
Object Life Cycle Modelling in the Client-Server Applications
Development Using Structured Methodology

Vaclav Repa

Prague University of Economics, W.Churchill sq. 4, 130 67 Praha 3, Czech Republic
phone: 00422-24095454, fax: 00422-24223605, E-mail: REPA@VSE.CZ

Introduction

The purpose of this paper is to describe certain aspects of the methodology for
information systems development which combine both the traditional (structured) and the
object-oriented approach. These features of the described methodology are specific to the
target environment and development technology of the information system: client-server
technology, GUI environment and the CASE tool for structured system development.
The object-oriented approach is taken into consideration here not just in the sense of OO
programming (as is usual in the GUI environment) but also in the sense of OO analysis.
The trend to object-oriented thinking in the field of analysis follows from client-server
technology.
So this paper is aimed first of all at those parts of the methodology which are connected
to that problem.

The Methodology

PDIT is a methodology for information systems development under certain given
conditions. It was developed by the Czech softwarehouse ITC PragoData in collaboration
with the Department of Information Technologies at Prague University of Economics.
The conditions mentioned above are:
• the target environment is Progress v.7

Progress v.7 is the relational database system allowing the development of
applications with client-server technology. The most significant feature of
Progress v.7 is a strong fourth-generation language oriented on GUI
development

• the development environment consists of Progress v.7 GUI 4GL environment and
CASE tool case/4/0

Because of the relatively good standardization in the field of client-server relational
database systems and GUI development environment the PDIT is also usable under
weaker conditions:

• any similar database system with the same required features can be used as target
environment. The required features are:
• a client - server technology
• the ability to use GUI according GUI standards



• any independent GUI tool which follows GUI standards and has the same features as
Progress v.7 GUI 4GL can be used as GUI development environment

The main Features of PDIT Methodology

• the methodology is hybrid in the sense that it is structured as well as object-oriented.
The development process defined by the methodology is structured - it distinguishes
between data and functions in various steps in the analysis stages (Global Data
Analysis versus Business Processes Analysis in the stage Global System Analysis for
example). On the other hand there are object principles supported directly by the
development process and techniques in the Detailed System Analysis stage. The
methodology uses the term "Model of Reality" which includes both data and
processes in their natural unity via so called "Entity Life Processes".
There are several reasons for this:

• client-server architecture of database systems naturally leads to object-
oriented thinking. Distributing both processes and data to the server and the
client part of the application1 forces the developer to take into consideration
the natural unity of data and processes even at the conceptual level of system
design. At the conceptual level of system analysis the developer can find
reasons for decisions about which data are to be placed in the central (i.e.
server) part of the application and by which (server) processes are to be
manipulated. The common concept for the unit of such data and processes of
the server part of the application is the "entity" in the sense of the "object".

• on the other hand currently existing object oriented conceptual analysis
methodologies are not mature enough to solve all potential problems
connected with application development. Especially at the level of global
analysis it is impossible to describe all aspects of the business only using the
terms "object", "object method" and "object communication". There is an
actual need to distinguish between conceptually essential objects such as
"customer", "order" or "invoice" and the objects which reflect just the user
point of view of the application as are "document" or "customer dictionary".
But even at the level of detailed design we need to discover the essential order
of the entity data manipulating processes (object methods) and its relationship
to the objects mutual behaviour (communication between objects). These facts
lead to the need to describe the developed system also in the "structured" way
- using such terms as "data entity", "entity updating function", "input-output
function" etc.

• the conceptions of an available environment strongly separate the data and the
process side of the application. It is based on a relational database with it's

1 The terms "server" and "client" are used here in the sense of "logical server" ("logical client") - i.e.
independent of used client/server architecture model (2-tier, 3-tier) and on the technical client-server
partitioning reasons. Although there are various technical reasons for partitioning the processes and the data
to the central and the other parts of the technical environment (for example system performance, technical
flexibility and stability etc.) the nature of the concepts "server" and "client" remains the same as in the
conceptual point of view. Client parts represent the input and presentation part of the application while
server parts represent the underlying common business logic of the application based on real-world
behaviour.



typical one-sided conception of application technology support - it is oriented
on realization of data structures. The Functionality of the system is only
supported statically - via integrity rules and event triggers. These environment
features require traditional - structured way of thinking. On the other hand the
client parts of the environment follow the concepts of the object oriented
programming using the concepts of Windows applications design.

• the methodology is based on the use of prototyping. Prototyping is the natural
approach for using 4GL environment in client - server architecture. Client - server
architecture offers good conditions for separating the design of the server and the
client part of the application. Such separation enables "safe" use of prototyping: the
prototype should concern the external face of the application, not the internal system
behaviour. Internal system behaviour follows directly from behaviour of the reality
which the analyst has to consider as independent of end-user view and the
technology. Therefore it should be realized as the server part of the application. On
the other hand the client part of the application should represent first of all the end-
user view of the information system and it is always strongly dependent on used
technology. So the client part of the application is that part which is to be the subject
of prototyping. Prototyping is a very effective way to:

• gather the proper information about the user needs concerning both the data
and the behaviour of the system (the user's particular point of view)

• early define the particular shape of the user environment by consulting the
user about prototype.

• initially requirements of the client-server partitioning of the application are derived
from conceptual analysis. Then technology and implementation reasons for the
partitioning are taken into consideration. The reasons for such an approach closely
correspond with the reasons for using the prototyping only on the client part of the
application discussed above. The server part of the application should realize first of
all the essential system functions taken from conceptual analysis which describe the
essential real world behaviour. Such functions are independent of a particular shape
of the realized information system and of used technology as well as the end-user
view of the information system. Essential system functions form the process part of
the real world model hidden inside the information system and the essential system
data form the data part of that model. As the conceptual data model describes WHAT
the information system process, there are connected conceptual functions which
describe HOW these data are processed. Such approach to the information system
development inevitable leads to unified view on both data and processes - i.e. to the
object oriented approach.

Outline of the Analysis Procedure

The process of the PDIT consists of stages. Each stage consists of several steps, each step
consists of several tasks. For the purpose of this paper the two key "analysis and design"
stages are important:



• Stage Global System Analysis and
• Stage Detailed System Analysis.
Similarly, not all steps inside each stage and not all tasks inside each step are important
for the purpose of this paper. So, for example, a standard step of each stage: Stage End
Assessment which consists of standard project management activities is not described in
detail here.

Supporting and
Out-of-Dialog
I/O Processes

Detailed
Data
Model

Events and

Workflows

GUI
Prototype

Model of
Reality

Detailed Analysis and Design Integration

Detailed
System
Analysis

Global Business
Structure

User
Requirements

Global Data
Model

Global Function
Structure

Global System Analysis

Increment
Integration

This picture illustrates succession of the main steps of the analysis stages.
In the stage Global System Analysis the methodology uses a clear structured approach.
This stage begins with the analysis of business processes, user requirements and business
data (i.e. global data sets). As the result of balancing these three factors the global
function structure of the information system is formulated. Tools and techniques used in
this stage are the Data Flow Diagram and Entity Relationships Diagram. There are two
main outputs of this stage - Global Data Model and Global Function Structure. The
purpose of the stage Global System Analysis is to give the outline of the whole system
structure as the basis for incremental detailed development of particular parts of the
system. Therefore the decomposition of the system structure must be in order with
assumed process of detailed (object-oriented) analysis of its particular parts. The main
requirement is that the partitioning of system functions must very closely match the
partitioning of the data model. For that purpose particular rules for parallel data model
and function structure development are formulated.
Stage Detailed System Analysis combines both structured and object-oriented approach.
The object of the analysis is here one part of the global system structure - one system
increment. The central point of this stage is object conceptual model of developed
information system - so-called Model of Reality. As the basis for the model of reality the
detailed data model, workflows and reality events are used here. The model of reality is



clearly object-oriented: entities from the data model (conceptual objects) are completed
by processes of their life histories. Then the communication of the objects is described
and balanced with their life histories. Balancing consists of determination of such points
in the object life in which communication (i.e. inputs and outputs) of the object occur.
Each such specific point of the object's life must be joined with a specific real-world
event. So the real-world events and the needs of the entire communication between
objects are the basis for the object life history specifications. On the other hand the object
life history process is the basis for seeking the new real-world events and objects
communication needs.
Besides the model of reality which describes the central part of the system functionality
also the other function parts of the system have to be described:
• the prototype of user interface (GUI prototype)
• out-of-dialog input/output functions (periodical batch inputs and outputs, interface to

other systems etc.)
• other supporting functions
While development of the model of reality is object-oriented the tools and techniques
used here as well as the overall process of the detailed analysis is structured. For the
description of entity life histories the methodology uses a State Transition Diagram,
communication of the objects is described with the use of Data Flow Diagram. For the
purpose of conceptual description of user interface based on the workflows the
methodology uses a Windows Navigation Diagram.

Underlying Principles

There are two main principles which are present in all features of the PDIT methodology:
• the principle of modeling and
• the principle of "Three Architectures"

Modeling

The principle of modeling has been first formulated from the data point of view: contents
and structure of database objects reflect contents and structure of the real world objects.
Correctness of the data model is measured via its similarity to the real world. For such
measuring the term "similarity" must be defined exactly. Therefore the Entity
Relationship Diagram (ERD) has been developed as the special tool for description of the
essential characteristics of the real world: objects and their mutual relationships. It is
constructed to be able to exactly describe the objects and their relationships in the same
way as we see them in the real world. At the same time this model describes the essential
requirements for the database - it must contain the information about the same objects
and their relationships. The form in which particular database describes these facts
always depends on technological and implementation characteristics of the environment
in which the database is realized. But the essential shape of the model still remains the
same. Because of the need to describe the same database in it's various shapes (essential,
technological, implementational) the principle of different architectures have been
formulated. This principle, generalized to the scope of the whole system is discussed
below.



Modeling principle proves to be general in the sense that it is valid not just in the area of
system data. Also some parts of system processes have to be regarded as the model of the
real world. Key task for putting this principle into practice is to recognize which system
processes form the model of the real world and which do not. Such recognition requires
separation of the modeling operations from the other ones and organizing them into the
special algorithms according to real world objects and their relationships. This way
organized modeling algorithms represents the essential controlling algorithms of the
entity life histories.

Three Architectures

The principle of "Three Architectures" was referenced in the paragraph in which the
"modeling principle" was discussed. These two principles have very much to do one with
the other. Separation of the implementation- and technology-dependent aspects of
developed information system from the conceptual ones is the vital condition for putting
the Modeling Principle into practice. Without such separation the developer wouldn't be
able to see (and to discuss it with the user) the model of real world in the functional and
database structure of developed IS. Three levels of the shape of IS seem to be essential:
• the conceptual model represents a clear model of the real world which is not

distorted by the non essential aspects given by assumed technology and
implementation environment of the system

• the technological model is based on the conceptual model enriched by the aspects
given by assumed technology. Including the technological aspects often significantly
changes the original - conceptual - shape of the system For example 3GL technology
using sequential files for realization of the database leads to the data structures
considerably distant from the conceptual entities and their relationships. On the other
hand relational database technology preserves maximum of the original shape of the
data model. So the degree of shape changes always depends on the technology used.

• the implementation model represents the final shape of IS. It depends on the used
technology taken into consideration in the technological model and respects also
implementation details given by the used particular environment. Thus the
implementation model is even more distant from the particular shape of the real
world than the technological model.

The essential relationships between three architectures illustrates the next figure:



Three Architectures

Conceptual
level

Technology
level

Physical
level

Model of reality

Technological
model

Implementation
model

Design Techiques and Tools

Implementation Techniques
and Tools

Such model of the three different views of the same thing (information system) has some
general characteristics:
• each view has specific logic and requires specific methods of examining and specific

language for description which match this logic
• for keeping the consistency between particular views it is necessary to have a means

(i.e. methods and techniques) for the transition of the contents of one view into the
next view

So each of these three levels of IS development represents a specific goal, a specific type
of developer's activity and specific techniques and tools to use. Also the transition of the
design from one to the next level requires specific activities, techniques and tools.

Principles of modeling and three architectures manifest themselves in the PDIT
methodology in various ways:

• the central part of the system functionality is the Model of Reality. The model of
Reality is based on a detailed data model which represents a static view of real-world
objects. Dynamic aspects of the real world (real-world behaviour) describe the entity
life processes (which describe the behaviour of the entity) and the communication of
entities (data transfer between the functions ordered via entity life process). Particular
entity actions are caused by real-world events. So the "entire" system functionality is
the model of real-world behaviour as well as the "entire" system stored data
structure is the model of real-world structure (data model)



• on the conceptual layer the structure of the system consists of the Model of Reality
and the conceptual interface functions structure which includes all shapes of interface
processes:

• user interface (dialog) functions
• out-of-dialog I/O functions
• interface supporting functions etc.

• On the technology layer the object-oriented conceptual Model of Reality is
transformed in the structured manner into the logical database structure and the
program modules structure. This is necessary because used technology is based on the
"structured" separation of the "data part" of the system (relational database) and the
"process part" of the system (4GL procedures and host language procedures)

Features of the PDIT methodology discussed above illustrates the following picture.

Transition From the Conceptual to the Technological Architecture

Object Model
(Real World Structure)

Interface Functions Structure

Conceptual Layer

Technology Layer

Logical Database
Structure

Program Modules
Structure

Top-Down Function Structure
user procedures
presentation needs

Real World Structure
(static view) Real World Behaviour

(Object Life Histories and
Objects Communication)

Usability Requirements
* buffering needs
* user views

* data sets extent
etc.

Transition Techniques
(Design Rules)

Technology Constraints and Requirements
and

Program Design Rules

Technology Constraints and Requirements
and

Database Design Rules

* objects
* attributes
* life history

* hierarchy of objects (generalization)
* relationships among objects

* attributes
* mutual behaviour

* I/O functions

* Dialog functions
* Interface functions

etc.
* Function hierarchy (collectivization)

Logical ServerLogical Client

Model of Reality

The development of the model of reality is the central point of the analysis part of the
methodology. The methodology regards a set of connected models of the entities
behaviour as the reality model. The purpose of the entity behaviour model is to describe
entity life histories. The purpose of the model of reality is to describe all important (i.e.
essential) features and rules of the reality behaviour.
Model of reality consists of
• a set of Data Flow Diagrams (DFD) and
• an Entity Relationship Diagram (ERD)



Each Entity Behaviour Model (DFD) describes the behaviour of one object (entity or
relationship) from the Data Model (ERD). The Entity Behaviour Model consists of:
• entity (or relationship in the sense of associative entity) from the Data Model which

expresses the data part of the object
• several essential functions which express the actions of object state changes
• one control process described in the State Transition Diagram (STD) which describes

the object life history as the succession of the entity states and transitions from one
state to the following one(s)

• control flows between the STD and essential functions which describes the events
and the actions of the object. Each input control flow expresses one event
stimulating the transition of the object from one state to the other one. Each output
control flow from the STD to the essential function expresses one action of the object
as the reaction on the event

• data flows which are of several types:
• flow of data from the input/output interface to the essential function of the Entity

Behaviour Model. Those data expresses the data part of the real-world event
• flow of data from (or to) the essential function of the other object. Such data

flows describe communication of the Entity Behaviour Models - transition of
the information about real-world events between objects

In practice the developer does not have to describe all of the object behaviour models. In
the case of simple entity life history (i.e. a life history which consists of just two states:
the beginning and end of the entity life) it is not necessary to describe it. This is because
the functionality of such object is too simple to regard such object as something more
than just a data entity.

The following picture is an example of the model of behaviour of the object Order.

State Transition Diagram-
Life History of the Order

changed

Order

Stored
material

Supplier

Entity Relationship Diagram

Data Flow Diagram- Model of Behaviour of the Order

Order
Life
History

accepted rejected

realized

canceled

Order

Dead

Born

acceptation

change request

delivery

delivery

clearing
request

cancel
request

clearing
request

completely
delivered

delivery

rejection

cancel
request

Orders
Clearing

X

Clearing
Request

Order
Accept/
Reject

Accept

Reject/Cancel

Accept/
Reject/
Cancel

Change
Request

Order
Change

Change

Order
Realization

Delete

Delivery

Delivery

Completely
Delivered

contains

is realized by

Delivery
Acceptation/
Rejection

Cancel
Request



Conclusions

The main purpose for the development of the PDIT methodology was to develop a
sophisticated methodology which will naturally allow:
• the respect of the features of the client-server technology even on the level of

conceptual analysis
• the use of the GUI development environment
• the use of the integration features of CASE tools.

This purpose led us to the development of the hybrid methodology which combines a
structured approach with object-orientation in the field of design as well as analysis.
Reasons for the hybrid approach are:
• immaturity of the OO analysis methods on one hand and insufficiency of the

structured methods in the case of the client-server technology on the other hand
• technology constraints of available environment - client-server environment is based

on relational database which forces the "structured" style of the IS development
• quite good support of quite maturely structured development tools:

• the possibility to generate the database structure from the conceptual data model
in the CASE tool and possible reverse engineering ability

• the possibility of generating the part of interface function structure using GUI
development environment

We regard the usability and efficiency which follow from this hybrid approach to be the
strong features of PDIT methodology.

The weakest point of the methodology in the current state is the transition from
conceptual specification of the model of reality to its technology realization. The
methodology supports this activity using a set of rules for the implementation of
particular typical constructions in the model of reality. But there is not any formal
technique for supporting this activity. One possible way forward is to develop the
technique based on the "program inversion technique" taken from JSD (M.A. Jackson).
Unfortunately, such a technique is strongly dependent on the target implementation
environment and it is a hardly supportable by structured development tools (CASE
Tools). So this transition activity will be the main topic for the future work on the
methodology.



References

Chen P.P.S.: The Entity Relationship Model - Towards a Unified View of Data, ACM TODS, Vol 1 No.1,
9-36, 1976.

Coad P.,Yourdon, E.: Object-Oriented Analysis, Prentice-Hall Inc., NJ, 1990.
Date C.J.: An Introduction to Database Systems, Addison-Wesley, Massachussetts, 1977.
Jackson, M.A.: System Development, Prentice-Hall Inc., Englewood Cliffs, NJ, 1982.
LBMS - Process Engineer - User Manual, London, 1993.
Martin, J., Odell J.: Object-Oriented Analysis and Design, Prentice-Hall Inc., Englewood Cliffs, NJ, 1992.
PDIT - Functions and Data Analysis, ITC PragoData, Prague, 1994.
PDIT - Process Modeling, ITC PragoData, Prague, 1994.
PDIT - Client-Server Partitioning, ITC PragoData, Prague, 1994.
PDIT - Server Design, ITC PragoData, Prague, 1994.
Repa V.: Seeking the Actual Reasons for the "New Paradigm" in the Area of IS Analysis, Proceedings of

the ISD 94 International Conference, Bled, 1994.
Rumbaugh J.,Blaha M.,Premerlani W.,Eddy F.,Lorensen W.: Object-Oriented Modeling and Design,

Prentice-Hall Inc., Englewood Cliffs, NJ, 1991.
Yourdon, E.: Modern Structured Analysis, Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.


