
An interactive approach to rule–based
transformation of XML documents*

Marek RŮŽIČKA, Vojtěch SVÁTEK

Department of Information and Knowledge Engineering,
University of Economics, Prague

Nám. W. Churchilla 4, 130 67 Praha 3, Czech Republic
ruza.m@volny.cz svatek@vse.cz

Abstract. Transformation of XML documents is typically understood as non-
interactive. In contrast, we formulate the specific task of XML–based
transformation of knowledge contained in semi–formal documents, which
heavily depends on human understanding of element content and thus requires
frequent user intervention. Yet, many aspects of this process are pre-
determined, and their automation is highly desirable. We implemented a
software tool (called Stepper) supporting interactive step–by–step
transformation of ‚knowledge blocks‘. The transformation is governed by rules
expressed in a new ‘interactive transformation’ language (called XKBT), while
its non–interactive aspects are handled by embedded XSLT rules.

Keywords: XML, transformation, document content.

1 Introduction

Abundant use of XML-based mark–up languages in the last years obviated the need
for a related but distinct type of languages: those defining transformations from one
mark–up language to the other [1, 2, 8] or from a mark–up language to a different
(e.g. relational) representation and vice versa [2, 4]. Transformations are typically
content–independent (or, merely depend on syntactical properties of the content), and
thus can be performed fully automatically. In this paper, in contrast, we consider the
situation when the transformation result depends on semantic (machine–undetectable)
distinctions of marked–up content. The transformation thus has to rely on co–
operation between an interactive software tool and a human user.

A prototypical situation arose in our original domain of interest: computerised
clinical guidelines, where the need for transformation of mark–up structures emerges
in two distinct flavours. First, the original free text of the guideline document
(defining the recommended course of actions to be undertaken by the physician if a
particular disease is encountered with the patient) has to be converted to a more
formal representation [7]. Second, several formal models (with existing XML syntax)
of computerised guidelines have been developed, and knowledge has to be transferred

* The research has been partially supported by project no. 201/00/D045 of the Grant Agency of

the Czech Republic, ‘Construction of knowledge models in connection with text documents’.

Lubos Popelínský (ed.), DATAKON 2003, Brno, 18.-21. 10. 2003, pp. 1-1.

 An interactive approach to rule-based transformation of XML documents 2

between them (for a comparative overview of guideline models, see [9]). In both
situations, ambiguities arise that have to be resolved by human user, often even by a
clinical expert. Yet, many sub–processes can be automated, and even for the
remaining ones, the user should not have full freedom to manipulate the XML
structures. Support for interactive but foreseeable transformation is thus needed.

The structure of the paper is as follows. In section 2 we formulate the principles of
our approach to interactive ‘knowledge block transformation’. In section 3 a concrete
transformation language (XKBT) is proposed and illustrated on a complex example.
Section 4 describes an implemented tool (Stepper) that conforms to the principles and
uses the XKBT language. Finally, section 5 summarises the whole approach.

2 Principles of stepwise interactive transformation of knowledge blocks

The key principle, previously formulated in [7] for the particular case of medical
guideline formalisation, is explicit separation of partial transformation steps, the
input and output of which conforms each to a distinct schema language. This implies
that interventions of the user into the transformation process take place in the context
of a given step, and are constrained by the output language. Each step is carried out
via rules from a certain rule set. The role of user is to repeatedly select the input
‘knowledge block’ to be processed, the rule to be applied on it, and the way the
output ‘knowledge block’ is assembled.

The rest of this section consists of formal definitions framing our approach. Due to
limited space, some definitions are however ‘sloppy’ and refer to notions explained
informally in section 3, which is devoted to the XKBT transformation language.

Definition 1. A knowledge block is either atomic or compound.
An atomic knowledge block is an XML element e together with its (arbitrary) tree
structure of sub–elements; e is denoted as top element of the knowledge block.
A compound knowledge block is a sequence of two or more atomic knowledge blocks;
the sequence of top elements of these knowledge blocks is denoted as top sequence of
the compound knowledge block.

The use of adjective ‘knowledge’ reflects the implicit assumption of our approach:

XML documents under consideration should be ‘rich in knowledge’ interpretable by
humans. The term is essentially used for compatibility with previous, less formal
papers; it is likely to be replaced by a more canonical one in the future.

Definition 2. A transformation rule is a triple r = (SD, TD, Type), where
• SD is a source block definition
• TD is a target block definition
• Type is one of predefined rule types.

We will discuss block definitions and rule types in sections 3.1 and 3.2.

�Vybraný příspěvek 3

Definition 3. A transformation suite is a pair (L, S), where
• L={dtd1, dtd2, ... , dtdn}; each dtdi is a Document Type Definition (DTD)1
• S={rs1,2, rs2,3, ... , rsn-1,n}; each rsi,i+1 is a set of transformation rules.

Namely, there are n definitions of ‘levels’ corresponding to DTDs, and n-1

definitions of transformation ‘steps’ corresponding to rule sets. Each ‘step’ definition
pertains to two subsequent ‘level’ definitions and should be consistent with them: if
a rule r=(SD, TD, Type) belongs to rsi,i+1 then SD should conform to dtdi and TD to
dtdi+1, in order for r to be properly applicable.

Next, we will shift from the definition of the transformation to elements of the
actual transformation process.

Definition 4. A transformation act is a 5–tuple (Src, Sel, r, DestIn, DestOut), where
• Src is an XML document conforming to dtdk (from the given transformation

suite, same applies below)
• Sel = (e1, e2, …, en), denoted as selection, is an ordered set of elements from Src

such that for each ei, ej, the node corresponding to ej follows the node
corresponding to ei in XML tree

• r = (SD, TD, Type) is a rule from ruleset rsk,k+1; SD is satisfied by the knowledge
block with top sequence Sel

• DestIn is an XML document conforming to dtdk+1; it consists2 of a sequence of m
atomic knowledge blocks

• DestOut is an XML document conforming to dtdk+1; it consists of a sequence of
m+r atomic knowledge blocks: the first m blocks are the same as in DestIn, and
the last r blocks form a knowledge block that satisfies TD.

Simply said, rules that append new ‘derivations’ to DestIn are activated according

to ‘selection’ in Src. The selection is assumed to be flat, i.e. not covering a (proper)
ancestor–descendant relationship; it may however contain elements from different
levels of the input document. The mechanism how blocks satisfy definitions will be
informally sketched in section 3.1, for a concrete language (XKBT).

Definition 5. A transformation step is a sequence of transformation acts, (ta1, ta2, ... ,
tan), such that for the individual tai = (Srci, Seli, ri, DestIni, DestOuti) holds:
• all r i belong to the same rule set rsk,k+1
• Src1 = Src2 = ... = Srcn (let us denote it further as Src) conforms to dtdk
• all DestIni, DestOuti conform to dtdk+1
• DestIn1 = θ; DestIni = DestOuti-1 holds for every i, 1<i ≤n

Namely, a transformation step contains transformation acts that apply the same set
of rules on the same source document and successively append new knowledge
blocks to the destination document.

1 Or, possibly an XML Schema (or similar) document.
2 Apart from XML header and document ‘envelope’; the same applies to the following item.

 An interactive approach to rule-based transformation of XML documents 4

Definition 6. Let Sel* = Sel1 ∪ Sel2 ∪ ... ∪ Seln, where Sel1, Sel2, ... Seln are selections
of all transformation acts of transformation step s. Then s is complete if and only if for
every element e ∈ Src exists an element e’ ∈ Sel* such that e’ is ancestor of e in Src.

Completeness of a transformation step means that the selections cover the whole

input document, i.e. no information was lost ‘along the way’. This does not entail that
all elements have their counterparts in the subsequent level: they can be ‘forgotten’ if
not needed, but only by means of explicit ‘dead–end’ rules. On the other hand,
selections from the same transformation step may overlap or even be subsumed.

3 The XKBT transformation language

The formal model itself imposes no requirements on the syntax and semantics of
transformation rules. However, in implemented tools, it has to be defined by means of
a concrete (desirably, simple) language. We developed and implemented a prototype
of such language; we call it XKBT, for “eXtensible Knowledge Base
Transformation”. The typology of XKBT rules has been presented in more detail in
[6], and full syntax and semantics of the language can be found at the website3 [5].
Here we only summarise the crucial points: the nature of source/target knowledge
blocks (incl. the way they are evaluated), the types of rules, and relationship with the
XSLT language. A comprehensive example is shown in the end of the section.

3.1 Knowledge block definitions and their evaluation

We syntactically and semantically distinguish between the source block definition and
the target block definition of a transformation rule. What they have in common is
their recursive structure: a compound source block definition may consist of either
elementary or compound source blocks definitions (elements <source> and
<compound-source>, respectively), similarly, a compound target block definition
may consist of either elementary or compound target blocks definitions (elements
<target> and <compound-target>, respectively). The operational semantics
however differs: the source block definition is matched with the selection of the given
transformation act (cf. Definition 4), while the target block is generated on output
when the rule fires. The source block definition may also contain ‘control’ elements,
<cond> and <copy>, which will be discussed later.

The ‘way of composition’ of compound blocks is determined by a number of
interdependent attributes. The following attributes can be used in a source block:

• type: values ‘iteration’, ‘optional’, ‘selection’, ‘sequence’
• minOccurs, maxOccurs, occurs (all integer–valued)
• order: values ‘free’, ‘fixed’
• conditions: ‘all’, ‘any’, ‘none’.

3 The latest version of the language (2.1) referred to in this paper slightly differs from the

version 2.0 implemented in the Stepper tool (section 4). The differences however do not
affect the core of the method.

�Vybraný příspěvek 5

If the type is ‘iteration’, repetition of same elements is expected in Sel; the number
of elements is determined by minOccurs, maxOccurs (lower/upper bound) or occurs
(exact number). Type ‘optional’ is shortcut for repetition of zero or one element. Type
‘selection’ refers to alternative elements to be matched in Sel (i.e. ‘disjunctive
condition’). Finally, type ‘sequence’ refers to elements that must all be present in Sel
(i.e. ‘conjunctive condition’), in the predefined or free order (depending on order).

While the above mentioned attributes represent simple syntactical constraints
similar to definitions in DTD or XML Schema, the conditions attribute relates to the
evaluation of more complex conditions over the candidate source block. The
conditions themselves are represented as <cond> sub–elements of the given
<source> element, and mostly relate to the XML environment of the given element
(ancestors, descendants, attributes etc.). Their semantics thus rather resembles that of
XPath expressions. A <source> element may also be equipped with a <copy>
element, which defines how (and which) sub–elements and attributes of the given
source element transcend to the target element. The commented example in section
3.4 gives a clearer idea on the overall outlook of source block definition.

The definition of target block is simpler, since the attribute conditions and the
sub–elements <cond> and <copy> would not make sense therein. The attributes
type, minOccurs, maxOccurs and occurs may appear in target block definition, and
their values may have the same ranges as for source block. Their semantics is now
however specific: it relates to the interaction with the user. S/he is allowed to set up
the number of repetitions (within the minOccurs and maxOccurs limits), choose from
‘selection’, or decide about an ‘optional’ element. A compound block defined as
‘sequence’ is processed non–interactively. For ‘sequence’, there is again an associated
order attribute, with values ‘original’ and ‘fixed’; the former keeps the elements in
the original order (assuming it is consistent with the target DTD, and ‘free’ order was
allowed in source), while the latter enforces the order given in the definition.

3.2 Transformation rule types

The following types of rules (cf. Definition 2) have been devised in XKBT up to now:
• ‘One–to–one’ rule, mapping a (source) atomic knowledge block on a (target)

atomic knowledge block. For the convenience of both designer and user of the
rules, the target definition may involve an explicit alternative (elements to be
chosen from); this is equivalent in effect to multiple rules.

• ‘Decomposition’ rule, mapping a (source) atomic knowledge block on a
(target) non–atomic knowledge block.

• ‘Aggregation’ rule, mapping a (source) non–atomic knowledge block on a
(target) atomic knowledge block.

• ‘Dead–end’ rule, applicable on a (source) atomic or non–atomic knowledge
block, which is not needed at the subsequent level.

It is important to say that the current repertory of rules is merely tentative (though
intuitive). Its main role was to evaluate the functionality of the Stepper tool described
in section 4. More thorough analysis (both theoretical and empirical, based on
practical use) will probably lead to additions and revisions in the subsequent versions
of XKBT. The choice of rule types will primarily be guided by the need of user
interaction, and by complementarity with XSLT rules, cf. section 3.3.

 An interactive approach to rule-based transformation of XML documents 6

3.3 XKBT and XSLT

XSLT (XSL Transformations) is a ‘canonical’ XML–based transformation language
[2]. Similarly to XKBT, it is based on rules, it however does not allow for user
interaction either in processing the source knowledge blocks or in building the target
knowledge block. Let us clarify the differences of both languages in more detail.

An XSLT–based transformation is activated once for the whole input document,
whose elements are systematically, one–by–one (starting from the root), matched
against the transformation rules. When more rules are suitable for the same element or
element sequence, one of them is selected automatically according to pre-defined
priorities. In contrast, the starting point for an XKBT–based transformation act is a
selection of source knowledge blocks by the user (cf. Definition 4); the transformation
is thus only fired within local scope. The user may select distant parts of source text
as adjacent knowledge fragments for the output model; this conforms to the
experience that related pieces of knowledge are often split apart in text. Next, if
multiple rules match in XKBT, the user can select one or more based on his/her
intellectual interpretation of source block content.

Furthermore, XSLT for the same input always yields the same output. In contrast,
after firing one of XKBT rules, the user can specify how the target block will be
constructed. The target block has to fulfil the constraints defined in the <compound-
target> element; yet, there is room for modifications.

Another problem of XSLT is its complexity, resulting in relative opacity of larger
rules, while XKBT is readable even for users with limited XML experience. Note that
a set of XKBT rules is typically dedicated to a specific domain (e.g. subset of
medicine), and its preparation thus requires participation of domain expert.

XKBT is however not replacement for XSLT, since its representational power is
limited. Instead, we use both in a complementary fashion. While XKBT is tuned for
the interactive part of transformation, non–interactive aspects are handled by
embedded XSLT rules4. The difference from traditional use of XSLT is in separate use
of short XSLT files yielding individual target knowledge blocks (in contrast to
application of one complex XSLT file on the whole document). In this scenario, a
user has (beside the composition of target knowledge block) the possibility to choose
one of XSLT transformations for each final target knowledge block (for details see
next section). This situation is likely to arise when transforming knowledge from one
XML–grounded formal model (e.g. a medical guideline model) to another: the user
has to semantically analyse the content and choose the right counterpart in the second
model; the necessary syntactical structure is then generated automatically.

The situation is still different if we wish to export the knowledge content to a non–
XML format, as often happens in the last step of free–text document (such as medical
guideline) formalisation. In this scenario, the user typically converts the text (in
several steps, using XKBT rules) to a well–structured XML knowledge base, and then
‘exports’ this knowledge base as a whole via XSLT into the final format.

4 Embedded XSLT rules have to be designed by an XML expert; they typically deal with

routine transformations, which do not require involvement of domain expert.

�Vybraný příspěvek 7

3.4 Commented example

Let us demonstrate the principles of XKBT on a simple example from the medical
domain, namely on transformation of the knowledge block representing an elementary
‘goal’ of hypertension treatment. We will subsequently show and explain the codes of
source block, an applicable XKBT rule, an embedded XSLT rule, and, finally, the
resulting target block. Note that even the source block is assumed to have arisen by
(XKBT–based) formalisation of the original free text. The meaning of the block is
“antihypertensive treatment should lead to significant lowering of blood pressure”
(otherwise the treatment is ineffective and the goal is not achieved):

Source knowledge block:
<goal direct="no" overall="no" id="g2" >
 <goal-of>

<activity type="treatment"> antihypertensive treatment
</activity>

 </goal-of>
 <is-goal> blood pressure lowering </is-goal>
</goal>

For such a source block, we could presumably have several XKBT rules. It could

be for example aggregation of all elementary goals with similar ‘is–goal’ definition,
death–end for unimportant goals, or decomposition into one obligatory target block
<goal> and several optional knowledge blocks for detailed specification of ‘plain–
text’ parts of the source block. For this example, we chose the last one:

XKBT rule definition:
<decomposition name="goal-to-goal">
 <source element="goal" conditions=”all”>
 <cond attribute=”overall” operator=”equal” value=”no” />
 <cond attribute=”direct” operator=”equal” value=”no” />
 </source>
 <compound-target type="sequence">
 <compound-target type="optional">
 <target element="activity_def">
 <comment> used only for activities that should have
 detailed definition </comment>
 <applyXSLT externalLocation=”/activity_def.xsl”/>
 </target>
 </compound-target>
 <compound-target type="optional">
 <target element="goal_object_def">
 <applyXSLT externalLocation=”/goal_object_def.xsl”/>
 </target>
 </compound-target>
 <target element=”goal”>
 <applyXSLT externalLocation=”/goal_to_goal.xsl” />
 </target>
 </compound-target>
</decomposition>

 An interactive approach to rule-based transformation of XML documents 8

The source part of the rule says that the rule is applicable only on <goal>
elements, and that the attributes overall and direct should be set to no (see <cond>
elements). The target part starts with the definition of two optional blocks –
activity_def and goal_object_def. The last target block <goal> is obligatory; it is the
main successor of source block. Each target block definition includes a link to an
external XSL file used to deploy its sub–structure. The following code corresponds to
an XSL file for target block activity-def (other XSL files would be much similar):

File activity-def.xsl:
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl=
 "http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml"/>
 <xsl:template match="goal">
 <xsl:element name="activity-def">
 <xsl:attribute name="name">
 <xsl:value-of select="goal-of/activity"/>
 </xsl:attribute>
 <xsl:attribute name="type">
 <xsl:value-of select="goal-of/activity/@type"/>
 </xsl:attribute>
 <xsl:element name="description">
 <xsl:value-of select="goal-of/activity"/>
 </xsl:element>
 <xsl:element name="definition" />
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

Finally, we shall have a look at the result of transformation, i.e. target knowledge

block. The successor <goal> element was generated (nearly completely)
automatically via an embedded XSLT rule. This was however not the case for the
<activity-def> and <goal-object-def> elements, since correct definition
of their content requires human interpretation of text fragments. Only empty elements
<definition> are thus created and have to be filled manually afterwards.

Target knowledge blocks:
<activity-def name="antihypertensive treatment"
 type="treatment">
 <description>antihypertensive treatment</description>
 <definition />
 </activity-def>
<goal-object-def name="blood_pressure_lowering">
 <description> blood pressure lowering</description>
 <definition />
 </goal-object-def>
<goal direct="no" overall="no" id="g2">
 <goal-of activity_id="antihypertensive_treatment" />
 <is-goal goal_object_id="blood_pressure_lowering" />
 </goal>

�Vybraný příspěvek 9

Fig 1. Stepper: user interface for knowledge block transformation

4 Tool support – the Stepper system

A software tool supporting the above–described step–by–step transformation has been
developed (in Java) under the name of Stepper. It provides for:

• Display and editing5 of XML documents without showing the XML syntax
• Automated retrieval of transformation rules applicable on a source knowledge

block delimited by the user
• Execution of the rule chosen by the user, and interactive (menu–driven)

specification of target knowledge block configuration
• Automated generation and update of XLink references across formalisation

levels, and retrieval of corresponding knowledge blocks or text fragments.
• Convenient creation and update of XKBT transformation rules
• Execution of XSLT rules and offline export to non–XML format via an

integrated XSLT processor.
Fig. 1 shows the interface for interactive transformation. The upper part of the

screen shows the source level and the lower part the target level of transformation;
each consists of an XML tree and a pane for editing the text content and attribute
values. Tree structures, attribute–value forms and rule–activation buttons (upper–
right) are generated in runtime from the DTDs of the given formalisation levels and
from the premises of applicable rules, respectively. The tool does not automatically

5 PCDATA element content and CDATA attribute values can be edited freely, while changes to

element names, attribute names, element parent–child relationships and element–attribute
relationships are bound to execution of transformation rules.

 An interactive approach to rule-based transformation of XML documents 10

assure completeness of a transformation step but enables to detect incompleteness
through visualisation of the union of all selections (Sel* from Definition 6).

In addition, Stepper includes a mark–up editor for free–text documents6, similar to
semantic annotation tools [3]. ‘Transformation’ rules for initial text mark–up
(populating a given DTD with text–containing elements) are understood as a special
form of aggregation rules.

5 Conclusions

The paper presents a technology of XML transformation suitable for documents with
rich knowledge content, which has to be interpreted by human user during the
transformation process. The user thus supplies the necessary semantics while
automated processes accomplish purely syntactical transformations. For this sake,
simple interactive XKBT rules are combined with richer but non–interactive XSLT
rules. The whole approach is being tested in the medical domain.

References

1. Anutariya, C., Wuwongse, V., Wattanapailin, V.: An Equivalent–
Transformation–Based XML Rule Language, Proc. Int’l Workshop on Rule
Markup Languages for Business Rules in the Semantic Web, Sardinia, 2002.

2. Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C, 1999. Online at
http://www.w3.org/TR/xslt

3. Handschuh, S., Staab, S. (eds): Annotation in the Semantic Web. IOS Press, 2003.
4. Lee, D., Mani, M., Chu, W.W.:Schema Conversions Methods between XML and

Relations Models, In: Knowledge Transformation for the Semantic Web, IOS
Press, Amsterdam, 2003.

5. Růžička, M.: XML Knowledge Block Transformation (XKBT). Online at
http://euromise.vse.cz/stepper/xkbt

6. Růžička, M.: Transformace znalostí mezi modely pro zachycování znalostí
v XML, In: Sborník konference Znalosti 2003, Ostrava, s. 309-314.

7. Svátek, V., Růžička, M.: Step–by–Step Mark–Up of Medical Guideline
Documents. International Journal of Medical Informatics, Vol. 70, No. 2-3, July
2003, 329-335.

8. Valenta, M.: Models of XML Data Transformations. In: Sborník Datakon 2002.
9. Wang, D., Peleg, M., Tu, S. W., Boxwalla, A. A., Greenes, R. A., Patel, V. L.,

Shortliffe, E. H.: Representation Primitives, Process Models and Patient Data in
Computer–Interpretable Clinical Practice Guidelines: A Literature Review of
Guideline Representation Models. International Journal of Medical Informatics,
Vol. 68, No. 1-3, December 2002, 59-70.

6 More precisely, of XHTML documents, which are displayed in the same way as in web

browser but their (format–level) XML structure is addressed by XLink references within the
corresponding knowledge blocks.

