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Abstract: Diverse types of structured domain models are nowadays in use in 
various contexts. On the one hand there are generic models, especially domain 
ontologies, which are typically used in applications with artificial intelligence 
(reasoning) flavor; on the other hand there are more specific models that only 
come to use in areas like software engineering or business analysis. 
Furthermore, the discipline of information extraction has invented very specific 
knowledge models called extraction ontologies, whose purpose is to help 
extract and semantically annotate textual data. In this paper we present a 
method of authoring extraction ontologies (more specifically, their abstract 
constituents called presentation ontologies) via reusing different types of other 
knowledge models, especially domain ontologies and UML models. Our 
priority is to maintain consistency between extracted data and those prior 
models. 
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1 Introduction 

Every model can basically be looked upon as an abstraction of reality according to a 
certain conceptualization. If the model can be expressed as a formal specification we 
can call it ontology according to the original T. Gruber’s definition [3]. Once a model 
is represented as a concrete artifact, it can support communication, analysis and 
elaboration of the relevant aspects of the underlying domain. 
 It is now often assumed that the use of ontologies can bring the required flexibility 
to many disciplines, and we believe one of them is information extraction, and web 
information extraction (WIE) in particular. In the field of WIE it is possible to 
distinguish several trends in the last few years. The wrapper-based approach is widely 
adopted in today’s business spheres; it is based on structural information in the 
HTML documents. Although it is quite reliable, it is not only domain dependent but 
moreover document-structure dependent and thus individual extraction tasks are not 
very reusable. The second, inductive, approach is built upon statistical learning and/or 
language processing. The drawback of this approach is that it requires large corpora 
of annotated data as a base for the learning. In addition, both of these approaches 
usually provide the extracted data in a form that is not enough semantically structured 
for further use in knowledge-based systems. 
 Consequently, a third approach was formed, with focus on semantic annotation of 
extracted data, namely with a tendency for pushing structured ontologies towards the 



actual extraction process, in the role of extraction models, which can be referred to as 
an extraction ontology [1] when properly formalized. It is assumed that extraction 
ontologies are hand-crafted based on observation of a sample of resources; however, 
they are required to have a clean conceptual structure, which makes them superior to 
ad-hoc patterns used in the early approaches to WIE. 
 We think that a strict single-purpose hand-crafting of such extraction ontologies is 
tedious because it is very demanding to author such an ontology manually (it is often 
done in iterations). Moreover it can introduce inconsistencies in relation to other 
business models and knowledge-bases but the mutual consistency is eligible in both 
academic spheres and enterprise environment. In this paper we hypothesize that 
extraction models can be crafted via reuse of existing meta-models that are already 
present in the company or freely available on the internet in ontology libraries. This 
reuse should improve further processing of any data annotated (or extracted) using the 
extraction ontology in terms of other knowledge models and hopefully even lower the 
costs of its creation because of lessening the need of thorough prior domain-analysis. 
 The paper is structured as follows. Section 2 explains the nature of extraction 
ontologies with emphasis on their relation to other kinds of knowledge models. After 
that follow three sections that separately discuss the possibilities of reusing various 
sources for the construction of extraction ontologies; first usual domain ontologies are 
taken into account (Section 3), after that we consider the potential of knowledge 
stored in UML diagrams (Section 4), and, finally, we focus on reusing other models 
very common in industry, namely business process models and relational models 
(Section 5). The last two sections are devoted to related research (Section 6) and 
summary conclusions with outline of future work (Section 7). 

2 Presentation Ontologies 

Extraction ontologies define the concepts the instances of which are to be extracted 
from the documents in terms of WIE, in the sense of various attributes, their allowed 
values as well as higher level constraints (such as e.g. cardinality). Following the 
terminology coined in [5], an extraction ontology can be systematically viewed both 
as an information ontology and a knowledge ontology, depending on its actual 
content. It is possible to spot at least three layers in the structure of an extraction 
ontology, such as each is a kind of refinement of the previous one: 
 

1) The incorporation of class’ attributes can be represented as a set of variables 
and can be stored along with their datatypes. From this point of view the 
extraction ontology can be used as a data structure, which can come in handy 
while for example storing the extracted data in database. 

2) The extraction ontology contains concepts that are expected to be populated 
with lots of instances, thus it can be viewed as information ontology. 

3) The extraction ontology can further contain additional higher-level 
restrictions, such as cardinality or mutual dependency, and therefore it can be 
looked upon as knowledge ontology. 

 



 As such ontologies are meant to describe the presentation of objects within some 
media (on the web pages, in the notion of WIE) instead of real-world objects, it is 
natural to speak about presentation ontologies. A presentation ontology represents the 
fundamental part of an extraction ontology: it is the abstract part that captures the 
logical structure of the presentation; together with some additional low-level patterns 
(that enable information extraction) it forms the extraction ontology. In Fig. 1 we see 
the graphical depiction of a presentation ontology for the computer monitor (product 
catalogue) domain. 
 Because of different modeling principles applied while authoring presentation 
ontologies in contrast to other conceptual models they have a slightly different nature. 
Most often a presentation ontology contains a single class, referred to as the core 
class (multi-class presentation ontologies are also possible, however they are not so 
convenient for computational processing). The core class is then supplemented with 
its attributes and additional constrains. Due to this difference from other knowledge 
models, a transformation process is needed for their meaningful reuse. Each kind of 
model has its own specifics; in the remaining sections of this work we will walk 
through them. However generally the transformation process will consist of a few 
steps that are common regardless of the source of underlying knowledge. These are: 
 

1) choose the core class C and add it to the presentation ontology 
2) create its attributes in the presentation ontology 
3) formulate ontological constraints (data type, cardinality) over attributes 
4) create additional “WIE hooks” for each attribute: in addition to simple 

datatype restrictions over attributes, more extraction knowledge (e.g. regular 
patterns) can be added based on the content or context of known or estimated 
instances. 

 
 Regretfully, as the particular structure of the domain models can be very variable 
and the expressiveness of the source models is often high. The models thus cannot be 
transformed deterministically, as there are many ways of reusing a single model. 
Therefore the outcomes of all the rules presented below should rather be interpreted 

Fig. 1: High-level structure of presentation ontology for computer monitors 



as recommendations for an expert designer to help him/her author a suitable 
presentation ontology. 

3 Reuse of Domain Ontologies 

While the inclusion of extraction patterns is specific for the WIE setting, the abstract 
conceptual structure is analogous to that of domain ontologies. As the number of 
domain ontologies available on the semantic web increases, their reuse would be quite 
beneficial. 
 Transformation of a domain ontology expressed in the standard semantic web 
ontology language OWL1 (or other high-level ontology language) into a presentation 
ontology will mainly amount to the transformation steps mentioned above. 
 The first step is to choose the core class. We so far formulated four rules that can 
help choose the core class: 
 

a1) Class C that has individuals directly asserted in the domain ontology should 
probably not become the core class in the presentation ontology. 

a2) If some property D does not have an inverse property explicitly declared, a 
class C in the domain of this property is more likely to become the core class 
than any class C1 that figures in its range. 

a3) If a class C has a minimum cardinality restriction on property D whose range 
is class C1, such that C1 does not have any restrictions on the inverse 
property D, then C1 should not become the core class. 

a4) If there is a chain of object properties (O1,O2, ...,On), where Ok is object 
property of Ck, and for every k, 1 ≤ k ≤ n − 1 the range of Ok is Ck+1, then the 
classes at the ends of such a chain (i.e. C1 and Cn) are more likely to form 
the core class. If a class C is at the end of more such chains, it is even more 
suitable for becoming the core class. 

 
 When a core class is chosen, its attributes have to be created in the presentation 
ontology. Again these attributes can be based solely on the needs of the presentation 
ontology creator and on its purpose (in praxis they are either chosen ad-hoc or 
statistically learned from a corpus of sample data), however to maintain the semantic 
soundness of the resulting data, even the choice of attributes should be based on an 
existing knowledge model. We thus formulated another set of rules that support the 
population of the core class C with attributes: 
 

b1) A datatype property may directly yield an attribute. Furthermore a datatype 
property D of some class C1, together with a chain of object properties 
(typically part-of properties) (O1,O2, ...,On), where O1 is object property of 
C, On is object property of C1, and for every k, 1 ≤ k ≤ n − 1, there is a class 
having both Ok and Ok+1 as its properties, may yield an attribute. For 
example in a weather forecast domain for C=WeatherForecast, 

                                                 
1 http://www.w3.org/2004/OWL/ 



C1=Weather and D=hasTemperature, and O1=forecastWeather 
having C as its domain and C1 as its range, can yield an attribute such as 
‘forecastTemperature’. 

b2) A set of mutually disjoint subclasses of C may yield an attribute even 
without a property counterpart in the source ontology. An example from a 
weather forecast domain would be C=Precipitation having mutually 
disjoint subclasses {Rain, Snow, Hailstorm, ..} can yield the 
attribute ‘Precipitation’. 

b3) A set of mutually disjoint subclasses of some C1 such that exists a chain of 
object properties between C and C1 (in the same sense as in the first rule), 
may yield an attribute. 

b4) An object property O of a class C which object is a class C1 that has some 
individuals asserted in the ontology may yield an attribute. Some possible 
values of such an attribute could be directly given by the asserted 
individuals. For example in another ontology from weather forecast domain 
C=Weather, C1=Precipitation and O=hasPrecipitation with C1 having 
asserted individual such as {rain, snow, hailstorm, ..} can 
again yield an attribute ‘Precipitation’. 

 
 To support these rules we performed tests on freely available domain ontologies 
with varying domains, size, purpose and structure. Results are shown in Table 1. The  
table shows how many times each rule could be used while transforming the given 
ontology into a presentation ontology. 
 Some of these numbers can be of particular interest, for example it is not hard to 
spot the correlation between the use of rules b4) and a1), which is most likely due to 
the fact that both are based on the presence of instances. Further there are three 
ontologies that were only suitable for rule b3); this can be explained by the fact that 
they are bare taxonomies. Note that, even if there are no properties present in such 
taxonomies, it is still possible to derive a few attributes of the core class from them. 
 In summary, by these tests we verified the possibility of reusing knowledge stored 
in existing domain ontologies. Next we will focus on other knowledge models that are 
commonly present in the corporate environment. 

4 Reuse of UML Models 

Being the standard modeling language in software engineering, UML2 has received 
wide attention not only in academic spheres, but also in industrial software 
development. As a consequence, UML is much better supported in terms of tools and 
available expertise than the semantic web languages such as OWL. The wide 
acceptance of UML makes it an ideal candidate for the search for existing knowledge 
and we think it may prove useful for authoring a presentation ontology. The drawback 
of trying to reuse knowledge stored in UML models is however their public 
unavailability, because UML diagrams are often considered the company’s precious 

                                                 
2 http://www.omg.org/technology/documents/formal/uml.htm 
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property. However, for a company such as e-shop wishing to apply information 
extraction so as to analyze its competitors’ offers, it will always be possible to reuse 
its own models. 
 
 According to the Object Management Group specifications the UML diagrams can 
be divided into several quite different groups: structure diagrams, behavior diagrams 
and others (such as interaction diagrams). The UML language has been devised in 
order to integrate competing proposals for modeling languages in the area of software 
engineering. This integration effort was undertaken in order to push object-oriented 
design methods into industrial practice. Object oriented design is, in a way, similar to 
ontological engineering; in some diagrams this is quite obvious. Ontological 
foundations of UML diagrams are however non-trivial, and worth exploring as e.g. in 
[4]. 
 There are some ongoing projects that aim to come with a standardized approach of 
transforming UML diagrams to common ontology languages (for example [2]), 
however they are often only concerned with class diagrams and do not make the best 
of other parts of UML (which can of course be useful too). 
 There are different possibilities of deriving a presentation ontology from diagrams 
of every group; some guidelines follow. 

4.1 Structural Diagrams 

The various structural diagrams such as class diagrams, component diagrams, and 
deployment diagrams describe static, structural constructs (e.g., classes, components 
or nodes artifacts). 
 The most common of these diagrams is the class diagram because it is very 
valuable in software engineering tasks. Luckily the concept of class in UML is very 
similar to the meaning of what is a class in an ontology (and yet it is not the same, for 
details see [4]). 
 For our purpose of deriving the presentation ontology we can work with the UML 
class in the same way as we did with the classes in domain ontologies. Some rules 
remain intact, but some work differently: 
 

• A class can still directly yield a class in the presentation ontology, and a 
property can still directly yield an attribute. 

• As there are no inverse properties in class diagrams, rule a2) can therefore be 
seen as even stronger. 

• The multiplicity of a relation in a class model can be, with a certain degree 
of tolerance, translated to a cardinality restriction, and therefore used in rule 
a3) 

• The generalization in class models is nearly equivalent to is-a hierarchy 
relation, and can therefore serve as support for all chain rules (a4), b1), b3) ). 

• As multiple inheritance is not commonly allowed in the class model, an 
individual cannot be instance of more than one bottom-level class and thus 
all subclasses of a class can be considered as mutually disjoint. This comes 
in handy in the rules b2) and b3). 



 
 We see that the class diagram can be used quite extensively. Similarly, the object 
diagram fulfils all properties of the class diagram and moreover can incorporate 
instances. We can use these in a similar way as we did in the case of domain 
ontologies: 
 

• The instances can be used as individuals in rule a1) for rejecting a core class. 
• The instances can be used as individuals in rule b4) for populating the core 

class with attributes. 
 
 Other diagrams in UML that can be considered as structural do not provide such 
extensive sources for building presentation ontologies, however some of their features 
may still be useful: 
 

• Composite structure diagrams can, along with the information about classes 
and instances, provide some limited restrictions that can in very specific 
cases yield an axiomatic rule about existence of some attribute value. 

• Component diagrams depict the structure of individual components, and 
therefore the inclusion of a class in some component can be vaguely 
translated as part-of relation. This relation can again serve as a basis for the 
chain rules (a4), b1), b3) ) or simply yield an attribute as in a1). 

• The package diagram is used to provide some logical wholes to other 
diagrams. The existence of a package of some entities that can be mapped to 
classes can again yield a part-of relation, or sometimes even an attribute. If 
the package contains some entities that can be mapped to attribute, it could 
serve some examples of that attribute’s values (as a part of the additional 
extraction knowledge). 

 
 However not all kinds of models provide useful information in the means of 
authoring an extraction ontology. For example the deployment diagram contains 
detailed implementation details, which could prove useful while populating an 
ontology with individuals, but it is not very helpful for our purpose.  

4.2 Behavioral Diagrams 

The behavioral diagrams specify the dynamic, behavioral constructs such as activities, 
interactions, and states. The use of these constructs is not so straightforward as in the 
case of structural elements, yet they still can be used. One of the most used behavioral 
diagrams in praxis is the state machine diagram. The use of the state machine 
diagram can be supported by the fact that it describes the possible states of every 
object of a particular class and therefore it can tell something about the class itself: 
 

• The described set of possible states of an entity and transitions between them 
can yield an attribute in presentation ontology, and moreover it can yield 
example values of this attribute provided by the individual states. 



• Ideally the set of states of an entity described by a state machine diagram is 
complete, so it should provide a complete enumeration of values of an 
attribute (provided an attribute is yielded). 

• The presence of a choice point in the state machine diagram can be 
contingent on the existence of a relation to some other entity. This relation 
can yield an attribute directly or can be used with other rules. 

 
 In UML there is also the activity diagram, which is basically an extended version 
of the state machine diagram. The nature of this extension lies in the fact that it can 
describe dependencies between states of different entities and thus entail some 
relation/s between them, which can again be further used with the former rules. 
 Beyond these two diagrams we can place use case diagrams in the behavioral 
group. Use cases are a means for specifying required usages of a system. Typically, 
they are used to capture the requirements of a system, that is, what a system is 
supposed to do. The key concepts associated with use cases are actors, use cases, and 
the subject. The subject is the system under consideration to which the use cases 
apply, and is often described by the class diagram. The users and any other systems 
that may interact with the subject are represented as actors. The use case diagrams can 
also be a source for our approach: 
 

• Actors always model entities that are outside the system and therefore the 
actor should not yield a core class. 

• Although the actor should not yield a core class, it can yield an ordinary 
class that can further be transformed. 

• In the case of actor generalization it is possible to use rules that work with 
ordinary subclasses. 

• In a perfect case the presence of a use case could lead to the existence of a 
possible state of some entity. Then we could work with the state just like 
when concerning state machine diagrams. 

 

4.3 Interaction Diagrams and UML Supplements 

 Interactions are used in a number of different situations. They are used to get a 
better grip of an interaction situation for an individual designer or for a group that 
needs to achieve a common understanding of the situation. 
 Interactions are (according to OMG recommendations) also used during the more 
detailed design phase, where the precise inter-process communication must be set up 
according to formal protocols. However, as a source for authoring a presentation 
ontology the interaction diagrams are very limited, hence the rules for their use are 
vague: 
 

• Generally the set of interactions between two entities should lead to the 
existence of at least one relation between them. 

• The elements of interaction in individual diagrams can yield possible values 
of attributes, however these attributes should have been specified elsewhere. 



 
 The supplements of UML are only interesting to the extent that they can provide 
additional information to the extraction part of the final ontology, such as data types 
of values. 
 The above is not a complete list of models that exist in UML, however, we see 
little use of the others at the moment. 

5 Suitability of Other Commonly Used Metamodels 

UML is not the only framework of metamodels used in today’s industry. There are 
many other various ways of formalizing specific knowledge. Amongst others, two are 
of particular interest: relational database models and business process models. 
 The relational model for database management is a database model based on 
predicate logic and set theory, so it also has many things in common with other means 
of specification of a domain (e.g. abundant literature about translating database 
content into ontology instances exists). The reuse of a relational model for building a 
presentation ontology can also be driven by some non-deterministic rules: 
 

• An entity (i.e. a table) can directly yield a class and its fields (i.e. columns) 
can directly yield attributes. 

• Foreign key references can be used as a general type of concept relation, i.e. 
a property of a class, and can be used in the chaining rules. 

• In contrast to the reuse of domain ontologies it is necessary to distinguish the 
supporting tables that are incorporating the m:n relations. These auxiliary 
tables should not yield a core class (or any other class), despite they would 
be rated high by the original (domain-ontology) transformation rules based 
on property chains. 

• Due to the explicit specification of primary and secondary keys it is easy to 
recognize an inverse property and use the rule a2) if it is not present (and it is 
not present commonly). 

• As inverse properties are not common in the relational model, the chaining 
rules should be even more effective than in the reuse of domain ontologies. 

 
 The business process model is designed to describe a collection of activities 
needed to produce a specific output for a particular customer or market. It is the basic 
tool of the discipline of business process engineering. A process in this context is a 
specific ordering of work activities across time and space and it is related to the 
change of a state of an entity. We can again spot some useful rules: 
 

• Every process depicts a change of a state of some entity and therefore after 
the fashion of state machine diagrams it should yield a possible value of an 
attribute, or it can even yield the attribute itself. 

• The event element and the choice element should express a relation to some 
other entity and therefore could yield an attribute given by this relation. 



• A set of processes delimited by interactions with external systems (and 
ideally even enclosed in a pool) should describe an entity, which can then 
possibly lead to a class in presentation ontology. 

 

6 Related Work 

One of the most similar projects to ours was presented in [2]; it is concerned with the 
transformation of UML class diagrams and relational models to domain ontologies 
(i.e. across the types of models we consider as prior). The relation of ontologies and  
UML models is also important in [4]. 
 On the other hand, the idea of extraction ontologies has first been coined by 
D. Embley's group, e.g. in [1]. As far as the relation between domain and extraction 
ontologies is concerned, they assume the opposite direction: transformation of 
extraction ontologies (along with extracted instances) aiming at complying with 
existing domain ontologies. The problem of authoring the extraction ontology itself is 
therefore not addressed. 
 For completeness, let us also mention our ongoing Ex project [7], running in 
parallel, and focused on endowing information extraction technology with synergistic 
exploitation of multiple resources, extraction ontology having the prominent role. 
 Our work has close affinity to projects addressing ontology selection, such as 
OntoSelect3 or Watson4; as successful search for ontologies is a necessary prerequisite 
for our approach, we plan to extensively use their functionality. 

7 Conclusion and Future Work 

We have shown how various knowledge models can be reused in favor of the 
semantically driven approach to web information extraction. The pros of this reuse are 
in the fact that the final knowledge model for information extraction is semantically 
well structured and that the annotation of extracted data is consistent with existing 
models as much as possible. The cons on the other hand are that the business models 
are not commonly freely available and so the enterprise has to rely on its own models. 
Furthermore, there is no standard language for specifying the presentation and 
extraction ontologies; we use a proprietary format at the moment. 
 Finally, although it is possible to reuse knowledge stored in any one of the 
different models, we think it would also be possible to reuse knowledge that is 
dispersed across multiple models. For example, the role of the state entity in different 
models could be of particular interest. This is one of interesting directions for further 
work. 
 

                                                 
3 http://olp.dfki.de/ontoselect 
4 http://watson.kmi.open.ac.uk 
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