδi . Typically, it is chosen as c := (1, . . . , 1)T

for absolute tolerances and c := |bc| for relative tolerances. Nevertheless, it can
be be set up in any other way depending on the significance of parameters and
decision maker’s preferences. For example, setting ci0 = 0 forces bδi0 to be crisp;
this is useful e.g. when the value bci0 is assumed to be known exactly.

Case I: B is unconstrained. The minimal δ ≥ 0 such that all observations
are covered is called optimal. It is denoted by δ∗, and is computed as follows.

Theorem 6 ([10]). If there is i ∈ {1, . . . , n} such that |xT
i |c = 0 and yi 6= xT

i b
c

then there exists no feasible δ. Otherwise,

δ∗ = max
i:|xT

i
|c>0

|yi − xT
i b

c|

|xT
i |c

, (6)

where max ∅ = 0 by definition.

Case II: B is constrained. For the constrained case, feasibility of bδ
∗

,
can be easily tested by Theorem 5.

Case III: B is constrained only by linear constraints Ub ≤ z. In this
case, we do not need Theorem 5 in its full generality. We can easily compute

the maximal δ1 ≥ 0 such that bδ
1

⊆ B as

δ1 = min
i:|uT

i
|c>0

yi − uT
i b

c

|uT
i |c

, (7)

where uT
i is the i-th row of U . It is easy to prove:

Theorem 7. If δ∗ ≤ δ1, then δ∗ is feasible.

Remark 8. If δ∗ > δ1, then we can try to extend bδ
∗

to a feasible interval vector

b ⊇ bδ
1

such that central tendency and scaling vector is maximally respected.
This is exactly the technique developed in [6, 9]. However, even this approach
does not guarantee feasibility, so in that case is seems better to employ some
optimization problem discussed in Section 3.2. Alternatively, we can try to find
a minimal perturbation of c such that the tolerance approach will be solvable.
This leads to the optimization problem

min
b∆∈R

p

h∈R
n

‖c− b∆‖ subject to Xb− |X |b∆ ≤ y ≤ Xb+ |X |b∆,

Ub+ |U |b∆ ≤ z,

Cb+ |C|b∆ − d ≤ h,

−Cb+ |C|b∆ + d ≤ h, ‖h‖ ≤ g.

Provided we use the Euclidean norm, this is a convex quadratic programming
problem. Provided we employ `1 or `∞-norm and there are no quadratic con-
straints in B, then it is a linear program.
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4. Interval-valued data

Interval regression was intensively investigated in the recent decades. The
possibilistic concept for interval data was originally developed by Tanaka et al.
[24] (see also [20, 23]) and it has been applied in a number of practical problems.

There are different methods used for possibilistic regression. The basic one
employs a linear programming formulation [14, 17, 20, 25]. It is quite simple and
requires small computational effort. However, this method suffers from several
undesirable properties. Often some of the estimated regression parameters tend
to be crisp while it simultaneously produces a few of unexpectedly wide interval
parameters [12, 13, 16, 23]. The second undesirable property is non-centrality
discussed in Section 3.2.

To overcome these drawbacks, various alternative methods have been pro-
posed. A quadratic programming model was proposed in [23]. Recently, a lot
of effort was done in interval regression analysis using support vector machines
[4, 8, 11, 12, 13, 15]. In [10], a tolerance based approach was presented: It
not only overcomes the above mentioned drawbacks, but also is efficiently com-
putable. That is why our method is based on this approach.

First we consider the crisp-input-interval-output case (y, X). Then we turn
the interval-input-interval-output case (y,X).

4.1. Crisp-input-interval-output model

Feasibility. Let a dataset (y, X) be given with interval y = [y, y]. Now, an
interval vector b ∈ IR

p is feasible for the problem (y, X) if (∀i)(∀yi ∈ yi)(∃b ∈
b) yi = xT

i b, or y ⊆ Xb for short. As in Theorem 5, feasibility can be easily
verified.

Theorem 9. Let B = {b | Ub ≤ z, ‖Cb − d‖ ≤ g}. The interval vector b is
feasible iff

Xbc − |X |b∆ ≤ y, (8a)

Xbc + |X |b∆ ≥ y, (8b)

Ubc + |U |b∆ ≤ z, (8c)

Cbc + |C|b∆ − d ≤ h, (8d)

−Cbc + |C|b∆ + d ≤ h, ‖h‖ ≤ g. (8e)

Proof. Analogous to Theorem 5.

Finding a solution: General discussion. One of the first approaches
[14, 17, 20, 25] was to solve the LP problem

min
bc,b∆

n∑

i=1

|xT
i |b

∆ s.t. y
i
≥ xT

j b
c − |xT

j |b
∆, i = 1, . . . , n,

yj ≤ xT
j b

c + |xT
j |b

∆, i = 1, . . . , n,
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and it is not surprising that the non-centrality problem is here analogous to the
discussion of Section 3.2. Again, we resolve it by the tolerance approach.

Tolerance approach. Let a crisp estimate bc be given; say for example that
it results from centralized least squares bc = (XTX)−1XTyc. Let the vector of
tolerances c ≥ 0, c 6= 0 be given. We are to find the minimum tolerance quotient
δ∗ such that bδ

∗

= [bc± δ∗c] is feasible for (X,y). This question can be reduced

to the crisp-data case. (We do not discuss feasibility of bδ
∗

in B any more since
feasibility can be tested by Theorem 9.)

Theorem 10 ([10]). For i = 1, . . . , n let

yi :=

{
y
i

if |y
i
− xTbc| ≥ |y − xT

i b
c|,

yi otherwise.

Compute δ∗ from (6) with data (y,X). Then, δ∗ is the optimal tolerance quotient
for (y, X).

4.2. Interval-input-interval-output model
Feasibility. In the possibilistic approach to regression, feasibility corre-

sponds to existence of an interval vector b ∈ IR
p such that (∀i)(∀X ∈ X)(∀y ∈

y)(∃b ∈ b) yi = xT
i b. Said informally, b must cover every data point X ∈ X

and y ∈ y.

Theorem 11. Let B = {b | Ub ≤ z, ‖Cb− d‖ ≤ g}. Then an interval vector b

is feasible if and only if

yi ≤
∑

j

dij , (9a)

dij ≤ X ijb
c
j − |Xij |b

∆
j , (9b)

dij ≤ X ijb
c
j − |Xij |b

∆
j , (9c)

dij ≤ 0 if 0 ∈ Xij , (9d)

y
i
≥

∑

j

gij , (9e)

gij ≥ X ijb
c
j + |Xij |b

∆
j , (9f)

gij ≥ X ijb
c
j + |Xij |b

∆
j , (9g)

gij ≥ 0 if 0 ∈ Xij , (9h)

Ubc + |U |b∆ ≤ z, (9i)

Cbc + |C|b∆ − d ≤ h, (9j)

−Cbc + |C|b∆ + d ≤ h, ‖h‖ ≤ g, (9k)

is feasible.

Proof. The interval vector b is feasible if and only if b ⊆ B and

y ⊆ Xb ∀X ∈ X.
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The latter can be expressed as

y ≤ Xb, y ≥ Xb, ∀X ∈ X.

Since Xb = Xbc − |X |b∆, we can write the first inequality as yi ≤ Xbc −
|X |b∆ ∀X ∈ X. The function Xbc − |X |b∆ is piecewise linear, so its minimum
is attained at Xij ∈ {Xij , X ij , 0}. Introducing an auxiliary vector of variables
di, we can equivalently write the inequality as

yi ≤ eTdi, dij ≤ X ijb
c
j − |X ij |b

∆
j , dij ≤ X ijb

c
j − |X ij |b

∆
j , dij ≤ 0 if 0 ∈ Xij ,

where e = (1, . . . , 1)T . Similarly we proceed for the other inequalities. Eventu-
ally, the condition b ⊆ B is handled as in the proof of Theorem 5.

The system (9) is linear, so its feasibility can by checked by means of linear
programming. Notice, however, that the system has a large number of variables
(dij , gij , hk and possibly bc, b∆, similarly to (5)). That is why a computationally
cheaper method might be desirable. Below, we propose simpler approach, but
we pay for the lower computational cost by strength since it works as a sufficient
condition only.

Theorem 12. Let B = {b | Ub ≤ z, ‖Cb− d‖ ≤ g}. Then an interval vector b

is feasible if

Xcbc −X∆|bc| − (|Xc|+X∆)b∆ ≥ y, (10a)

Xcbc +X∆|bc|+ (|Xc|+X∆)b∆ ≤ y, (10b)

Ubc + |U |b∆ ≤ z, (10c)

Cbc + |C|b∆ − d ≤ h, (10d)

−Cbc + |C|b∆ + d ≤ h, ‖h‖ ≤ g, (10e)

is feasible.

Proof. We already know that the interval vector b is feasible if and only

y ≤ Xbc − |X |b∆, y ≥ Xbc + |X |b∆, ∀X ∈ X.

Utilizing the estimates

Xbc ≥ Xcbc −X∆|bc|, |X |b∆ ≤ (|Xc|+X∆)b∆,

we replace y ≤ Xbc − |X |b∆ by the stronger condition

y ≤ Xcbc −X∆|bc| − (|Xc|+X∆)b∆.

Analogously we process the remaining constraints.

The system (10) is obviously much smaller than (9). On the other hand,
if bc, b∆ serve as variables, then the system (10) is nonlinear due to the abso-
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lute value. Good news is that we can equivalently reformulate it avoiding the
absolute value:

Xcbc −X∆d− (|Xc|+X∆)b∆ ≥ y,

Xcbc +X∆d+ (|Xc|+X∆)b∆ ≤ y,

bc ≤ d,

−bc ≤ d,

Ubc + |U |b∆ ≤ z,

Cbc + |C|b∆ − d ≤ h,

−Cbc + |C|b∆ + d ≤ h, ‖h‖ ≤ g.

Now we have a linear system consisting of only 3p variables (bc, b∆, d).
Tolerance approach. In [10], the authors designed the following reduction

of the “interval-input, interval-output” case to the crisp case. Notice that it can
slightly overestimate the optimal interval vector b, but it is efficient. It can be
proved the overestimation does not occur in some natural situations, e.g., when

0 6∈ bi, i = 1, . . . , p. (11)

Let the tolerance vector c ≥ 0, c 6= 0 and the central estimator bc be
given (for example, bc can be obtained from the central least squares bc =
[(Xc)TXc]−1(Xc)Tyc). The method constructs two auxiliary crisp-input-crisp-
output models

(y1, X1) and (y2, X2)

and computes their optimal tolerance quotients δ1, δ2, respectively, where

y1i := y
i
, x1

ij =

{
xij if bci ≥ 0,
xij if bci < 0,

y2i := yi, x2
ij =

{
xij if bci ≥ 0,
xij if bci < 0

for i = 1, . . . , n and j = 1, . . . , p. The resulting tolerance quotient δ∗ =
max{δ1, δ2} is minimal only under additional assumptions, such as the sign
invariancy assumption (11).

5. Fuzzy-valued data: Crisp-input-fuzzy-output model

First we study the case of crisp-input data (ỹ, X). We apply the tolerance
approach developed for interval-output data on the level of α-cuts of ỹ.

Again we assume that the central crisp estimate bc of regression coefficients
and the tolerance vector c ≥ 0, c 6= 0 are given. We are to construct a fuzzy
vector b̃, which is a feasible solution of (ỹ, X) and is of the form

bα = [bc ± δ∗(α)c]
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for every α, where δ∗(α) is the optimal tolerance quotient for the interval-output
problem (yα, X).

Discussion: how to choose bc. To get the initial crisp-value estimate bc,
any usual defuzzification method for ỹ can be used, e.g. taking the centroids y∗.
Then, crisp-data estimators for (y∗, X) yield the initial value bc.

5.1. Properties of the fuzzy regression coefficients.

To prove correctness—that b̃ is a well-defined unimodal fuzzy number—it
suffices to observe that δ∗(α) is a non-increasing function of α.

The following property shows that whenever we work in the class of piecewise
linear fuzzy numbers, then our method produces also fuzzy regression coefficients
in this class.

Theorem 13. If the fuzzy numbers in ỹ are piecewise linear, then so are the
fuzzy numbers in b̃.

Proof. We must prove that δ∗(α) is a piecewise linear function of α. The ab-
solute value in (6) can be w.l.o.g. omitted, depending on the sign of yi − xT

i b
c.

Therefore, if the endpoints yα
i
, yαi of α-cuts of ỹ are piecewise linear functions

of α, then δ∗ is a maximum of linear functions, so it is piecewise linear.

A similar property holds for the class of convex-shaped fuzzy numbers.

Theorem 14. If the fuzzy numbers in ỹ are convex-shaped, then so are the
fuzzy numbers in b̃.

Proof. Similarly as in the proof of Theorem 13, the absolute value in (6) can
be omitted, depending on the sign of yi − xT

i b
c. Therefore, if the endpoints

yα
i
, yαi are piecewise linear functions of α are convex functions of α, then δ∗ is

maximum of convex functions, so it is convex as well.

As a consequence of the above results, when the fuzzy numbers in ỹ are
triangular, then the fuzzy numbers in b̃ are piecewise linear and convex-shaped.
The following results shows that it may happen that even the elements in b̃ are
triangular provided some strong but quite natural assumptions hold.

Recall that the symmetric triangular fuzzy number ỹ = (y − y∆, y, y + y∆)
is defined by its α-cut as yα = [y ± (1− α)y∆].

Theorem 15. If ỹi is triangular ỹi = (yi − y∆i , yi, yi + y∆i ) with radius y∆i =

|xT
i |c, then the elements of b̃ are triangular, too.

Proof. According to the formula (6), the function δ∗(α) is maximum of linear
functions. By the assumptions, all these linear functions have the same slope,
so they cannot intersect (or coincide). Therefore, the maximum is attained for
a certain i constantly for all α ∈ [0, 1].
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5.2. Piecewise linear fuzzy numbers: Explicit construction of the fuzzy regression
parameters.

Suppose that the fuzzy numbers in ỹ are piecewise linear. As we observed,
the fuzzy numbers in b̃ are piecewise linear, too. We show a construction how
to compute the break points of the piecewise linear function µ

b̃i
. For the sake

of simplicity, we present the construction for the case ỹi is a triangular fuzzy
number ỹi = (yi − y∆i , yi, yi + y∆i ); a generalization is straightforward.

Suppose that y ≥ Xbc; if yi < xT
i b

c for some i, then multiply the ith row
by −1 (this is just for the simplification of exposition, no change of data is
necessary). Then δ∗(α) can be expressed as

δ∗(α) = max
i:|xT

i
|c>0

αy∆i + yi − xT
i b

c

|xT
i |c

.

Let the maximum be attained at i∗ for α = 1; if there are more possibilities,
take that one with the largest slope y∆i /(|xT

i |c). If i∗ is not the maximizer for
all α ∈ [0, 1], then there must exist the equilibrium

αy∆i + yi − xT
i b

c

|xT
i |c

=
αy∆i∗ + yi∗ − xT

i∗b
c

|xT
i∗ |c

for some i 6= i∗. By an easy algebraic treatment we have that the equilibrium
is attained for

α =
(yi − xT

i b
c)|xT

i∗ |c− (yi∗ − xT
i∗b

c)|xT
i |c

y∆i∗ |x
T
i |c− y∆i |xT

i∗ |c
. (12)

As long as α 6∈ (0, 1), we do not need to consider i any more. So for all admissible
i 6= i∗ we take that one which corresponds to the maximal α. This gives us the
break point of the fuzzy numbers in b̃, and analogously we proceeds further until
we come up to α = 0.

The computational cost is O(n2p) since in the worst case we have to compute
α from (12) for each pair of indices j, j′ ∈ {1, . . . , n}. Denoting ` the number of
resulting break-points, we can express the computational cost also as O(n`p).
Since the number of break-points is usually very mild, this bound gives more
accurate estimation.

5.3. Discussion: Other approaches to the construction of b̃.

In general, it is hard to say anything about the shape of the fuzzy regres-
sion parameters computed by more complicated optimization problems as other
authors often do (recall [14, 17, 20, 23, 25]). Nevertheless, it can be shown

that piecewise linearity of b̃ (assuming piecewise linearity of ỹ) is still preserved

when α-cuts of b̃ are expressible as linear programs (5). (But note that these
α-cuts need not be nested; it means that generally it is not guaranteed that (5)

produces a well-defined fuzzy numbers in b̃.)
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xi 1 2 3 4 5 6 7 8
y1i (pessimistic) 12 10 15 15 25 30 45 70
y2i (modal) 25 17 28 28 45 60 55 95
y3i (optimistic) 29 28 38 60 60 65 90 100

Table 1: Data for Section 5.4.

Theorem 16. If the fuzzy numbers in ỹ are piecewise linear, then so are the
fuzzy numbers in b̃ provided α-cut interval regression problems are computed by
(5) and the result gives well-defined fuzzy numbers in b̃.

Proof. Denote the system (4) as Az ≤ a, where z is a vector of variables con-
taining bc and b∆, A is the constraint matrix, and a is the right-hand side vector
containing y, among others. It is known that an optimal solution is attained at
a vertex taking the form of z = A−1

B aB, where B is an optimal basis and the
expressions AB, aB stand for the restriction to basic rows. Now, when yα, yα

are piecewise linear functions of α, then so is z and therefore an optimal solution
also moves piecewise linearly. (The breakpoint can be also occur when a basis
is changed.) Since the midpoint and the radius of bα changes piecewise linearly,

the fuzzy vector b̃ has piecewise linear shape.

Since the breakpoints can occur when an optimal basis is changed, their
number can potentially be very high (or, at least the proof does not indicate a
nontrivial bound).

5.4. Example.

In this section we illustrate the tolerance approach by adaptation of an
example from [23], where the quadratic trend

yi = b1 + b2xi + b3x
2
i , i = 1, . . . , n := 8

is modeled. Here, xi = 1, . . . , 8 are crisp inputs and the values of the output vari-
able y are expert-given: each value is given as a triplet y1i , y

2
i , y

3
i , corresponding

to a pessimistic, modal and optimistic estimate of outcome. Particular values
of this example are summarized in Table I.

Model I: We model ỹi as the triangular fuzzy number (y1i , y
2
i , y

3
i ).

Model II: We model ỹi as the asymmetric Gaussian fuzzy number with mem-
bership

µỹi
(ξ) =





exp
(
− (ξ−y2

i )
2

1

2
(y2

i
−y1

i
)2

)
if ξ ≤ y2i ,

exp
(
−

(ξ−y2

i )
2

1

2
(y3

i
−y2

i
)

)
if ξ > y2i .

The data are depicted in Figure 1, together with the reference parabola y =
bc1 + bc2x+ bc3x

2, where

bc = (XTX)−1XTy2 = (26.91,−5.72, 1.68)T

13
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Figure 1: Example 5.4. Output variable modeled as a triangular fuzzy numbers (solid lines)
and asymmetric Gaussian fuzzy numbers (dashed lines), and the central parabolic trend based
on modal values y2.

was calculated by the least squares from the modal estimates y2.
Relative tolerances. The choice c = |bc| is called relative tolerance; here, the

widths should be proportional to the absolute values of bc.
Absolute tolerances. The choice c = (1, 1, 1)T is called absolute tolerance;

here, the widths have equal weights.
The resulting membership functions of b̃, for both absolute and relative

tolerances, are depicted in Figure 2 (solid lines: triangular ỹi, dashed lines:
Gaussian ỹi). Recall that they have the following property: given α, the α-cut

of b̃ covers the α-cut of ỹi for all i and is the minimal one with this property
with respect to the prescribed tolerance vector c. Moreover, the central tendency
around bc — the natural least-squares estimator — is guaranteed.

Moreover, we can see that the membership functions are piecewise linear
and convex-shaped if ỹi are triangular (see Theorems 13, 14).

Restriction of the parameter space. The Gaussian fuzzy numbers are
unbounded. But the triangular fuzzy numbers are bounded; we can see that in
the triangular case, b̃ are bounded by

bα=0
relative = [16.4, 37.1]× [−7.88,−3.55]× [1.04, 2.32]

14
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Figure 2: Example 5.4. The fuzzy regression coefficients b̃ for relative tolerances (upper triplet)
and absolute tolerances (bottom triplet). The results for triangular ỹi are depicted by solid
lines and the results for Gaussian ỹi are depicted by dashed lines.

for relative tolerances and by

bα=0
absolute = [23.29, 30.54]× [−9.34,−2.10]× [−1.94, 5.31]

for absolute tolerances. Recall that if the parameter space B is restricted, then
the model is said to be feasible if bα=0 ⊆ B. The most natural restriction of
our model is B = {b ∈ R

3 | b3 ≥ 0}. We can immediately see that the model
with relative tolerances is feasible, while the model with absolute tolerances is
not. This shows that the former model is more suitable than the latter.

6. Fuzzy-valued data: Fuzzy-input-fuzzy-output model

Now we consider the most general case (ỹ, X̃) where all data can be fuzzy.

Recall that the notion of feasibility of b̃ w.r.t. (ỹ, X̃,B) was formalized in Defi-
nition 4.

6.1. Tolerance approach.

We construct the vector b̃ by reduction to the interval-input-interval-output
case via α-cuts.

Assume again that we are given an initial crisp estimate bc of regression
coefficients (say, obtained by crisp least squares from defuzzified (ỹ, X̃)), whose

15



i 1 2 3 4 5 6 7 8 9 10
yi (consumption, crisp) 39 49 30 45 43 54 39 66 60 53
Mi (income, crisp) 44 48 50 50 51 60 65 66 66 70
π1

i
(exp. infl.: optimistic) 3.7 3.8 2.3 6.0 3.9 4.6 -1.6 5.2 6.2 2.2

π2

i
(exp. infl.: modal) 4.0 6.0 3.0 7.0 5.0 6.0 1.0 7.0 8.0 4.0

π3

i
(exp. infl.: pessimistic) 4.3 7.5 5.1 11.5 5.3 6.3 1.3 7.3 9.6 7.3

i 11 12 13 14 15 16 17 18 19 20
yi (consumption, crisp) 55 45 63 41 59 69 54 60 51 73
Mi (income, crisp) 72 80 83 85 85 85 90 99 101 120
π1

i
(exp. infl.: optimistic) 8.7 0.0 1.6 0.1 1.1 0.6 2.5 3.2 0.9 3.1

π2

i
(exp. infl.: modal) 9.0 2.0 3.0 1.0 5.0 6.0 3.0 4.0 2.0 6.0

π3

i
(exp. infl.: pessimistic) 11.6 3.2 3.3 2.7 5.3 6.3 4.3 4.3 2.3 7.2

Table 2: Data for regression model (13).

central tendency should be preserved, and a tolerance vector c ≥ 0, c 6= 0. We
are to construct the fuzzy vector b̃, which is a feasible solution of (ỹ, X̃), and is
of the form

bα = [bc ± δ∗(α)c]

for every α, where where δ∗(α) is the optimal tolerance quotient for the interval
regression problem (yα,Xα).

What can be said about the shape of the resulting fuzzy vector b̃ entries?

Theorem 17. If the fuzzy numbers in ỹ, X̃ are piecewise linear, then the fuzzy
numbers in b̃ are piecewise hyperbolic.

Proof. For each α ∈ [0, 1], the α-cut reduces the problem to interval-input-
interval-output regression. The tolerance quotient is then computed by a for-
mula of type (6) since even the interval regression is solved by a reduction to a
double crisp regression model. Clearly, yα

i
, yαi , x

α
ij , x

α
ij depend piecewise linearly

on α, so the function (6) is a maximum of fractions of piecewise linear functions.
Geometrically it is of a piecewise hyperbolic shape.

6.2. Application.

It has been repeatedly demonstrated that consumption expenditures of house-
holds are better explained by subjectively perceived inflation or inflation expec-
tations, rather than the true reported inflation by official statistics or inflation
predictions published by authorities, banks or experts. (More on measurement
of subjective expectations can be found e.g. in [18].) Subjectively perceived in-
flation often differs significantly from the official inflation rate because different
households have a different structure of consumption. For example, regular sub-
urban commuters are often more sensitive to inflation driven by prices of fuels
(since fuels have a significant weight in their individual market basket) than
urban residents. Another example: a household may be sensitive to inflation
driven by currency deprecitation if imports have a significant weight in its indi-
vidual market basket, while other households may be insensitive to changes in
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Figure 3: Membership functions of fuzzy input data (Section 6.2): subjectively perceived
inflation expectations π̃i modeled as triangular fuzzy numbers (solid lines) and asymmetric
Gaussian fuzzy numbers (dotted lines).
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Figure 4: Fuzzy regression coefficients b̃ for model (13) with triangular inputs π̃i (solid line)
and Gaussian inputs π̃i (dashed line).
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exchange rates. Generally, the structure of consumption differs among regions,
age cohorts and also reflect individual optimism of pessimism.

We consider the cross-sectional model

yi = β1 + β2Mi + β3πi + εi, (13)

where we have a sample of n = 20 households. For ith household, yi stands for
consumption expenditures, Mi stands for disposable income and πi stands for
subjective perception of future inflation. The data yi and Mi are crisp. The
subjective inflation πi has been measured as a triplet of values (π1

i , π
2
i , π

3
i ): each

household has been asked to give an optimistic (π1
i ), modal (π2

i ) and pessimistic
(π3

i ) subjective prediction of inflation for the next period.
Model I. We model πi as the triangular fuzzy number π̃i = (π1

i , π
2
i , π

3
i ).

Model II. We model πi as the asymmetric Gaussian fuzzy number π̃i with

µπ̃i
(ξ) =





exp

(
− (ξ−π2

i )
2

1

2
(π2

i
−π1

i
)2

)
if ξ ≤ π2

i ,

exp
(
− (ξ−π2

i )
2

1

2
(π3

i
−π2

i
)2

)
if ξ > π2

i .
(14)

Data are summarized in Table II and the membership functions of π̃1, . . . , π̃n

are depicted in Figure 3 for both Models I and II.
The initial crisp estimate

bc = (8.11, 0.41, 3.1)T

was obtained by least squares from modal values π2
i . It shows that on average,

each point of subjectively perceived inflation contributes to consumption expen-
ditures by $3.1. Now we construct the fuzzy regression coefficients b̃ with two
choices: relative tolerances c = |bc| (= bc) and absolute tolerances c = (1, 1, 1)T.
The resulting fuzzy coefficients are depicted in Figure 4.

6.3. Generalization of the example.

Now we extend the example from the previous section to the case when also
the output variable ỹ is fuzzy.

Model I. Let ỹi be the triangular fuzzy number (yi−5k, yi, yi+5k), where yi
are taken from Table II and k = 0, 1, . . . , 4. The resulting regression coefficients
b̃, for both relative and absolute tolerances, are depicted in Figure 5. We can
see that the more uncertainty in y, the wider are the estimated coefficients b̃.
This illustrates that the width of the regression coefficients b̃ can be understood
as a measure of uncertainty in data.

Model II. Now we consider ỹi to be the Gaussian fuzzy number constructed
from the triplet (yi − 5k, yi, yi + 5k) in the same manner as in (14), for k =
0, . . . , 4. The resulting regression coefficients are depicted in Figure 6.

6.4. Conclusions.

We have adapted the tolerance approach for possibilistic linear regression
with fuzzy-valued inputs and/or outputs. The method is applicable to any
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Figure 5: Fuzzy regression coefficients b̃ for model (13) with triangular inputs π̃i and triangular
outputs ỹi = (yi − 5k, yi, yi + 5k) with k = 0, 1, . . . , 4.

−10 0 10 20

0.2

0.4

0.6

0.8

1

−0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

0 5 10

0.2

0.4

0.6

0.8

1

7 8 9

0.2

0.4

0.6

0.8

1

−1 0 1

0.2

0.4

0.6

0.8

1

2 3 4

0.2

0.4

0.6

0.8

1

Relative tolerances:

Absolute tolerances:

b̃1 b̃2 b̃3

b̃1 b̃2 b̃3

Figure 6: Model II: Gaussian inputs π̃i and Gaussian outputs with k = 0, 1, . . . , 4.
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class of unimodal fuzzy numbers, not necessarily with a bounded support: in
illustrative examples we used both triangular fuzzy data (which are bounded)
and asymmetric Gaussian fuzzy data (which are unbounded). The method

constructs fuzzy regression coefficients b̃ respecting the central tendency of a
crisp-data estimator applied to defuzzified data, and is minimal with respect
to a user-given tolerance vector c. If the data are piecewise linear fuzzy num-
bers, then the resulting coefficients are piecewise-linear (in the crisp-input-fuzzy-
output model) ot piecewise-hyperbolic (in the fuzzy-input-fuzzy-output model).
Moreover, the method is computationally very “cheap”, and thus can be used
for large datasets.

The method constructs reductions fuzzy model → interval model → crisp
model. With the basic idea in mind, it is straightforward to go further to type-
k fuzzy numbers (if a reader considers it to be useful): type-k fuzzy model →
type-(k − 1) fuzzy model → · · · → type-1 fuzzy model → interval model → crisp
model.
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