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Abstract. The roles of ontologies in KDD are potentially manifold.
We track them through different phases of the KDD process, from data
understanding through task setting to mining result interpretation and
sharing over the semantic web. The underlying KDD paradigm is associa-
tion mining tailored to our 4ft-Miner tool. Experience from two different
application domains—medicine and sociology—is presented throughout
the paper.

1 Introduction

Domain ontologies, being hot topic in today’s knowledge engineering research,
are promising candidates for background knowledge to be used in the KDD
process. They express the main concepts and relationships in a domain in a way
that is consensual and comprehensible to the given professional community. The
research in applied ontology and in KDD are, to some extent, two sides of the
same coin. Ontologies describe the ‘state-of-affairs’ in a certain domain at an
abstract level, and thus enable to verify the correctness of existing (concrete)
facts as well as to infer new facts. On the other hand, KDD typically proceeds in
the opposite direction: from concrete, instance-level patterns to more abstract
ones. Semantic web mining [5] represents the junction of ontology and KDD
research in their ‘concrete’ (instance-centric) corners. On the other hand, in this
paper, we rather focus on the junction of ‘abstract’ corners, namely, of abstract
ontologies themselves and general hypotheses produced by KDD.

The role to be played by ontologies in KDD (and even their mere usability)
depends on the given mining task and method, on the stage of the KDD process,
and also on some characteristics of the domain and dataset. The experiment
described in this paper is connected with task of association mining, namely,
with the 4ft-Miner tool [17] (component of LISp-Miner, see http://lispminer.
vse.cz), which is inspired by the GUHA method [10]. We identified four stages
of (4ft-Miner -based) KDD that are likely to benefit from ontology application:
data understanding, task design, result interpretation and result dissemination
over the semantic web1. Finally, we conducted our research in two different
domains with specific datasets (and available ontological resources): the domain
of cardiovascular risk and that of social climate.
1 In a pre-cursor paper [7], we explicitly used CRISP-DM (http://www.crisp-dm.
org) for process decomposition; however, the phases are rather generic.



The paper is structured as follows. Section 2 describes both domain-specific
applications. Section 3 recalls the basic principles of 4ft-Miner. Sections 4, 5,
6 and 7 are devoted each to one phase of the KDD process as outlined above.
Finally, section 9 reviews some related work, and section 10 shows directions for
future research.

2 Overview of Applications

2.1 Cardiovascular Risk: Data and Ontologies

The STULONG dataset concerns a twenty-years-lasting longitudinal study of
risk factors for atherosclerosis in the population of middle-aged men (see http:
//euromise.vse.cz/stulong-en/). It consists of four data matrices:

Entrance. Each of 1 417 men has been subject to entrance examination. Values
of 244 attributes have been surveyed with each patient. These attributes are
divided into 11 groups e. g. social characteristics, physical activity etc.

Control. Risk factors and clinical demonstration of atherosclerosis have been
followed during the control examination for the duration of 20 years. Values
of 66 attributes have been recorded for each one. There are 6 groups of
attributes, e.g. physical examination, biochemical examination etc.

Letter. Additional information about health status of 403 men was collected
by postal questionnaire. There are 62 attributes divided into 8 groups such
as diet or smoking.

Death. There are 5 attributes concerning the death of 389 patients.

As ontology we used UMLS (Unified Medical Language System) [2], namely
its high-level semantic network and the meta-thesaurus mapping the concepts
picked from third-party resources onto each other. Although the central construct
of UMLS is the concept-subconcept relation, the semantic network also features
lots of other binary relations such as ‘location of’ or ‘produces’. However, since
the network only covers 134 high-level ‘semantic types’ (such as ‘Body Part’ or
‘Disease’), the relations are only ‘potentially holding’ (it is by far not true that
every Body Part can be ‘location of’ every Disease...). The meta-thesaurus, in
turn, covers (a large number of) more specific concepts but relations are only
scarcely instantiated, and nearly all relation instances belong to the ‘location of’
relation.

As additional resource, we used the knowledge accumulated in the Czech
medical community with respect to risk factors of cardio-vascular diseases, in
connection with the STULONG project itself. The knowledge base consists of
36 qualitative rules, most of which can be characterised as medical background
knowledge or common-sense knowledge, e.g. “increase of cholesterol level leads
to increase of triglycerides level”, “increase of age leads to increase of coffee
consumption”, “increase of education leads to increase of responsibility in the
job” or the like. Given the mentioned lack of concrete inter-concept relationships
in UMLS, we adopted them, for experimental purposes, as if they were part of
this ontology.



2.2 Social Climate: Data and Ontologies

In the second application, both the ontology and the dataset used for association
discovery had the same seed material: the questionnaire posed to respondents
during the opinion poll mapping the ‘social climate’ of the city of Prague in
Spring 2004. The questionnaire contained 51 questions related to e.g. economic
situation of families, dwelling, or attitude towards important local events, polit-
ical parties or media. Some questions consisted of aggregated sub-questions each
corresponding to a different ‘sign’, e.g. “How important is X for you?”, where X
stands for family, politics, religion etc.; other questions corresponded each to a
single ‘sign’. The questions were divided into 11 thematic groups.

While the dataset was straightforwardly derived from the individual ‘signs’,
each becoming a database column2, the ontology first had the form of glossary
of candidate terms (manually) picked from the text of the questions; duplicities
were removed. In conformance with most ontology engineering methodologies
[9], the terms were then divided into candidates for classes, relations and in-
stances, respectively. Then a taxonomy and a structure of non-taxonomic rela-
tions was (again, manually) built, while filling additional entities when needed
for better connectivity of the model or just declared as important by domain
expert. The instances either correspond to enumerated values of properties,
e.g. GOOD JOB AVAILABILITY, or to outstanding individuals such as PRAGUE or
CHRISTIAN DEMOCRATIC PARTY.

The current version of the ontology, eventually formalised in OWL3, consists
of approx. 100 classes, 40 relations and 50 individuals4. A Protégé5 window
showing parts of the class hierarchy plus the properties of class Person is at
Fig. 1. Note that the ambition of our ontology is not to become a widely-usable
formal model of social reality; it rather serves for ‘simulation’ of the possible role
of such ontology in the context of KDD.

3 Association Mining with 4ft-Miner

4ft-Miner mines for association rules of the form ϕ ≈ ψ, where ϕ and ψ are called
antecedent and succedent, respectively. Antecedent and succedent are conjunc-
tions of literals. Literal is a Boolean variable A(α) or its negation ¬A(α), where
A is an attribute (corresponding to a column in the data table) and α (a set of
values called categories) is coefficient of the literal A(α). The literal A(α) is true
for a particular object o in data if the value of A for o is some v such that v ∈ α.

The association rule ϕ ≈ ψ means that ϕ and ψ are associated in the way
defined by the symbol ≈. The symbol ≈, called 4ft-quantifier, corresponds to a
2 And, subsequently, an attribute for the 4ft-Miner tool, see the next section.
3 http://www.w3.org/2004/OWL
4 By naming convention we adopted, individuals are in capitals, classes start with

capital letter (underscore replaces inter-word space for both individuals and classes),
and properties start with small letter and the beginning of other than first word is
indicated by a capital letter.

5 http://protege.stanford.edu



Fig. 1. Incomplete view of the ontology in Protégé

condition over the four-fold contingency table of ϕ and ψ. The four-fold contin-
gency table of ϕ and ψ in data matrix M is a quadruple 〈a, b, c, d〉 of natural
numbers such that a is the number of data objects from M satisfying both ϕ
and ψ, b is the number of data objects from M satisfying ϕ and not satisfying
ψ, c is the number of data objects from M not satisfying ϕ and satisfying ψ,
and d is the number of from M from M satisfying neither ϕ nor ψ.

There are 16 4ft-quantifiers in 4ft-Miner. An example of 4ft-quantifier is
above-average dependence,
∼+

p,Base, which is defined for 0 < p and Base > 0 by the condition

a

a+ b
≥ (1 + p)

a+ c

a+ b+ c+ d
∧ a ≥ Base .



The association rule ϕ ∼+
p,Base ψ means that among the objects satisfying ϕ is

at least 100p per cent more objects satisfying ψ than among all observed objects
and that there are at least Base observed objects satisfying both ϕ and ψ.

As an example of association rule, let us present the expression

A(a1, a7) ∧B(b2, b5, b9) ∼+
p,Base C(c4) ∧ ¬D(d3)

Here, A(a1, a7), B(b2, b5, b9), C(c4) and ¬D(d3) are literals, a1 and a7 are cate-
gories of A, and {a1, a7} is the coefficient of A(a1, a7)6, and analogously for the
remaining literals.

In order to determine the set of relevant questions more easily, we can define
cedents (i.e. antecedent and/or succedent) ϕ as a conjunction

ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk

where ϕ1, ϕ2, . . . , ϕk are partial cedents. Each ϕi (itself a conjunction of literals)
is chosen from the set of relevant partial cedents. The set of partial cedents is
given in the following manner:

– the minimum and maximum length (i.e. the number of literals in conjunction)
of the partial cedent is defined

– a set of attributes from which literals will be generated is given
– some attributes can be marked as basic, each partial cedent then must con-

tain at least one basic attribute
– a simple definition of the set of all literals to be generated is given for each

attribute
– classes of equivalence can be defined, such that each attribute belongs to

at most one class of equivalence; no partial cedent then can contain two or
more attributes from the same class of equivalence.

The set of all literals to be generated for a particular attribute is given by:

– the type of coefficient; there are six types of coefficients: subsets, intervals,
left cuts, right cuts, cuts, one particular category

– the minimum and the maximum length of the literal
– positive/negative literal option: only positive, only negative, both.

4 Data Understanding

Within the phase of data understanding, the activity relevant for ontology ex-
ploitation is that of data-to-ontology mapping, the outcomes of which will be
used in later phases.

In the cardiovascular risk application we succeeded in mapping 53 of STU-
LONG attributes (from the Entrance dataset) on 19 UMLS semantic types and
25 metathesaurus concepts. Six attributes for which a concept could not be
6 For convenience, we can write A(a1, a7) instead of A({a1, a7}).



found were only assigned semantic type, for example, ‘responsibility in job’ was
assigned to semantic type Occupational Group. For subsequent processing, we
only kept a light-weight fragment of UMLS containing, for each data attribute,
the most adequate metathesaurus concept and the least-general semantic type
subsuming this concept. We obtained a structure with five taxonomy roots: Find-
ing, Activity, Group, Food, and Disease or Syndrome.

The side effect of mapping to ontology, as peculiar form of ‘data understand-
ing’, was occasional identification of redundant attributes, which (though neces-
sary for data management purposes) were not useful as input to data mining.
For example, since the dataset contained the attribute ‘age on entrance to STU-
LONG study’, the attributes ‘birth year’ and ‘year of entrance to STULONG
study’ (all mapped to the Age Group semantic type) were of little use.

The mapping between STULONG data and the qualitative rules was straight-
forward, since the data were collected (more-or-less) by the same community of
physicians who also formulated the knowledge base, within the same project.

For the same reason, the mapping task was relatively easy in the social cli-
mate application. Since the core of the ontology had been manually designed
based on the text of the questions, it sufficed to track down the links created while
building the ontology and maintained during the concept-merging phase. An ex-
ample of mapping between a question and (fragments of) the ontology is in Fig. 2.
Emphasised fragments of the text map to the concepts Job availability,
Metropoly and Family and to the individuals GOOD JOB AVAILABILITY, PRAGUE,
CENTRAL EUROPE and EU, plus several properties not shown in the diagram. Note
that question no. 3 is a ‘single-sign’ question, i.e. it is directly transformed to one
data attribute used for mining. In addition to questions, ontology mapping was
also determined for values allowed as answers, especially for questions requiring
to select concrete objects (city districts, political parties etc.).

5 Task Design

The mining process in narrow sense—running an individual mining session—is
probably not amenable to ontologies in the case of 4ft-Miner. The analysis of
large data tables relies on optimised database-oriented algorithms, which could
hardly accommodate the heterogeneity of ontological information. There is how-
ever room for ontologies in the process of designing the sessions, due to the
sophisticated language for 4ft-Miner task design (cf. section 3).

In the cardiovascular risk application, we used the mapping on ontology
concepts from the previous phase so as to identify attributes that should be
semantically grouped into partial cedents. We created partial cedents covering
the attributes mapped on the five upmost classes.Although we carried out this
part of the task manually, it could easily be automated.

At a higher level of abstraction, we can also operate on different task settings.
A very general mining task setting can be decomposed into more specific tasks,
which can be run faster, their results will be conceptually more homogeneous,



From May 1, 2004, Prague will become one of Central-European
metropolies of the EU. Do you think that this fact will improve the
availability of jobs for you or for your relatives?

PRAGUE

Metropoly

City

Capital_city

Location

CENTRAL_EUROPE

Aspect_of_life

Job_availability
Region

EU

Group

Family

GOOD_JOB_
_AVAILABILITY

POOR_JOB_
_AVAILABILITY

Fig. 2. Question no.3 and fragments of ontology used for its mapping

and thus can be interpreted more easily (see below). An example of task decom-
position (for associations between patient activities and diseases/syndromes) is
at Fig. 3. The base task (left branch) might lead to a high number of hypotheses
that would be hard to interpret. We can thus e.g. separately refine the antecedent
(middle branch) or succedent (right branch) of the base task to obtain more con-
cise and homogeneous results per session.

In the social climate application, the ontology was not used in the task design
phase. The reason was that the experiments were not guided by the interest of
domain experts as in the cardiovascular risk application. So as to allow for the
widest possible scope of candidate hypothesis, we thus kept the task definition
maximally general: any of 96 attributes (corresponding to ‘signs’ from the ques-
tionnaire) was allowed in antecedent as well as in succedent7. As we wanted to
start with (structurally) simplest hypotheses, we set the length of antecedent as
well as of succedent to 1, and the cardinality of coefficient also to 1 (i.e., choice of
single category). As quantifier we used the above-average dependence explained
in section 3. The run-times were typically lower than a second.

6 Result Interpretation

Given the data-to-ontology mapping, concrete associations discovered with the
help of 4ft-Miner can be matched to corresponding semantic relations or their
7 Actually, we would have benefited from the possibility of restricting the attributes

in antecedent and succedent to be based on questions from different groups; such
functionality however goes beyond the current task design language



Fig. 3. Decomposition of 4ft tasks with respect to ontology
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Fig. 4. Semantic relation as context to empirical relationship between attributes

more complex chains from the ontology, see Fig. 4. The semantic relation repre-
sents a potential context (e.g. explanation) for the discovered association.

In the cardiovascular risk application, each mining task already corresponded
to a meaningful ‘framing’ question, such as “Searching for relationships between
Activity of the patient and Diseases/Syndromes”. Concrete associations discov-
ered with the help of 4ft-Miner could then be compared with the instance layer
of the ontology; in our case, with the qualitative rules. The relationship of an
association with prior knowledge is typically one of the following:

– Confirmation of prior knowledge, without additional information
– New knowledge compatible with prior knowledge
– Exception to or conflict with prior knowledge.

Let us show two examples, with their four-fold tables:



Table 1. Four-fold table for a ‘confirmation’ association

Succedent NOT Succedent

Antecedent 10 22 32

NOT Antecedent 66 291 357

76 313 389

Table 2. Four-fold table for a ‘conflicting’ association

Succedent NOT Succedent

Antecedent 216 14 230

NOT Antecedent 145 14 159

361 28 389

– The discovered association “Patients who are not physically active within
the job nor after the job (Antecedent) will more often have higher blood
pressure (Succedent)” was derivable from the background knowledge rule
“Patients who are physically active after the job will more often have lower
blood pressure” (Table 1).

– The discovered association “94% of patients smoking 5 or more cigarettes a
day for more than 21 years (Antecedent) have neither myocardial infarction
nor ictus nor diabetes (Succedent)” was in conflict with prior knowledge
“Increase of smoking leads to increase of cardio-vascular diseases” (Table 2).

The examples are merely illustrative. In order to draw medically valid con-
clusions from them, we would at least need to examine the statistical validity of
the hypotheses in question. As the STULONG dataset is relatively small, few
such hypotheses actually pass conventional statistical tests.

In the social climate application, in contrast, we did not have a knowledge
base with concrete rules at our disposal. We thus used the ontology itself—not to
directly compare it with the hypotheses but to retrieve entity (concept-relation)
chains that could serve as templates for candidate explanations of the hypothe-
ses. Again, we did not have an appropriate software support for extracting entity
chains (i.e. explanation templates) from the ontology, and only examined it via
manual browsing. As a side-effect of chain extraction, we also identified missing
(though obvious) links among the classes, which could be added to the ontol-
ogy, and also some modelling errors, especially, domain/range constraints at an
inappropriate level of generality.

We divided the strong hypotheses resulting from 4ft-Miner runs into four
groups, with respect to their amenability to ontology-based explanation:

1. Strict dependencies, e.g. the association between answers to the questions
“Do you use a public means of transport?” and “Which public means of
transport do you use?”. Such results are of no interest in KDD and could of
course be eliminated with more careful task design.



2. Relationships amounting to obvious causalities, for example, the association
between “Are you satisfied with the location where you live?” and “Do you
intend to move?” Such relationships (in particular, their strengh) might be
of some interest for KDD in general; however, there is no room for ontology-
based explanation, since both the antecedent and succedent are mapped
on the same or directly connected ontology concepts (Location, livesIn,
movesFrom etc.).

3. Relationships between signs that have the character of respondent’s agree-
ment with relatively vague propositions, for example “Our society changes
too fast for a man to follow.” and “Nobody knows what direction the society
is taking.” We could think of some complex ontology relationships, however,
by Occam’s razor, it is natural just to assume that the explanation link be-
tween the antecedent and succedent goes through the categorisation of the
respondent as conservative/progressist or the like.

4. Relationships between signs corresponding to concrete and relatively seman-
tically distant questions (in fact, those appearing in different thematic groups
in the questionnaire). This might be e.g. the question “Do you expect that
the standard of living of most people in the country will grow?”, with an-
swer ‘certainly not’, and the question “Which among the parties represented
in the city council has a programme that is most beneficial for Prague?”
with ‘KSČM’ (the Czech Communist Party) as answer. Such cross-group
hypotheses are often amenable to ontology-based explanation.

The last hypothesis mentioned, formally written as Z05(4) ∼+
0.22,64 Z18(3),

can be visualised in 4ft-Miner by means of four-fold contingency table, as shown
at Fig. 5, and also graphically (see [20]). The contingency table (followed with
a long list of computed characteristics) shows that:

– 64 people disagree that the standard of living would grow AND prefer KSČM
– 224 people disagree that the standard of living would grow AND DO NOT

prefer KSČM
– 171 people DO NOT disagree8 that the standard of living would grow AND

prefer KSČM
– 2213 people DO NOT disagree that the standard of living would grow AND

DO NOT prefer KSČM.

We can see that among the people who disagree that the standard of living
would grow, there is a ‘substantially’ higher number of people who also prefer
KSČM than in the whole data sample, and vice versa9. The whole effort of
formulating hypotheses about the reason for this association is however on the
shoulders of the human expert.

In order to identify potential explanation templates, we took advantage of
the mapping created prior to the knowledge discovery phase, see section 4. The

8 More precisely, their answer to the question above was not ‘certainly not’; it was one
of ‘certainly yes’, ‘probably yes’, ‘probably no’.

9 This is the principle of the above-average quantifier, which is symmetrical.



Fig. 5. Textual view of a 4ft-Miner hypothesis

negative answer to the question about standard of living was mapped to the
individual BAD LIVING STANDARD (instance of Social phenomenon), and the re-
spective answer to the question about political parties was mapped to the class
Political party, to its instance KSCM, to the class Party programme and to
the class City council. Table 3 lists some among the possible templates,first
ordered by the decreasing number of involved entities on which the hypothe-
sis is mapped and then by the decreasing number of all involved entities. The
templates do not contain intermediate classes from the hierarchy (which are not
even counted for the ordering). Relations are only considered as linked to the
class for which they are directly defined as domain/range, i.e. not to the class
that inherits them. The symbols v, w stand for subclass/superclass relationship
and ∈, 3 for instance-to-class membership10.

We can see that the ‘most preferable’ template suggests that the KSČM
party may have some programme that may have as objective to reach the phe-
nomenon of BAD LIVING STANDARD. The second looks a bit more adequate: the
KSČM party is represented in the city council that can carry out an economic
action that may have some impact on the phenomenon of BAD LIVING STANDARD.
The third is almost identical to the first one. The fourth (and simplest) might

10 Note that the description-logic-like notation is only used for brevity; a more user-
oriented (e.g. graphical) representation would probably be needed to provide support
for a domain expert not familiar with knowledge representation conventions.



Template Mapped All

KSCM ∈ Political party hasPartyProgramme

Party programme v Plan of action hasObjective

Social phenomenon 3 BAD LIVING STANDARD

4 6

KSCM ∈ Political party isRepresentedIn

Administrative body w City council carriesOutAction

Economic action hasImpactOn Social phenomenon 3
BAD LIVING STANDARD

4 7

KSCM ∈ Political party hasPartyProgramme

Party programme v Plan of action envisagesAction

Action w Economic action hasImpactOn Social phenomenon

3 BAD LIVING STANDARD

4 8

KSCM ∈ Group informsAbout Social phenomenon 3
BAD LIVING STANDARD

2 3

KSCM ∈ Group carriesOut Action w
Economic action hasImpactOn Social phenomenon 3
BAD LIVING STANDARD

2 6

KSCM ∈ Group participatesIn Event w
Economic action hasImpactOn Social phenomenon 3
BAD LIVING STANDARD

2 6

KSCM ∈ Group supports Action w
Economic action hasImpactOn Social phenomenon 3
BAD LIVING STANDARD

2 6

KSCM ∈ Group fightsAgainst Group carriesOutAction

Action w Economic action hasImpactOn Social phenomenon

3 BAD LIVING STANDARD

2 7

Table 3. Explanation templates for ‘standard of living’ vs. ‘KSČM’ association

actually be most plausible: the KSČM party informs about the phenomenon of
BAD LIVING STANDARD. Let us finally mention the fifth template, which builds on
an incorrect ‘inference’ (caused by imprecise modelling): the party is assumed to
carry out an economic action, which it (directly) can’t. The relation was defined
with Group and Action as subsets of its domain and range, respectively. However,
the combination of Political party (subclass of Group) and Economic action
(subclass of Action) is illegal and should have been ruled out by an axiom such
as Political party w (ALL carriesOutAction (NOT Economic action)).

7 Result Deployment over Semantic Web

The role of ontology in the deployment phase is most crucial if the mining
results are to be supplied to a wider (possibly unrestricted) range of consumer
applications. A promising approach would be to incorporate the mining results
into semantic web documents. The most straightforward way to do so is to take
advantage of analytic reports (ARs): textual documents presenting the results
of KDD process in a condensed form. ARs are produced by humans, although



the use of natural language generation was also studied [18]. Prior to entering
the reports, the sets of discovered hypotheses (understood as formulae in the so-
called observational calculus) can be transformed using formal deduction rules
[15, 16] into ‘canonical form’ (which is, among other, free of redundancies). In the
cardiovascular risk application, a collection of ARs has been created by junior
researchers based upon results of selected 4ft-Miner tasks on STULONG data.
Similarly, in the social climate application, an almost exhaustive collection of
(about 60) ARs have been created for different task settings (combinations of
attribute groups), by undergraduate students as part of their assignment.

In order to embed the formal representation of 4ft-Miner results themselves
into the text of the reports [11], we initially used an original XML-based lan-
guage conforming to early RuleML specifications [1]. A more up-to-date option
would be to combine such rules with an ontology (mapped on data attributes, cf.
section 4), as proposed e.g. by the Semantic Web Rule Language [?]. However,
we also consider another option, which would go in the spirit of ontology learn-
ing [6, 12]: to use association rule mining to learn (skeletons of) OWL ontologies
from data. The knowledge contained in the analytic reports would then be repre-
sented as ontology axioms rather than as rules, which would enable us to exploit
description logic reasoners to formally compare the sets of results. The decision
whether to replace rules with OWL axioms in modelling logical implications in
semantic web theories would probably be based on two aspects:

– the number of variables in the rule: if there is only one variable then the
expression can usually be expressed in OWL (as concept subsumption)

– the nature of the implication: if it has ‘conceptual’ nature then it should be
modelled in OWL if possible, while if it is ‘ad hoc’ (say, purely empirical)
then rules might be a better choice.

The first aspect makes OWL a preferable choice for our case, providing the
association mining is carried out on a single data table. Then the resulting taxon-
omy is subordinated to a single ontology node, such as Patient (in the cardiovas-
cular risk application) or Citizen of Prague (in the social climate application).
Using association mining (or similar methods such as Formal Concept Analysis)
to derive such taxonomy then looks quite obvious and not very novel. However,
as the input data columns are not the only prior structure over the results—
the initial domain ontology could also used, namely, to ‘unfold’ some concepts
in the taxonomy into restrictions over object properties. For example, from the
associations discovered in the sociological domain, we can construct taxonomy
path such as Citizen of Prague w KSČM supporter w Inhabitant of District 14
w Citizen wishing to move to District 15. We can then unfold the concept of
ODS supporter to a ‘to-value’ restriction Inhabitant of District 14 v (supports
∈ KSČM). In order to preserve the information content of the original hierarchy,
unfolding should not be carried out for both the parent and child concept (i.e.,
at most every other concept along the path can be left out).

As the associations are equipped with confidence factors, we should consider
some formalism for modelling impreciseness, such as fuzzy versions of OWL.



8 Envisaged Tool Support

The LISp-Miner tool was used for data mining in this work. It is the original tool
for GUHA based procedures and includes five other mining procedures in adition
to 4ft-Miner. However since 2002 there has been a new system under development
named Ferda11. Creators of Ferda aimed to create an open user-friendly system
based on the long-term experience of LISp-Miner, strongly relying on principles
of visual programming. 6 shows the Ferda environment with a setting of a task
examining the validity of the quantitative rule increase of cholesterol leads to
increase of triglycerides level mentioned in Section 2.1. Other main feature of the
Ferda system is extensibility. User can easily add a new module to the system
and this module can communicate with other modules via predefined interfaces.
[23] describes the Ferda system in more details. Because of the extensibility and
existing implementation of GUHA procedures in Ferda, it is highly preferable
to implement new tools connecting ontologies and association mining in this
system. Currently, it is possible in Ferda to construct and validate quantitative
rules against hypotheses generated by data mining runs. There are also some
design proposals for modules that would include ontologies into the recent task
setup12. [24] comprises these efforts.

9 Related Work

Although domain ontologies are a popular instrument in many diverse applica-
tions, they only scarcely appeared in ‘tabular’ KDD until very recently. A notable
exception was the work by Philips & Buchanan [14], where ‘common-sense’ on-
tologies of time and processes were exploited to derive constraints on attributes,
which were in turn used to construct new attributes. Although not explicitly
talking about ontologies, the work by Clark & Matwin [8] is also relevant; they
used qualitative models as bias for inductive learning. Finally, Thomas et al. [21]
and van Dompseler & van Someren [22] used problem-solving method descrip-
tions (a kind of ‘method ontologies’) for the same purpose. There have also been
several efforts to employ taxonomies over domains of individual attributes [3,
4, 13, 19] to guide inductive learning. A recent contribution that goes in similar
direction with our work but is more restricted in scope is that of ??? [?], which
uses ontologies to...

10 Conclusions and Future Work

We presented a pilot study on using ontologies to enhance the knowledge discov-
ery process; the study was carried along most phases of the process and targeted

11 Ferda can be downloaded at http://ferda.sourceforge.net
12 In the future, the Ferda community aims to implement these proposals from auto-

matic identification of redundant attributes, automatic categorization of attributes
to automated setup of the whole task.



Fig. 6. The Ferda environment



into two applications: cardiovascular risk and social climate. We plan to use the
outcome of this study to integrate ontology-handling tools to the LISp-Miner
architecture itself. In a longer run, it would also be desirable to extend the scope
of the project towards discovered hypotheses with more complex structure, e.g.
with longer antecedents/succedents, with additional condition, or even to hy-
potheses discovered by means of a different procedure than 4ft-Miner.
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