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Abstract SEWEBAR-CMS is a set of extensions for the Joomla! Content Manage-

ment System (CMS) that extends it with functionality required to serve as a com-

munication platform between the data analyst, domain expert and the report user.

SEWEBAR-CMS integrates with existing data mining software through PMML. Back-

ground knowledge is entered via a web-based elicitation interface and is preserved

in documents conforming to the proposed Background Knowledge Exchange Format

(BKEF) specification. SEWEBAR-CMS offers web service integration with seman-

tic knowledge bases, into which PMML and BKEF data are stored. Combining do-

main knowledge and mining model visualizations with results of queries against the

knowledge base, the data analyst conveys the results of the mining through a semi-

automatically generated textual analytical report to the end user. The paper demon-

strates the use of SEWEBAR-CMS on a real-world task from the cardiological domain

and presents a user study showing that the proposed report authoring support leads to

a statistically significant decrease in the time needed to author the analytical report.

Keywords data mining · association rules · background knowledge · semantic web ·
content management systems · topic maps

1 Introduction

Presenting results of particular data mining tasks belongs among the most significant

problems in data mining research. This problem is perhaps most pressing for the associ-

ation rule mining tasks, where the inability of current systems to select the interesting

rules and present them to the expert in a concise form is considered as the main obstacle

to using association rule mining in practical applications.

A long established line of research has been investigating interest measures that can

be computed from the analyzed data to rank association rules. Newer research focuses
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on involving domain knowledge for rule pruning or advanced search in discovered rules.

The hypothesis behind the research presented here is that the solution to the association

rule mining usability problem is not a single data mining algorithm, interest measure

or postprocessing algorithm, but rather a flexible system that can be used 1) by a

domain expert to provide the needed piece of information, 2) by the data analyst to

plug-in a specific piece of software, and 3) by the end user to read the analytical

report and provide feedback. SEWEBAR-CMS, a data-mining Content Management

System introduced in this paper, serves as such a communication hub. The acronym

SEWEBAR comes from Semantic Web – Analytical Reports.

Analytical report is a free-text document describing various elements of a data min-

ing (DM) task: particularly the data, preprocessing steps, task setting and results. The

data analyst can also include additional information such as background knowledge,

explanation of preprocessing steps and interpretation of the results. Analytical reports

have previously been created manually; this is however time-consuming and the output

document is not machine-readable, which hinders the possibilities for postprocessing –

e.g. querying, merging or filtering. SEWEBAR-CMS provides semi-automatic genera-

tion and processing of analytical reports that addresses the above issues with the help

of semantic web technologies. SEWEBAR-CMS was primarily developed to support

the association rule mining task, but its significant part can be reused in other mining

tasks.

This paper is a significantly reworked and extended version of [25]. SEWEBAR-

CMS is now demonstrated on a running example of postprocessing the results of mining

from a real-world cardiological dataset (in contrast to a synthetic dataset in [25]), and

a user case study is presented, which quantitatively and qualitatively evaluates the

benefits of the system.

The paper is organized as follows. In Section 2 we give an overview of the architec-

ture of the system. Section 3 describes the representation and processing of background

knowledge and Section 4 the representation and processing of mining models. Section

5 describes the actual report authoring support of SEWEBAR-CMS, which leverages

on previously acquired background knowledge and mining models. Section 6 explains

the way in which SEWEBAR-CMS benefits from semantic processing of data mining

models and background knowledge. The user case study with evaluation is presented

in Section 7. An overview of related work is placed towards the end of the paper into

Section 8. Section 9 contains conclusions and a plan for future work.

Throughout the paper we employ a running example (its individual parts num-

bered as Example 1 to 5), which is based on the real-world medical dataset Adamek

[48] describing cardiological patients. The dataset consists of two data matrices, each

covering patients in one hospital. Each matrix row contains the record of one patient.

The data mining task suggested by the domain expert is to discover interesting relation-

ships between various patient features and blood pressure, taking into account existing

background knowledge. The analyst uses SEWEBAR-CMS to convey the results of

the mining to the end-user (here, presumably, the domain expert herself) through the

analytical report.

2 Framework Outline

Postprocessing of data mining results leading to comprehensive analytical reports en-

compasses integration of information from multiple sources. This involves contribution
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and interaction of domain experts and data analysts. A natural environment for this

integration and interaction is a Web Content Management System (CMS), an appli-

cation supporting storage, retrieval and authoring of electronic documents over the

web.

There are many existing commercial as well as open-source web-based content man-

agement systems. The best known systems are Alfresco (commercial, Alfresco.com),

Drupal (open source, Drupal.org) and Joomla (open source, Joomla.org). These sys-

tems offer a wide range of functions such as user management or WYSIWYG editing for

generic document authoring. To fulfill specific requirements, there are either domain-

specific CMS systems or extensions of existing systems. For example, [6] describes

functionality requirements on a CMS system for digital library applications.

In this paper, we demonstrate on the SEWEBAR-CMS system which functionalities

should a CMS for data mining have and how it should communicate with other software

agents. Together with accompanying XML formats and workflow, SEWEBAR-CMS is

a part of the SEWEBAR framework [38] for analytical report authoring.

Technically, SEWEBAR-CMS is a set of domain-specific extensions for the Joomla!

CMS system. An overview of the SEWEBAR-CMS system and its role in the SEWE-

BAR framework is given by the Figure 1.

SEWEBAR-CMS integrates with existing data mining software through the Pre-

dictive Model Markup Language (PMML),1 which is a widely adopted XML-based

standard for definition and sharing of data mining and statistical models. The data

mining software sends PMML documents via a web service (Figure 1A).

The input from the domain expert is preserved in documents conforming to the

emerging Background Knowledge Exchange Format (BKEF) specification. While PMML

documents are produced by the DM software, BKEF documents are created directly

based on human input. Background knowledge is entered via a web-based elicitation

interface that is also part of SEWEBAR-CMS, and is stored in BKEF documents

((Figure 1B)).

The heart of the architecture is the CMS Repository, into which the PMML and

BKEF documents are stored, and possibly linked via the so-called Field Mapping Lan-

guage (FML). They can then be rendered to HTML through XSLT scripts, yielding

automatically generated reports.

The semantic functionality is not directly part of the SEWEBAR-CMS. SEWEBAR-

CMS only offers a web service interface for export of PMML and BKEF documents into

a semantic knowledge base (Figure 1D) and an interface for querying the knowledge

base (Knowledge Base Include, or shortly KBInclude). The ‘semantization’ essentially

consists in transforming the tree-structured XML data into collections of interlinked

facts with ontologically-defined semantics.

Based on an HTML visualization of PMML and BKEF documents and results of

queries against the semantic knowledge base or other web-enabled structured resources

, the data analyst writes an analytical report (Figure 1E). The analytical report is then

the ‘fine-cooked’ result of the mining process.

1 http://www.dmg.org/pmml-v4-0.html
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Fig. 1 Framework outline

Knowledge type Knowledge use Existing formalisms BKEF
taxonomy of items decrease granularity [42] PMML Taxonomy Preprocessing Hint
discretization hint decrease granularity E.g ontology [52] Preprocessing Hint
interesting patterns constrain search space Rule Schemas [32] Background ARs /
known patterns result postprocessing Rule Schemas [?] / Mutual Influences

Table 1 Types of background knowledge in association rule mining

3 Representation of Background Knowledge

Background (or sometimes referred to as domain) knowledge is extensively used in

preprocessing of data before data mining. For example, during the setting of an asso-

ciation rule mining task, the data analyst needs to decide which data fields to include

and how to preprocess them. Inclusion of redundant or irrelevant fields can increase

the mining time and clutter results. A similar effect can have an otherwise relevant

field with a high number of distinct field values, unless its granularity is decreased;

this applies particularly to numerical fields. The data analyst can determine the task

setting experimentally with the help of feature selection and discretization algorithms.

However, this information can be also obtained from a domain expert.

Despite the potential of expert-provided background knowledge for improving the

quality of data mining results, there has been so far little research effort in the area of

selecting pieces of information that should be collected and little standardization efforts

on devising a common specification for storing background knowledge. To the best of

our knowledge, there is no established standard analogical to PMML for background

knowledge in data mining.

Since the availability of a formal specification of background knowledge is vital

for the framework, we have proposed the Background Knowledge Exchange Format
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Fig. 2 BKEF and FML overview and examples

(BKEF) XML specification [26]. Table 1 presents an overview of common types of

background knowledge related to association rule mining and their coverage by BKEF.

The scope of a BKEF document is one mined domain. Figure 2A gives a brief overview

of the structure of the two main components the BKEF XML Schema consists of:

– Meta-attributes: The basic building block of BKEF is a Meta-attribute [38]: an

abstraction representing a property appearing in datasets from the given domain.

The definition of meta-attributes can be used e.g. to automate data preprocessing

as proposed in [38] or implemented in [52].

– Patterns: Known (confirmed), interesting (suspected to hold, but not confirmed)

and rejected (proven not to hold) patterns in the mined domain. Patterns can

typically be used for postprocessing the already discovered hypotheses.

A detailed description of the BKEF XML Schema is out of the scope of this paper

(see [26] for more information). The following two subsections focus each on one of the

main types of BKEF background knowledge, and demonstrate their various aspects on

examples.

3.1 Background Knowledge: Meta-attributes

Meta-attributes can be nested to an arbitrary number of levels. A meta-attribute with

no child is referred to as Atomic Meta-attribute and its granularity should correspond

to a column in a data matrix (corresponding to a PMML’s Data Field). Non-atomic

Meta-attributes are Group Meta-attributes. A Group meta-attribute can have multiple

children.

Since a property can be sometimes measured in different ways, most commonly

using different units, BKEF allows each meta-attribute to have multiple formats. Most

pieces of information relating to a meta-attribute are format-dependent. A format

contains the following pieces of information:

– Data and Value Type specifies the format’s data type (integer, float,...) and

value type (cardinal, nominal or ordinal).

– Allowed Range specifies permissible values through an interval or enumeration.

– Preprocessing Hints encompass particularly expert recommendations for dis-

cretization or value mappings.
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Fig. 3 Screenshots from SEWEBAR-CMS

– Collation specifies how to sort values, this includes enumeration-based collation

suitable for ordinal formats and numerical collation suitable for cardinal formats.

– Value Annotation allows to annotate selected values or value ranges with a

textual annotation and a machine-readable class.

It is convenient to introduce a name for an (implicit) superclass for the analogy with

Field and Field Value elements in PMML (see Section 4): Meta-field is a format-meta-

attribute pair. Meta-field Value is an abstraction of a possible ’value’ of a meta-field –

Discretize Bin, Value Mapping Bin in any of the Preprocessing Hints or an interval or

a Value from the range specified by the Allowed Values element.

Similarly as in PMML, a concrete BKEF producer can introduce custom pieces

of information (e.g. statistics such as standard deviation) using the XML extension

mechanism.

In SEWEBAR-CMS, elicitation of meta-attribute knowledge contained in BKEF

is done by the Metaattribute Editor, a Joomla! Extension. The application is wizard-

based. On the first screen the user can create a new (Group/Atomic) meta-attribute

or edit an existing one. The Atomic Meta-attribute Edit screen allows to create a new

Format or edit an existing one, while the Group Meta-attributes Edit screen allows to

(un)assign child meta-attributes. In the Format Edit Screen (see Fig. 3A) the user can

set to a Format all the information according to the BKEF XML schema.

Example 1: BKEF Meta-attributes

To obtain background knowledge for the Adamek dataset, a medical expert was asked

to use the BKEF Metaattribute Editor to input her knowledge. Assisted by the data

analyst, she input information on 32 important clinical parameters appearing in the

dataset, thus creating 32 atomic meta-attributes, each with one format, organized into

10 group meta-attributes (see Figure 1B).

Consider for example the group meta-attribute Blood pressure (see Figure 2B). In

the dataset there are four data fields relating to blood pressure: right-hand systolic,
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right-hand diastolic, left-hand systolic and left-hand diastolic. Abstracting away from

the left/right hand information, the expert introduced two atomic meta-attributes for

systolic and diastolic blood pressure and assigned them as child meta-attributes to the

Blood pressure group meta-attributes.

Since blood pressure in Adamek is measured in millimeters of mercury (mmHg),

the expert introduces the mmHg format for each of these meta-attributes. Within

the format, additional information on diastolic/systolic blood pressure such as the

preprocessing hint is conveyed. Figure 2C shows an example format.

As the mmHg unit is used for historical purposes2, the blood pressure meta-

attributes could be extended by the kPa Format as hinted in Figure 2B.

3.2 Background Knowledge: Patterns

Known relationships between meta-attributes are captured with BKEF Patterns. The

current BKEF XML Schema allows to define two types of patterns: Mutual Influences

and Background Association Rules.

The notion of Mutual Influence (MI) comes out of research by Rauch & Šimůnek

[38], who proposed to use this construct to represent relationships between meta-

attributes. Each mutual influence is assigned a Validity to denote its meaning. Eleven

types of mutual influences and three types of validity, unknown, refuted or proved,

were proposed. Mutual influences have graphical representation (’arrows’ in Fig. 3B)

that is easy to understand for domain experts. Here, we only briefly describe one of

the simplest and perhaps the most common mutual influence of the type A ↑↑ B,

which expresses that if values of meta-attribute A increase, values of meta-attribute B

increase too.

Background Association Rules are GUHA-like association rules [36], but they are

defined over meta-fields rather than over data fields or derived fields. A more formal

definition is in [26]. A Mutual Influence can be transformed into Background Associ-

ation Rules (BAR) of the form A(ωA) ≈ B(ωB), where A(ωA) and B(ωB) are Basic

Boolean Meta-attributes [36]. The coefficient ωX is a subset of values of meta-field X

that are perceived as ‘high’. If the BAR emerges from an MI then it is called Atomic

Consequence of this MI [38].

In SEWEBAR-CMS, mutual influences are entered by the domain expert through

the Influence Editor [11].

Background association rules can either be generated automatically from the mu-

tual influence based on Format collation, which is necessary for interpreting the notion

of ’high’, or input manually by the domain expert through the SEWEBAR-CMS As-

sociation Rule Builder [?].

Example 2: BKEF Patterns

To obtain the second part of background knowledge for the Adamek dataset, a med-

ical expert was asked to use the SEWEBAR-CMS Influence Editor to formalize her

knowledge of patterns appearing in this domain. Some of the 75 MI patterns are listed:

1. MI1: BMI ↑↑ Systolic Blood Pressure (Validity: Confirmed)

2 Current sphygmomanometers mostly do not use mercury. Some newer devices already give
readings in kilopascals (kPa), the SI measure of pressure.
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2. MI2: BMI ↑↑ Diastolic Blood Pressure (Validity: Unknown)

3. ...

For example, the Mutual Influence 2 captures a relationship that, by the expert’s

opinion, needs further confirmation. It can be rewritten to several Atomic Consequences

(setting the above-average dependence threshold to 0.2 and absolute support to 20

based on experience [38]). In the current SEWEBAR implementation, this transforma-

tion is carried out manually, while constraining the coefficients to length one.

MI2 is transformed to:

1. AC21: BMI(Increased) ⇒+
0.2,20 DBP(Increased)

2. AC22: BMI(Overweight) ⇒+
0.2,20 DBP(Increased)

3. ...

The background knowledge elicited from the expert is saved into a BKEF document

and stored in the CMS. Atomic Consequences stored in the document can be used to

postprocess mining results as discussed and exemplified in Section ??.

4 Representation of Data Mining Models

4.1 Formal Representation of Data Mining Models

The largest body of input for the framework is constituted by descriptions of data min-

ing models: settings and results of data mining algorithms running in arbitrary software

environments. Concise and detailed model descriptions are crucial for postprocessing

of data mining results. Obtaining these descriptions must not be, however, too costly

in terms of requirements on export functionality of the data mining software.

For this reason, the framework adopts PMML, a holistic and widely-adopted XML-

based standard for definition and sharing of data mining and statistical models [?].

PMML 4.0, the latest version of the standard at the time of writing, has the following

components (second-level XML elements):

– Header contains task metadata such as the version of the DM application.

– Data Dictionary describes the input data by listing available Data Fields and

optionally describing their content through enumerating Values or listing Intervals

of permissible values.

– Transformation Dictionary (optional) describes the preprocessing of input data

fields: typically a mapping or discretization of multiple Data Field Values onto one

DiscretizeBin or MapValues Bin. Preprocessed values are stored in a Derived Field.

– Mining Model contains the definition of zero or more mining models (typically

one). PMML 4.0 defines 13 different mining models (e.g. Association Rules, Cluster

Models and Neural Networks) as reusable elements with their own unique structure.

Most models begin with Mining Schema, which lists Mining Fields – fields used in

the model, and the treatment of outlying, missing and invalid values.

– Mining Build Tasks (optional) contains the setting related to the training run

that produced the model. Its content is not elaborated in PMML 4.0.

Since the input for the mining algorithm can be constituted either by a raw Data

Field or a preprocessed Derived Field, we will used the term Field further in the text

to denote either of the fields when referring to PMML. Similarly, the term Field Value

will be used to denote a possible value (expressed in terms of the Data Field’s Interval

or Value or Derived Field’s Discretize Bin or Value Mapping Bin) of a Field.
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Gender Psychical Strain Uric Acid BMI Diastolic Pressure
female small 359 45 105
female medium missing 31 85
female high 320 26 90

Table 2 Adamek Data Matrix Excerpt

Example 3: Mining Models and PMML

The data matrix Adamek-Hospital1, a fragment of which is depicted in Table 2, de-

scribes 684 outpatients, each in one row.

The data analyst uses the LISp-Miner software (lispminer.vse.cz), which is an

implementation of the GUHA ASSOC procedure [22] mining for GUHA association

rules. GUHA association rules are an extension of classical Apriori-style association

rules introduced in [4]. The extra features exploited in this example is the above-average

dependence interest measure ⇒+
q,Base used instead of the confidence and support and

so-called basic boolean attributes used instead of items.

The above-average dependence interest measure can be verbally interpreted as

Among patients satisfying the antecedent, there are at least 100q per cent more ob-

jects satisfying the consequent than among all observed objects, and there are at least

Base observed objects satisfying both the antecedent and consequent. In GUHA, the

term item in the apriori style association rule is replaced by the term Basic Boolean

Attribute b(σ), where the Coefficient σ is a subset of possible Values of Field b.

The task setting3 was as follows: above-average dependence with thresholds q = 0.2,

Base = 5; data fields Body Mass Index (bmi), Family status, Psychical strain, Total

cholesterol (tchol), Uric Acid (uacid), Height and Gender were considered for antecedent

and Diastolic blood pressure (dpres) for consequent. For mining, we only considered

patients without diabetes, which then appears as fixed condition (syntactically, in the

end of every rule). As a consequence, the preprocessing hint/format depicted in Fig. 2C)

could be applied in a straightforward way, yielding categories such as ‘Normal’ or

‘Increased’ for Blood Pressure.

The task was finished in 1 second on a desktop PC and resulted in 450 discovered

association rules.

Sample discovered rules (referred to later in the running example):

AR 1: tchol(increased) ∧ uacid(increased) ∧ bmi(overweight..obesityII) ⇒+
0.92,31

dpres(increased) / diab(no)

AR 445: bmi(normal) ⇒+
0.33,145 dpres(normal) / diab(no)

AR 450: bmi(obesityII, obesityIII) ⇒+
0.71,35 dpres(increased) / diab(no)

The resulting data mining model is exported into PMML and sent via a web-service

to SEWEBAR-CMS.

3 For completeness, additional setting (for explanation refer to [39]) was: a) Coefficients:
Family status: Subset, length 1-2; BMI: Interval, length 1-3; all other: Subset, length 1-1, b)
Cedent setting: conjunction with minimum length 0; for condition the minimum length was 1.
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5 Analytical Report Authoring Support

SEWEBAR-CMS provides a single access point for information relating to the data

mining task, scoping particularly the structured PMML and BKEF documents and

pieces of unstructured background information.

The analytical report is written by the data analyst based on these pieces of evi-

dence. The task of writing the analytical report is simplified by automatic visualizations

of the structured content stored in the CMS in the form of human-readable reports.

These automatically generated reports contain visualizations of information contained

in PMML and BKEF using histograms, tables and automatically-generated text, but

are still too verbose to be presented to the domain expert. It is important that these

automatically-generated HTML reports are split into machine-readable fragments (in-

dividual tables, figures,..), which can be further reused in (custom) analytical reports.

Automatic report generation in SEWEBAR-CMS is realized using an XSLT Trans-

formation Joomla! Extension and XSL transformations from PMML to HTML and

from BKEF to HTML. The fragments can be nested and are marked with XML com-

ments. Comments were chosen for practical purposes as they are not removed or garbled

by off-the-shelf HTML editors.

Analytical report authoring support also comprises a Joomla! Extension called

gInclude, which allows the analyst to include the fragments of automatically generated

reports into the analytical report.

The analytical report can contain fragments of multiple automatically generated

reports. Since included fragments retain information about their originating source

XML document, the gInclude Update, a Joomla! Component extension, can be used to

selectively update the analytical report if the referenced documents change.

A part of an automatically generated report is depicted on Fig. 3C. For details on

report authoring support in SEWEBAR-CMS refer to [11].

The fact that statements in analytical reports are directly backed by the source

data (PMML or BKEF fragments) not only allows to search the reports as structured

data but also fosters the credibility of the reports.

Example 4: Report Authoring

After the data mining was completed in Example 3, the data analyst wants to convey

its results through the analytical report. The BKEF document created in Examples 1

and 2 as well as the PMML document uploaded in Example 3 to the CMS can be ac-

cessed as automatically generated HTML reports. The first report contains background

knowledge conveyed by the domain expert and the second all information related to

the task. While writing the analytical report, the analyst tries to identify only the

pieces of information important for the user. For example, s/he does not need to input

details on data preprocessing, because it was done according to the domain expert’s

recommendation; e.g. the expert user can be generally assumed to be knowledgeable

about the fact the increased value of diastolic blood pressure refers to the interval

<90; 140>.

The most difficult task is the identification of discovered rules that may be po-

tentially interesting to the report user. Referring to the excerpt of mining results

shown in the example given in Example 2, the data analyst sees that the rule AR1:

tchol(Increased) ∧ . . .∧ bmi(Overweight..ObesityII)⇒+
0.92,31 dpres(increased) / diab(no)

is a confirmation of the mutual influence MI2, as every object complying to AR1 will
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comply to the atomic consequence AC21: BMI(Overweight) ⇒+
0.2,20 DBP(Increased).

The data analyst can therefore dismiss this rule as uninteresting and exclude it from

the analytical report. As we will see in the next section, identification of un/interesting

rules can also be carried out automatically, through the semantic knowledge base.

6 Semantic Knowledge Base Integration

Semantic representation of mining models and background knowledge can be used to

postprocess the discovered patterns in the light of the background knowledge. Partic-

ularly, the following uses are envisaged:

– Semantic annotation: The entire report can be for example annotated by its

subject area and interestingness, and interlinked through annotation to related

reports. The annotation can also be done at the granularity of individual patterns

as shown in [25].

– Semantic search: Queries can be executed against multiple semantized PMML

and BKEF documents linked by semantized FML.

The role of the CMS in the SEWEBAR framework is to support all elementary

operations relating to design and retrieval of analytical reports. The technological ar-

chitecture of most current CMS systems including Joomla! is adequate for this purpose

– they have a relational database back-end and are written in low-level (from a semantic

perspective) scripting languages.

However, some tasks, which are difficult to achieve in relational representation

and imperative languages, can be naturally achieved using semantic web technolo-

gies that utilize graph data representation and declarative languages. While most

CMS systems are written in PHP, almost all semantic repositories such as Sesame

(www.openrdf.org/) or Jena (jena.sourceforge.net) are Java-based. Instead of try-

ing to include semantic functionality into the CMS, which would result in low-level

cross-platform technological integration, the SEWEBAR framework opts for loose web-

service integration, where the processing of semantic information is outsourced into a

separate system; a Semantic Knowledge Base.

SEWEBAR-CMS exposes the structured information (PMML, FML and BKEF

documents) to the Semantic Knowledge Base through a web service. Likewise, posing

queries from within the SEWEBAR-CMS is taken care for by the Knowledge Base

Include (KBInclude) Joomla! Extension, which also communicates with outside repos-

itories/knowledge bases via web services.

KBInclude consists of three components.

– Through the administration component the admin user defines queries, which are

locally remembered and parameterized, and XSLT transformations, which are used

to visualize the results of the query against the knowledge base.

– The WYSIWYG editor-plugin component allows the user to include the query into

CMS documents.

– Finally, the content component is called during the rendering of the document

page and ensures that queries included in the page get executed and their results

embedded into the page as HTML fragments.

KBInclude was tested against the TMRAP interface of Ontopia Knowledge Suite,

a SPARQL endpoint, and a custom RESTful wrapper for the Berkeley XML database.
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SEWEBAR-CMS also includes an experimental GUI-based query designer for as-

sociation rules.

The specific semantic representation of BKEF, FML and PMML documents is

out of scope of the SEWEBAR-CMS system (see [26]). Within the first integrated

prototype of the SEWEBAR framework, the ISO/IEC 13250 Topic Maps [19] standard

is employed. PMML and BKEF documents are transformed into the Association Rule

Mining Ontology (ARON) [24] and Background Knowledge Ontologies (BKON) [26].

In the SEWEBAR framework, we use Ontopia Knowledge Suite (OKS) as the Topic

Maps knowledge base tool. We chose OKS, because it is a commercial-grade software

with many deployments. The Ontopia Knowledge Suite was in 2009 open sourced.

The transformation is done with an XSLT transformation (BKEF to BKON), series of

update/insert tolog queries or via a Topic Map API.

Tolog is a Topic Map query language inspired by Datalog (a subset of Prolog) and

SQL. Unlike XQuery or SQL, tolog supports inference rules, which can help deduce im-

plicitly stated relationships between topics. A partial advantage of tolog over SPARQL

as its RDF counterpart is better support of recursion, which was critically needed for

the nested structure of GUHA association rules; this was actually one of the reasons

for opting for Topic Maps as the first prototype’s knowledge representation.

The Topic Map with semantized mining results and background knowledge can

then be searched using tolog for discovered rules that are in an interesting relation to

background knowledge patterns. The ability to traverse from background knowledge

to a mining model within one query is dependent on the existence of FML mapping

between metafields and datafields.

Detailed discussion of tolog queries and topic map inference in SEWEBAR is out

of the scope of this paper, more details can be found in [24].

Example 5: Semantic Knowledge Base

In this example, we will use the tolog language to query for rules discovered from

the Adamek-Hospital1 matrix (see example in Section 4) that confirm the background

knowledge rules following from the Mutual Influence BMI ↑↑ Diastolic Blood Pressure.

The mapping between the cardiological background knowledge and the Adamek data

matrix is described using an FML document (see Figure 2E).

First, it was necessary to semantize the PMML, BKEF and FML. In our small

experiment this was done in the OKS Ontopoly editor by populating the correspond-

ing Topic Map ontologies with instances. Next, the resulting three Topic Maps were

merged.

The merged Topic Map can be queried with tolog. Consider the task of automating

the search for background association rules that are specialization of a mutual influence

as shown in Example 4. If an FML mapping between bmi datafield and BMI metafield

and the dpres datafield and Diastolic Blood Pressure metafield is defined, the fact that

AR1 confirms MI2 can be determined using a tolog query (in contrast to manual check

presented in Example 4). Details of the tolog query and the underlying topic maps can

be found in [24].



13

Fig. 4 Framework benefits as reflected by the questionnaire

7 Evaluation

In this section we present an evaluation of SEWEBAR-CMS from the perspective of

the data analyst who authors the analytical report. The goal of the evaluation was

to assess whether the Report Authoring Support toolset has an impact on the time

required to author the analytical report and on its quality.

To achieve this objective, we introduced SEWEBAR-CMS into an undergraduate

knowledge engineering course at UEP. One of the long established assignments in the

course practicals is on data mining. Teams of 3-4 students use the LISp-Miner data

mining system (or the Ferda Data Miner system, which has very similar functional-

ity), and subsequently wrote an analytical report describing the data mining task and

results. These reports are then assessed by teachers. In previous semesters, the report

was written in a text processor (mostly MS Word).

In the winter semester 2009/2010 there were 44 student teams spread around 10

practicals lead by 6 teachers. The mined dataset was the Adamek dataset. We split the

teams into two groups: Group W used MS Word and Group S used SEWEBAR-CMS

for report authoring. All teams within one practical belonged to the same ‘technology’

group. The practicals were distributed among the teachers such that 4 of the 6 teachers

had both a practical with group W and a practical with group S, to minimize the

impact of the teaching & examination style of a particular teacher. The students were

unaware of taking part in an evaluation study (which was generally designed so as to

eliminate the possible impact on final assessment), additionally Group W was unaware

about SEWEBAR-CMS. Group S received approximately 30 minutes of training on

the usage of SEWEBAR-CMS.

After the teams handed in the assignments and these were assessed, online anony-

mous questionnaires were distributed to all team members, i.e. about 200 students,

of which 182 completed4 the course (either successfully or unsuccessfully) and thus

can be considered as relevant respondents. 89 answers sets (i.e. from 49% of relevant

respondents, under the unique provenance assumption; the students were strongly en-

couraged to only use the questionnaire once) were collected. The first part contained

questions on the interestingness and time requirements of individual assignments in

the course, and is of limited relevance for the purpose of this paper. The second part

of the questionnaire, containing four questions (plus fields for free-text comments, as

discussed later), was only filled in by students who indicated that they participated in

4 The remaining students either did not attend the course at all, or left it early in the
semester, and thus did not have competence to answer the questions.
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the data mining task.5 There were 33 Group S members and 41 Group W members

(i.e. 74 out of 89) who filled in the second part. Additionally, two answer sets from

each group were removed as outliers,6 yielding 31+39=70 answer sets in total.

The first two questions inquired for the respondents’ estimates of the total time

spent by their team mining the data and writing the report. The average estimated

time to write the analytical report in Group S was 8.49 hours and in Group W 10.12

hours. Using a one-sided test of equality of two normal population means with known

variances, the null hypothesis can be rejected in favour of the alternative hypothesis

that the time to author an analytical report is smaller in Group S than in Group W

at the level of significance α = 0.05.

The second two questions investigated the degree to which the respondents per-

ceived team collaboration and content handling as a benefit of the SEWEBAR-CMS

(Group S) or drawback of MS Word (Group W), respectively; the answers were graded

on a discrete scale 1–5. For overview of answers refer to Fig. 4. It should be noted that

while effective content handling support requires specialized tools, such as the report

authoring support in SEWEBAR-CMS, the team collaboration could merely be im-

proved by using a generic web-based collaborative text editor. The results from Group

W however indicate that for the MS Word users the lack of content handling support

caused greater discomfort (median 3) than the deficiencies in team collaboration fa-

cilities (median 2). On the other hand, Group S evaluated the collaborative benefits

brought by the framework and the benefits from the Report Authoring Support; the

median of answers on both question was 4, while the averages only differ by 0.2. This

indicates that the Report Authoring Support in SEWEBAR-CMS was accepted by the

users and that it probably contributes to the more efficient analytical report design.

Finally, we also noted that the nature of textual comments provided by students as

‘complaints’ about the technological side of the work differed between Group W and

Group S. While the complaints in Group W were mainly related to inherent aspects

of the manual report writing process in the text processor, many of the complaints in

Group S concerned software bugs in SEWEBAR-CMS, which are an expectable feature

of a brand-new software tool and can be relatively easily eliminated.

Additionally, we evaluated the quality of reports from both groups based on the

number of points each of the reports received in the course assessment. Importantly, at

the time of assessing, the assessors did not yet anticipate that the points would be used

for comparison of the two systems afterwards. The maximum number of points was

17; the average number of points in Group S was 13.20 (21 reports) and in Group W

13.17 (24 reports). The tight correspondence of averages conforms to the educational

imperative that the study should not introduce a bias to the assessment by signifi-

cantly favouring one of the groups. However, by inquiring those teachers who assessed

the reports by both the Group W and Group S, we saw that the reasons for nega-

tive assessment typically differed across the groups. While Group W reports frequently

contained data inconsistencies, obviously introduced by manual editing (ranging from

sloppy copy-pasting to mixing of data from entirely different mining sessions), the

Group S reports were rather penalized for lack of added value from the students them-

selves (beyond the output automatically generated from PMML). The latter issue, lack

of effort investment into a report that ‘already looks neat’, is presumably paradigmatic

5 All tasks were assumed to be accomplished by team work, but it was not strictly enforced.
6 As outliers we considered points located more than 1.5 interquartile ranges below the 1st

or above the 3rd quartiles.
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for the educational environment; it would no longer hold in a business environment,

where the analyst would probably invest the time saved through automatic support

into providing further personal insights in textual form.

It can be concluded that the evaluations showed that compared to the baseline

scenario, the SEWEBAR-CMS framework allows to design analytical reports in smaller

time, while the quality of the reports remains unaffected. The evaluation did not take

account of the possibility to further process the machine-readable information, which

is a ‘by product’ of the report authoring process in SEWEBAR-CMS.

The evaluation of the effectiveness of using background knowledge patterns (specif-

ically of Rule Schemas and Implicational Rule Schemas) for pruning and filtering dis-

covered association rules has already been presented in [32,?]. However, once the in-

tegration of SEWEBAR-CMS with OKS is finalized, we would like to perform the

evaluation of the benefits perceived by the domain expert from automatic rule filtering

and pruning.

8 Related Work

Our approach to knowledge-intensive web-centric data mining report authoring seems

rather unique in its coverage of different types of knowledge taken into account in

the whole KDD process. As its only directly comparable counterpart we identified the

quite recently announced extension of the VIKAMINE system [9], which integrates data

mining with a (semantic) wiki environment somewhat analogously to our CMS-based

environment, leveraging on background knowledge sources. Their workflow looks even

more web-centric than (the current version) of ours, as the wiki environment is used

both to launch the data mining tasks and to present the results, thus closing the loop;

our framework, in contrast, leaves mining task parametrization and launching to the

specific tools themselves (with their heterogeneous and possibly evolving interfaces),

and only takes care of elicitation of background knowledge, whose representation is

presumably more stable in long term. A minor disadvantage of the approach in [9] could

be reliance on proprietary knowledge formats only, while we attempt to use as much

of the PMML industrial standard as possible, and also seek genericity in the newly-

proposed BKEF XML Schema format. The description of the approach in [9] however

does not reveal many details on the implementation and end-user functionality. We are

in contact with the authors of [9] and envisage thorough comparison (and, presumably,

cross-fertilisation) of both approaches in the nearest future.

As regards the use of background knowledge in KDD, its importance has been

recognised from the beginning. While large-scale industrial projects merely focused on

methodologies of leveraging the human expertise in different phases of the KDD cycle

[27], academic research has, as early as at the beginning of 90s, occasionally attempted

to formalise and subsequently automatically exploit such knowledge. First attempts

to exploit prior conceptual7 knowledge in propositional8 machine learning (as research

7 In this survey we omit approaches that consider background knowledge in numerical form,
such as prior probability estimates or expertise-driven parameter setting for mining tools.

8 We also omit knowledge-intensive, computationally costly approaches to learning over first-
logic representation, such as Inductive Logic Programming, where prior background knowledge
is an indispensable part of the learning process. These approaches have never penetrated
industrial data mining except for very specific, inherently structural task settings such as
those in molecular biology.
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field predating present-day mainstream KDD) were often restricted to intra-attribute

value (typically, taxonomical) structuring [5,8,31,43]. More sophisticated and abstract

knowledge models were however sometimes also used to constrain the search and struc-

ture the learning workflow; examples are qualitative models by Clark & Matwin [14]

or problem-solving methods [17,46].

This effort naturally intensified with the rise of semantic web technologies, provid-

ing standard, web-oriented languages and reasoning tools for ontological knowledge (in

particular, in OWL [1] and Topic Maps [19]). The research on applying ontologies as

prior knowledge in data mining is nowadays split into two rather disjoint streams.

First, domain ontologies are used to specify the semantics of individual data fea-

tures as well as (known, expected, impossible etc.) relationships among them. Quite

naturally, association rule mining is frequent beneficiary of such approaches, due to

the inherent similarity of association hypotheses to ‘relational’ elements of ontological

representations. For example, Antunes [7] used domain knowledge as constraints when

joining itemsets; Domingues&Rezende [16] used domain taxonomies to generalize the

hypotheses and to decrease their number; Tseng [49] pruned itemsets that were re-

dundant wrt. an is-a or part-of hierarchy; Kuo [29] constrained the mining to pairs

of features that were (based on their type) meaningful in the context of a medical

ontology; Coulet [15] applied biomedical ontologies (namely, information on subsump-

tion and on functionality of properties) for pre-pruning of both columns and rows in

source data. In our own prior work we also attempted to directly embed (through

metamodeling) background knowledge on attribute categorization and grouping into

domain ontologies represented in OWL [52]. In frequent subgroup mining, as neighbour

field to association mining, background knowledge on causality was used to discover

causal links among subgroups [10]. In our SEWEBAR project itself, an earlier estab-

lished alternative thread aims at tighter integration between background knowledge

representation and the actual data mining engine (LISp-Miner) [38], while the nature

of background knowledge is largely overlapping with that of BKEF; particular atten-

tion is also paid to logical consequence computation between background knowledge

and discovered association rules [37]. In all these (as well as the ‘rule schema’ methods

introduced later), possibly sophisticated knowledge processing is not coupled with stan-

dardized data mining model representations and web-based report authoring support,

as in SEWEBAR-CMS.

Similar coverage to Background Association Rules used in our framework have

so-called Rule Schemas, used by Olaru [32] for focusing the search for hypotheses

(primarily carried out in the neighborhood of schemas). A Rule Schema has the form

rs(Condition → Conclusion [General]) [s% c%]. Condition and Conclusion express

what should appear in the rule antecedent and consequent, while the expression in

the General section can appear anywhere in the rule. The optional [s% c%] values

indicate minimum values of support and confidence, the two rule interest measures

used in apriori-like association rules. The main difference between Rule Schemas and

Background Association Rules is the presence of the General part in the former and

the possibility to use other interest measures than confidence and support in the latter.

Besides association mining, prior knowledge was also applied e.g. in clustering [50]

(as must-link and cannot-link constraints with concrete instance pairs) and decision

tree mining [30] (as ‘beliefs’ serving for on-the-fly reweighting of attributes). In [33],

‘common-sense’ ontologies were used as basis for construction of new features.

Second, ontologies are used as means for automatically selecting data mining tools

and constructing data mining workflows. The subject of modeling is thus the KDD do-
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main itself. A few pioneering approaches appeared a decade ago [12,18,45]. Nowadays

the field is quite vivid, as witnessed e.g. by the number of ‘KDD ontology’ projects pre-

sented at the ECML/PKDD 2009 workshop on ‘service-oriented knowledge discovery’

(SoKD, [34]). To our knowledge, however, none of these ontologies significantly covers

the postprocessing phase of KDD, incl. the impact of prior domain knowledge on the

exploitation of discovered hypotheses, as is the target of our Data Mining Ontology.

9 Conclusions and Future Work

The SEWEBAR framework introduces, to the best of our knowledge, the first system-

atic solution to supporting data mining report authoring by a web-centric system also

exploiting semantic web technologies. The framework is built upon proved standards

and technologies such as XML technologies, a popular open source content manage-

ment system and a commercial grade Topic Map knowledge base. The principal input

format is the industry standard PMML specification, which should foster adoption of

the framework among data mining practitioners. The data mining ontology used by

the semantic components of the framework is designed with respect to this standard

as well.

On a continuous example on a medical dataset, we have shown how the SEWEBAR-

CMS eases the routine task of authoring an analytical report. Its main strength lies,

however, in the possibility to benefit from the querying and data integration capabilities

given by the use of semantic web technologies. Using a topic-map-driven knowledge

base, we have shown an example query that searched for confirmations of a background

knowledge pattern in the mined results.

Since the input of the framework is constituted by PMML, the prototype SEWE-

BAR implementation can be easily adapted to consume results from other DM tools

such as Weka or SPSS.9 The ontology, Joomla! extensions, XML schemas, and other

resources are available online at http://sewebar.vse.cz/.

Ongoing work focuses on integrating SEWEBAR-CMS with the OKS Knowledge

Base. Once the implementation of generation of ontological instances from XML data

has been finished, it will be possible to perform a thorough empirical evaluation of

the benefits and computational complexity of large scale rule pruning and filtering.

The future theoretical research should focus on extending the framework to algorithms

mining for other representations than association rules. We are also working towards

supporting RDF/OWL as an alternative knowledge representation formalism.
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