
Design Patterns for Semantic Web Ontologies: Motivation and Discussion

Vojtěch Svátek
Department of Information and Knowledge Engineering

University of Economics, Prague, W.Churchill Sq.4, 130 67 Praha 3, Czech Republic
svatek@vse.cz

Abstract 3. Reason–ability, i.e. usability for (ideally, non–
trivial) inference by existing semantic web
reasoners.

The relatively high level of standardisation of semantic

web ontology languages is in contrast to mostly ad hoc
designed content of ontologies themselves. An overview of
existing methods supporting ontology content creation is
presented. Methods based on design patterns are then
discussed in more detail as they seem most promising
particularly for business environment. Examples of
elementary problems typical for semantic web ontologies
are shown, and their pattern–based solution is outlined.

Unfortunately, many existing SWOs fail in one, if not
all aspects. By consequence, the usefulness of semantic
web is likely to be questioned:

1. Inaccurate ontologies will produce wrong results
as soon as their implicit assumptions are violated.

2. Opaque ontologies (be they accurate) will either
not be used outside their native application or will
be mapped on an inadequate state of affairs.

3. Ontologies unusable for inference, if prevalent,
will question the choice of OWL (as inference–
oriented language based on description logics) for
the backbone of semantic web.

1. Introduction

The comprehensive proposal of the ontology language
OWL, recently completed by the W3C Web Ontology
working group (http://www.w3.org/2001/sw/WebOnt) is
an important step towards ontology re/use on the semantic
web. Its is a result of discussion within a large community
of researchers, and thus might be considered as, in a
sense, optimal. OWL benefits from support by the W3C
consortium, which should make it the ontology language
of first choice for semantic web developers. Shared
language is however not a guarantee of shareable content.
It is clear that (even partial) standardisation of the content
of semantic web ontologies (SWOs) is by order of
magnitude more difficult than standardisation of their
language. Although the new W3C initiative on ‘semantic
web best practices’ is only about to start [Schreiber 2003],
there is no doubt about its primordial importance for the
semantic web as a whole.

Clearly, the whole issue of quality cannot be reduced
to the aforementioned three, but other criteria seem to be
at least partially dependent on them: consistency should
be more-or-less guaranteed by accuracy, extendibility is
closely linked to comprehensibility etc.

Recent analysis [Tempich 2003] of the best–known
SWO repository at http://www.daml.org (the well-known
DAML repository) identified three clusters of ontologies
in terms of proportions of constructs they contain. The
clusters roughly correspond to three general types of
ontologies distinguished e.g. by [van Heijst 1997]:

• Terminological ontologies contain many classes
but few properties. They have typically been
derived from linguistic thesauri or business
taxonomies.

• Information ontologies contain many datatype
properties. They have typically been derived from
database (or object) schemata. The following three quality criteria (although being, in

some form, important for any sort of ontology) seem to be
particularly critical for SWOs:

• Knowledge ontologies contain (relatively) many
object properties and defined classes. In the
semantic web context, they have often been
contrived for reasoning based on description
logics (DL) [Baader 2002].

1. Accuracy: it should reflect the true state of affairs
that holds in reality, with few or no tacit
assumptions (which would lead to incorrect use
beyond the original context). The study [Tempich 2003] only covered syntactical

analysis of ontologies, which could be determined
automatically, with the goal of generating artificial
prototype ontologies for benchmarking the performance
of tools such as reasoners or editors. Its by–product

2. Transparency: in order for a SWO to be shared, its
meaning should be comprehensible for other
people than just its designers.

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2004, Poznań, Poland

http://www.w3.org/2001/sw/WebOnt
http://www.daml.org/

2 BUSINESS INFORMATION SYSTEMS – BIS 2004

however was a (semantically interpreted) observation on
how heterogeneous the writing habits of ontology
designers are.

Most terminological and information ontologies had
obviously been converted from other (‘native’) languages.
However, their availability in DAML+OIL or OWL
syntax (being clearly beneficial by itself) will probably
inspire further development of models labelled as SWOs
but not taking full advantage of OWL’s inference–
oriented features. More complex (knowledge) ontologies
will be directly adopted and/or used for inspiration much
less frequently, since their transparency for humans is
significantly lower.

In this paper, we first briefly review a wide scope of
approaches, methods and tools aiming at higher–quality
content of (existing or newly built) ontologies (Section 2).
Then we analyse in more depth the utility of pre–
fabricated (‘design’) patterns for semantic–web ontology
development ‘in the small’ (Section 3). We end up with
conclusions and suggestions for future work.

2. Support for ontology content quality

In this section, we align several approaches that differ
in their nature as well as in the underlying process (e.g.
verification of existing ontologies vs. support for the
design of new ones). Some of them could be viewed as
orthogonal. We focus on their contribution to the
fulfilment of three criteria identified in Section 1.

2.1 Systematic methodologies

Ontology development methodologies, most of which
have been summarised in [Lopez 2002a], are (similarly to
software engineering methodologies) mainly high–level,
i.e. independent of a particular language, and concentrate
on development processes rather than on the final artefact.
They mainly support ontology design in the large rather
than in the small. They indirectly contribute to ontology
accuracy and transparency, but (due to language
independence) not that much to reason–ability. Their
integration with other standardised processes in a business
environment may represent significant overhead.

2.2 Upper–level ontologies

Aligning existing or new domain ontologies with
carefully–designed upper–level ontologies such as SUMO
(http://ontology.teknowledge.com) or DOLCE [Gangemi
2002] has been proposed as means for quality
improvement. Matching domain concepts and relations to
upper–level ones can help the ontology designers realise
their true nature, which has positive impact on accuracy.
Furthermore, mapping on standard models naturally leads
to transparency. However, it may not be easy for casual

ontology designers (especially in business environment)
to capture the rationale of complex, philosophically–
flavoured models, only a small portion of which appears
directly useful for the application.

2.3 Meta–properties

An alternative to aligning, particularly suitable for
verification of existing ontologies, is the method
suggested in the OntoClean project [Guarino 2002]. First,
properties (the term ‘property’ is used in abstract sense in
OntoClean, i.e. for unary predicates that basically amount
to classes!) in an ontology are labelled with meta–
properties such as ‘rigidity’, ‘identity’ or ‘untity’.
Predefined constraints on meta–property values are then
tested. For example, an anti–rigid property (which does
not necessarily hold for the given entity and thus can
change over time) cannot hierarchically subsume a rigid
property, e.g. ‘student’ cannot be superclass of ‘person’.
The value of meta–properties is in offering a formal
framework for modelling choices that are done intuitively
by experienced developers. They however, in the current
form, only apply to taxonomic relations, and (despite
existing tool support and integration with a prominent
methodology [Lopez 2002b]) may again discourage
casual users by the intricacy of underlying philosophical
distinctions. Meta–properties significantly contribute to
accuracy, while their impact on transparency is arguable
(actually, there is little problem of transparency with
hierarchies alone). In the context of SWO, they probably
do not offer too much for non–trivial (DL–oriented)
reasoning.

2.4 Language–specific user guides

For concrete SWO languages such as OWL, user
guides have been designed [Smith 2003]. Their
contribution to accuracy is in clarification of semantics of
individual constructs. For example, their careful reading
may prevent the user from mistaking cardinality
restrictions for primitive value restrictions on numerical
property (e.g. min–cardinality of ‘age’ for ‘adult–person’
being set to 18), or from the assumption that existential
restriction is always contained in a universal restriction.
(An experience of the author is that students in
Information Systems, who were in fact more familiar with
object models, frequently make both types of errors in the
first, intuitive try of ontology design.) The guides
however only map from commented ontology fragments
to meaning, not vice versa. There is typically no hint on
which construct and how to use it for a certain
prototypical state of affairs. The impact on ontology
transparency is thus relatively low. Finally, the liaison
between the used constructs and reason–ability is not
always obvious from the guides, since the latter typically

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2004, Poznań, Poland

http://ontology.teknowledge.com/

DESIGN PATTERNS FOR SEMANTIC WEB ONTOLOGIES: MOTIVATION AND DISCUSSION 3

depends on a combination of constructs rather than on a
single one.

2.5 Collected hints

A slightly different resource is language–independent
ontology development guides, the most popular one
probably being [Noy 2001]. It contains a ‘light–weight’
version of methodology, accompanied with a chapter
containing useful hints. Unlike the previous case, the hints
take as starting point a modelling decision, e.g. whether to
model a certain dichotomy by two disjoint classes or by a
binary datatype property. The mapping is therefore from
abstract meaning to concrete (yet, partially language–
independent) ontology constructions. Such hints may
improve not only the accuracy but also mutual
transparency among the developers who stick to them. It
is also natural to include a reason–ability commentary
with a hint.

2.6 Pre–fabricated patterns

A natural follow–up to unordered and informal
collection of hints is to formulate a repository of pre–
fabricated patterns. Coupling these two ways of support
together seems to be the most natural (relatively light-
weight) solution particularly for business ontology
developers, since it mimics the approach used in
information system development in general.

Broadly spoken, many research groups already
addressed the issue of reusable patterns (for ‘system
development’) in different ways and with different
contexts. Let us first briefly characterise the usage of
patterns in the software engineering community, where it
is currently rather widespread. Then we will turn attention
to analogous projects in ontology engineering.

2.6.1 Design patterns in software engineering

In software engineering, design patterns [Gamma
1995] are a well–known method of reuse, applicable on
analysis and design models as well as on implemented
code. The representation of a design pattern typically
contains the following information:

• Problem description
• Suggested solution
• Implementation guidelines
• Discussion on consequences of using the pattern.
While the problem description and discussion on

consequences are typically verbal, the suggested solution
often has the form of UML model (class and interaction
diagrams, see http://www.omg.org/uml) with abstract
roles to be filled in with application–specific concepts.
Finally, the implementation guidelines usually contain
free–text recommendations related to the specifics of

individual languages, as well as samples of source code
with abstract roles to be replaced with application–
specific names.

2.6.2 Design patterns in ontology engineering

One of the first approaches addressing ontology reuse
(although using the term ‘knowledge bases’ rather than
ontologies) was that of [Clark 2000]. They identified the
misuse of inheritance (more generally, of the is–a
relation) in knowledge reuse, and suggested instead a
pattern–based approach backed by category theory. The
Prolog implementation of patterns makes it quite general
from the point of view of representation language.

Templates (i.e. general patterns) for writing axioms in
frame–based formalisms (particularly, in Protégé) have
later been proposed by [Hou 2002]. The starting point was
a collection of Ontolingua [Gruber 2003] ontologies. A
set of reusable patterns has been identified and translated
to ‘fill–in–the–blank’ sentences presented to the user.
Discovery of the relevant templates was further eased by
meta–properties characterising the nature of constraint
involved in the axiom.

A slightly different focus is that of semantic patterns
proposed in [Staab 2001], which address the problem of
reuse of elementary constructs (such as ‘local range
restriction’) across different knowledge representation
languages.

The notion of ‘ontology design patterns’ has also been
used by [Reich 1999]. There, however, the meaning rather
was (software engineering) ‘patterns for ontology design’:
the patterns themselves have procedural nature (e.g. ‘link
dynamically two ontology nodes’) and correspond to
building blocks for software applications manipulating
with terminological ontologies. The approach was applied
in the bioinformatics domain.

Similarly to collected hints (being a more elaborate

version thereof), ontology design patterns could improve
accuracy, transparency as well as (significantly!) reason–
ability.

2.7 Summary of the overview

Table 1 summarises (in a tentative way) the impact
aforementioned methods of ontology content quality
support are likely to have on accuracy, transparency and
reason–ability of resulting ontologies. All of them have
their pros and cons and can be used in a complementary
fashion. In the rest of the paper, we however concentrate
on the ontology pattern paradigm, which seems to fit best
to the scenario of business ontology development, and
discuss the peculiarities of its use in the SWO realms.

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2004, Poznań, Poland

http://www.omg.org/uml

4 BUSINESS INFORMATION SYSTEMS – BIS 2004

Table 1. Methods versus quality criteria
Approach Acc. Tran. Reas.
Methodologies * *
Upper–level ontologies * **
Meta–properties **
Language–specific user guides *
Collected hints * * *
Pre–fabricated patterns * ** **

3.2 Examples

As discussed in Section 3.1, SWO design patterns
could range from basic to complex and from generic to
domain–specific. We however assume that complex
patterns will mostly arise by composition of simpler
patterns. Furthermore, by analogy with software
engineering, domain–specific patterns are likely to be
derived from repeated (similar) fragments of real
ontologies, as demonstrated in [Hou 2002].
Unfortunately, while Ontolingua has been in use for more
than a decade, DL–based SWO language (namely, OIL)
only appeared by 2000 and further evolved. The number
of ontologies classified as ‘DL–oriented’ in the DAML
repository is not really low according to the study by
[Tempich 2003]: 33 out of 95 syntactically correct
ontologies belong to this category. However, most of
them are either trivial or do not pertain to anything that
could be called ‘domain’ (of business). A majority of
them was obviously designed as demos for ontology (or
just DL) tools.

3. Towards SWO design patterns

Let us formulate some hypotheses about the desired
outlook of the patterns, and attempt to transfer the quality
criteria on ontology content (Section 1) from ‘live’
ontologies to their start–up patterns.

3.1 Presumable features of SWO patterns

An important distinction between software engineering
(for simplicity, say, object) models and (not only semantic
web) ontologies is the fact the latter do not significantly
change from the analysis through design as far as the
implementation phase of system development. When the
ontology structure is set up (possibly, in a graphical
environment), it is already accompanied with
unambiguous formal code, which is likely to be used,
without significant change, in the final artefact
(information system). Therefore, it probably makes little
sense to distinguish between ontology patterns for
different phases. From this follows that the basic form of
a SWO pattern will already be a language–dependent one.
Although the cross–language interoperability issue raised
in [Staab 2001] is important, it will be marginal for the
(presumably) large community of developers who commit
to OWL as W3C recommendation.

Given that, let us outline two modelling problems that
are extremely simple and generic but at the same time
peculiar to the class of DL–based languages. Both
actually deal with property names, and should probably
be ranged under this heading in a ontology pattern library.
For each of them, we informally sketch some ‘patterns’;
clarifying examples are taken from a hypothetical real–
estate ontology.

3.2.1 Use of self–standing properties

The concept of exclusively binary relations
independent of any class is surprising for most
newcomers to the SWO world, since in other languages
restricted to binary relations (be they based on the frame
or object paradigms), slots/attributes/associations are
typically linked to classes. The use of the term ‘property’
makes this fact even more striking. Modellers unfamiliar
with this feature might for example define properties such
as ‘has’ and subsequently restrict its domain and range to
a pair of classes, e.g. ‘apartment’ and ‘owner’. This will
usually work well from the point of view of inference;
there is however no guarantee that the name of the
property and the domain/range axioms will be displayed
together in every modelling tool to which such an
ontology will be imported in the future.

On the other hand, ontology design patterns could
obviously range from domain–dependent ones (such as
botanical patterns mentioned in [Clark 2000]) to generic
ones (similar to axiom patterns of [Hou 2002]).

Structurally, the formal part of a pattern would
probably consist of an ontology fragment, including
directly reusable elements (classes, properties etc.) as
well as demo–elements that would be replaced by the
user’s own. The directly reusable elements should
typically be borrowed from upper–level ontologies. As
with any pattern–based approach, textual explanation will
play an important role. ‘Naming’ patterns could promote the use of self–

standing properties that are also to some extent self–
explanatory. The most obvious alternative is to define a
property ‘owns’ and its inverse ‘owned-by’. However, in
a particular context (e.g. if the ownership of an apartment
were legally different from owning a movable object), it
would be wise to name the property ‘owns-apartment’
(and the inverse ‘apartment-owned-by’) and immediately
associate a range axiom with it. We could similarly fix

For more complex patterns, especially those involving
local restrictions on properties (probably the ‘hardest’
feature in OWL etc.), ‘fill–in–the–blank’ sentences
suggested by [Hou 2002] for axiom construction would
make sense. Note however that in SWO languages the
distinction between axioms and ‘frames’ is less sharp than
in the inherently frame–based environment of Protégé.

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2004, Poznań, Poland

DESIGN PATTERNS FOR SEMANTIC WEB ONTOLOGIES: MOTIVATION AND DISCUSSION 5

the domain, or both the domain and range, to a property.
Although the existence of such modelling choice is
obvious for an experienced modeller, it is probably
worthwhile to explain it to a newcomer.

Although the first alternative could be viewed as ‘best
practice’ for SWOs in general, the remaining two options
may become worth considering in some contexts.

Interestingly, self–standing properties have recently
been suggested as enrichment to UML, in connection with
the ontology initiative of the Object Management Group
[Baklawski 2001]. If this proposal is successful, it might
extend the impact of property–oriented patterns from the
ontology world even to the object world.

4. Conclusions

We surveyed the inventory of content–oriented support
methods and information resources available for ontology
developers, and compared their roles with respect to three
quality criteria crucial for semantic web ontologies
(SWOs) – accuracy, transparency and reason–ability.
Special attention was paid to approaches based on pre–
fabricated patterns, since they represent one of few
possibilities to map from modelling problems (topical for
the ontology designer) to immediately reusable ontology
constructs. In the second part of the paper, we
hypothesised about the possible outlook of future SWO
design patterns, and discussed two simple modelling
problems that could reasonably be addressed by generic
patterns. Such simple patterns could be viewed as
possible building blocks for libraries of design patterns
(analogous to those from the software engineering
domain), which would be truly beneficial for SWO
developers, in particularly in business environment. The
new W3C initiative on ‘semantic web best practices’ will
for certain involve systematic effort in this direction.

3.2.2 Transformation of n–ary relations

Another problem, shared by a larger classes of
languages, stems from the restriction to binary properties,
while the ‘state–of–affairs’ often naturally involves n–ary
relations (with n typically being 3 or 4, scarcely more).
For example, a buyer purchases an apartment from a
seller using a certain payment method. In order to express
this relation e.g. in OWL, we can use one of at least three
alternatives:

1. To reify the whole relation. Instead of relation
‘purchases’ we obtain a class ‘purchase’, and the
roles (in the sense of e.g. object modelling) would
become properties. Interestingly, in such situations
role–like properties can often be identified with or
subsumed to general relations known from
linguistic sentence analysis, such as ‘actor’,
‘object’ or ‘instrument’. The properties relating
the buyer and the seller, respectively, to the
purchase, will be specialisation of a general
‘actor’ property, the property relating the
apartment to the purchase will be (or
specialisation of) ‘object’, and the property
relating the payment method to the purchase will
be (or specialisation of) ‘instrument’. Examples of
this sort abound especially in the conceptual graph
[Sowa 2000] community, which is historically
biased towards the linguistic view and has to deal
with the same ‘binarity’ constraint as the SWO
developers.

5. Acknowledgements

The author is thankful to Frank van Harmelen for his
comments on a draft of this paper, and to C. Tempich and
R. Volz, who made publicly available the detailed
documentation on their analysis of the DAML ontology
repository. Comments by anonymous reviewers are also
acknowledged.

The research is partially supported by grant no.
201/03/1318 of the Grant Agency of the Czech Republic.

6. References

2. To iteratively reify sub–components of the
relation. For example, we can introduce a property
‘purchase-connection’ linking the buyer and the
seller alone, then a property ‘object-of-purchase-
connection’ linking the purchase-connection and
the object (apartment), and finally a property
‘object-purchased-using’ gluing the payment
method to the construction built so far.

[Baader 2002] F. Baader, D. Calvanese, D.L. McGuinness,
D. Nardi, P.F. Patel-Schneider, eds., The Description Logic
Handbook: Theory, Implementation and Application,
Cambridge University Press, 2002.

[Baclawski 2001] K. Baclawski, M.K.Kokar, P.A. Kogut,
L. Hart, J. Smith, W.S. Holmes, J. Letkowski, M.L. Aronson,
“Extending UML to Support Ontology Engineering for the
Semantic Web”. In: Fourth International Conference on UML,
Toronto (2001). 3. To dispose of some components of the relation.

For example, if the ontology is to be always
(re)used within a single real–estate agency (and
not within an open marketplace) and should only
deal with physical ownership (not with financial
aspects), we can end up with a binary property
(‘sale’) relating apartments to their buyers.

[Clark 2000] P. Clark, J. Thompson, B. Porter, “Knowledge
Patterns”. In KR'2000 (Proc 7th Int Conf), pages 591-600,
Eds: A. Cohn, F. Giunchiglia, B. Selman, CA:Kaufmann,
2000.

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2004, Poznań, Poland

6 BUSINESS INFORMATION SYSTEMS – BIS 2004

[Gamma 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Boston MA (1995)

[Gangemi 2002] A. Gangemi, N. Guarino, C. Masolo, A.
Oltramari, L. Schneider, “Sweetening ontologies with
DOLCE”. In 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW02),
volume 2473 of Lecture Notes in Computer Science, page 166
ff,, Siguenza, Spain, Oct. 1-4, 2002.

[Gruber 2003] T.R. Gruber, “A Translation Approach to
Portable Ontology Specifications”, Knowledge Acquisition,
5(2), 199-220, 1993.

[Guarino 2002] N. Guarino, C. Welty. “Evaluating ontological
decisions with OntoClean”, Communications of the ACM,
2(45):61--65, 2002.

[Hou 2002] Chih-Sheng Johnson Hou, N. F. Noy, M. A. Musen,
“A Template-Based Approach Toward Acquisition of Logical
Sentences”. Intelligent Information Processing 2002, World
Computer Congress, Montreal, Canada. 2002.

[Lopez 2002a] M. Fernández-López, A. Gómez-Pérez,
“Overview and Analysis of methodologies for building
ontologies”, Knowledge Engineering Review (KER). Vol.
17[2]. 2002. 129-156.

[Lopez 2002b] M. Fernández-López, A. Gómez-Pérez, “The
Integration of OntoClean in WebODE”, In: Evaluation of
Ontology-based Tools, Proceedings of the EKAW02
Workshop on Evaluation of Ontology-based Tools, 2002.

[Noy 2001] N.F. Noy, D.L. McGuiness, Ontology Development
101: A Guide to Creating Your First Ontology. Available from

http://protege.stanford.edu/publications/ontology_developmen
t/ontology101.html.

[Reich 1999] J. Reich, “Ontological design patterns for the
integration of molecular biological information”. In:
Proceedings of the German Conference on Bioinformatics
GCB'99, pages p.156--166, Hannover, Germany.

[Schreiber 2003] G. Schreiber, DRAFT: Semantic-Web Best
Practices (SWBP) Working Group Charter.
http://www.cs.vu.nl/~guus/public/bp-charter.html

 [Smith 2003] M. Smith, C. Welty, D.L. McGuinness, OWL Web
Ontology Language Guide, W3C Candidate Recommendation,
http://www.w3.org/TR/2003/CR-owl-guide-20030818/

[Sowa 2000] J.F. Sowa, Knowledge Representation: Logical,
Philosophical, and Computational Foundations, Brooks Cole
Publishing Co., Pacific Grove, CA, 2000.

[Staab 2001] S. Staab, M. Erdmann, A. Maedche, “Engineering
ontologies using semantic patterns”. In: A. Preece, editor,
Proc. of the IJCAI-01 Workshop on E-Business & the
Intelligent Web, 2001.

[Tempich 2003] C. Tempich, R. Volz, “Towards a benchmark
for Semantic Web reasoners - an analysis of the DAML
ontology library”. In: Proceedings of Evaluation of Ontology-
based Tools (EON2003) at 2nd International Semantic Web
Conference (ISWC 2003).

[van Heijst 1997] G. van Heijst, G. Schreiber, B. Wielinga,
“Using Explicit Ontologies in KBS development”,
International Journal of Human-Computer Studies, Volume
46, 1997, pp. 183-292.

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2004, Poznań, Poland

http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.cs./???????)
http://www.w3.org/TR/2003/CR-owl-guide-20030818/
http://www.w3.org/TR/2003/CR-owl-guide-20030818/
http://www.w3.org/TR/2003/CR-owl-guide-20030818/

