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Abstract. In this paper, we provide a brief summary of elementary re-
search in rule learning. The two main research directions are descriptive
rule learning, with the goal of discovering regularities that hold in parts
of the given dataset, and predictive rule learning, which aims at general-
izing the given dataset so that predictions on new data can be made. We
briefly review key learning tasks such as association rule learning, sub-
group discovery, and the covering learning algorithm, along with their
most important prototypes. The paper also highlights recent work in
rule learning on the Semantic Web and Linked Data as an important
application area.

1 Introduction

Rule-based methods are a popular class of techniques in machine learning and
data mining [19]. They share the goal of finding regularities in data that can be
expressed in the form of an IF-THEN rule. Depending on the type of rule that
should be found, we can discriminate between descriptive rule discovery, which
aims at describing significant patterns in the given dataset in terms of rules, and
predictive rule learning. In the latter case, one is often also interesting in learning
a collection of the rules that collectively cover the instance space in the sense
that they can make a prediction for every possible instance. In the following, we
will briefly introduce both tasks and point out some key works in this area.

While in some application areas rule learning algorithms are superseded by
statistical approaches such as Support Vector Machines (SVMs). An emerging
use case for rule learning is the Semantic Web, whose representation is built on
rule-based formalisms. We give a brief overview of recent papers in this domain,
focusing on algorithms for completing large linked open data knowledge bases,
such as DBpedia or YAGO.

This paper is organized as follows. Section 2 covers descriptive rule discov-
ery algorithms, with emphasis on subgroup discovery and association rule min-
ing. Section 3 discusses predictive rule discovery. This section includes the topic

Preprint, final version available at http://dx.doi.org/10.1007/978-3-319-21542-6_4



2 Johannes Fürnkranz and Tomáš Kliegr

of classification by association rules, providing a connection to descriptive rule
learning. The seminal algorithms of the rule learning field, including Ripper
and CN2, are presented in Section 4. Section 5 focuses on recent work in rule
learning on the Semantic Web and Linked Data. The conclusion highlights some
advantages of rule learning compared to its arguably biggest rival – decision tree
learning, and points at emerging research in the linked data domain.

2 Descriptive Rule Discovery

In descriptive rule discovery, the key emphasis lies on finding rules that describe
patterns and regularities that can be observed in a given dataset. In contrast
to predictive rule learning (Section 3), the focus lies on finding individual rules.
Consequently, evaluation does typically not focus on predictive performance, but
on the statistical validity of the found rules. Predominant in the literature are
two main tasks, namely subgroup discovery, where a given property of interest is
analyzed (supervised learning), and association rule discovery, where arbitrary
dependencies between attributes can be considered (unsupervised learning).

2.1 Subgroup Discovery

The task of subgroup discovery was defined by Klösgen [29] and Wrobel [59]
as follows: Given a population of individuals and a property of those individuals
that we are interested in, find population subgroups that are statistically ‘most
interesting’, e.g., are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest.

Thus, a subgroup may be considered as an IF-THEN rule that relates a set
of independent variables to a target variable of interest. The condition of the
rule (the rule body or antecedent) typically consists of a conjunction of Boolean
terms, so-called features, each one constituting a constraint that needs to be
satisfied by an example. If all constraints are satisfied, the rule is said to fire,
and the example is said to be covered by the rule. The rule head (also called the
consequent or conclusion) consists of a single class value, which is predicted in
case the rule fires. In the simplest case, this is a binary target class c, and we
want to find one or more rules that are predictive for this class.

In the literature, one can also find several closely related tasks, where the head
of the rule does not only consist of a single binary attribute. Examples include
mining for subgroup discovery, contrast sets [4], correlated pattern mining [40],
mining for emerging patterns [11], exceptional model mining, and others. For
more information, we refer to Kralj Novak et al. [30] and Zimmermann and De
Raedt [64], who present unifying frameworks for these approaches.

The rule bodies typically consist of features that test for the presence of a
particular attribute value or, in the case of numerical attributes, of an inequal-
ity that requires that the observed value is above or below a threshold. More
expressive constraints include set-valued attributes (several values of the same
attribute can be observed in the training examples), internal disjunctions (only
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function FindPredictiveRule (Examples)

Input: Examples, a set of positive and negative examples for a class c.

//initialize the rule body
rb← ∅
// repeatedly find the best refinement
repeat

build refinements R← {rb′ | rb′ = rb ∧ f , for some feature f}
evaluate all rb′ ∈ R according to some quality criterion
rb = the best refinement in R

until rb satisfies a stopping criterion
or covers no examples

Output: rule (c← R)

Fig. 1. Greedy search for a predictive rule

one of several values of the same attribute needs to be present), hierarchical
attributes (certain values of the attributes subsume other values), etc. Conjunc-
tive combinations of features may be viewed as statements in propositional logic
(propositional rules). If relations between features can be considered (i.e., if
propositions can be formulated in first-order logic), we speak of first-order rules.

Top-Down Hill-Climbing Algorithm Figure 1 shows a simple greedy hill-
climbing algorithm for finding a single predictive rule. It starts with an empty
rule body and successively adds new conditions. For adding a condition, it tries
all possible additions and evaluates them with a heuristic quality criterion, which
typically depends on the number of covered and uncovered examples that belong
to the class c (positive examples) or do not belong to c (negative examples). A
few important ones are (assume that p out of P positive examples and n out of
N negative examples are covered by the rule):

Laplace estimate (Lap = p+1
p+n+2 ) computes the fraction of positive examples

in all covered examples, where each class is initialized with 1 virtual example
in order to penalize rules with low coverage.

m-estimate (m = p+m·P/(P+N)
p+n+m ) is a generalization of the Laplace estimate

which uses m examples for initialization, which are distributed according to
the class distribution in the training set [7].

information gain (ig = p · (log2
p

p+n − log2
p′

p′+n′ ), where p′ and n′ are the

number of positive and negative examples covered by the rule’s predecessor)
is Quinlan’s (1990) adaptation of the information gain heuristic used for
decision tree learning. The main difference is that this only focuses on a
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single branch (a rule), whereas the decision tree version tries to optimize all
branches simultaneously.

correlation and χ2 (corr = p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)

) computes the four-field cor-

relation of covered/uncovered positive/negative examples. It is equivalent to
a χ2 statistic (χ2 = (P +N) corr2).

An exhaustive overview and theoretical comparison of various search heuris-
tics in coverage space, a variant of ROC space, can be found in [18].

In the simplest case, conditions are added until the rule covers no more
negative examples. In practical applications, we may want to stop earlier in
order to avoid overfitting. In this case, a separate stopping criterion may be
used in order to stop the refinement process when a certain quality threshold for
the learned rule is satisfied, or the rule set may be optimized on an independent
pruning set [16].

A greedy hill-climbing search is quite likely to get stuck in a local optimum.
However, it is fairly straight-forward to generalize this algorithm so that different
search strategies can be employed (e.g., beam search [9] or best-first search) or
that not only one but multiple rules are returned (typically the top-k rules for
some value of k).

2.2 Association Rule Discovery

An association rule is a rule where certain properties of the data in the body of
the rule are related to other properties in the head of the rule.

A typical application example for association rules are product associations.
For example, the rule

bread, butter→ milk, cheese

specifies that people who buy bread and butter also tend to buy milk and cheese.
The importance of an association rule is often characterized with two mea-

sures:

Support measures the fraction of all rows in the database that satisfy both,
body and head of the rule. Rules with higher support are more important.

Confidence measures the fraction of the rows that satisfy the body of the rule,
which also satisfy the head of the rule. Rules with high confidence have
a higher correlation between the properties described in the head and the
properties described in the body.

If the above rule has a support of 10% and a confidence of 80%, this means
that 10% of all people buy bread, butter, milk, and cheese together, and that
80% of all people who buy bread and butter also buy milk and cheese.

Apriori Algorithm The discovery of association rules typically happens in two
phases, which were pioneered in the Apriori algorithm [2]. First, all frequent
itemsets (i.e., conditions that cover a certain minimum number of examples) are
found. In a second pass, these are then converted into association rules.
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function FreqSet (Examples)

Input: Examples, described with a set of binary features, so-called Items.

// the first iteration consists of all single items k = 1
C1 = Items

//loop until no nor candidate items left while Ck 6= ∅ do
// remove all infrequent items from Ck

// (requires check on database of Examples)
Sk = Ck \ { all infrequent itemsets in Ck}

// generate new candidates
Ck+1 = { all sets with k + 1 elements that

can be formed by uniting two itemsets in Sk}

Ck+1 = Ck+1 \ { all itemsets for which not all subsets of size k
are contained in Sk}

S = S ∪ Sk

k = k + 1
endwhile

Output: S, the set of all frequent itemsets

Fig. 2. Find all Frequent Itemsets

For finding all frequent itemsets, Apriori generates all rules with a certain
minimum frequency in parallel with a so-called level-wise search, as shown in
Figure 2. The level-wise search first generates all frequent itemsets of size one,
then all frequent itemsets of size two, and so on, thereby performing a breadth-
first search. However, from each iteration to the next, a large number of possible
extensions can be pruned because of the anti-monotonicity of the frequency
of the itemsets (their support). This essentially means that if a conjunction of
conditions is extended with a new condition, the resulting rule body will only
cover a subset of the examples covered by the original rule body. Thus, when
computing Ck+1, the set of candidate itemsets of size k + 1, we only need to
consider itemsets that result as a combination of two itemsets of size k which
overlap in k−1 items. For example, if the two itemsets {A,B,C} and {B,C,D}
are in S3, the itemset {A,B,C,D} will be in C4. It may be later removed if either
one of its subsets of size 3 is not frequent (if, e.g., {A,C,D} is not contained in
S3), or if the subsequent check on the dataset shows that it is itself not frequent.

The resulting frequent itemsets are then used for constructing rules in a
post-processing phase. The key idea here is to try all possible ways of using an
implication sign to separate a frequent itemset into items that are used in the
rule body and items that are used in the rule head, and keeping only those where
the resulting association rule has a certain minimum strength (confidence). This
can, again, be sped up considerably using a similar idea to the anti-monotonicity
of the support.
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Apriori Successors While the second phase of Apriori remains almost un-
changed, a number of alternative algorithms, such as Eclat [62] or FP-Growth
[25], have been proposed for the frequent itemset discovery phase. Mining for
closed frequent itemsets proposed by Pasquier et al. [46] is another optimiza-
tion. A frequent itemset P is closed if P is included in no other itemset that has
the same support as P .

In recent years there was a growing interest in approaches that support par-
allel execution of frequent itemset mining in order to harness modern multi-core
architectures. PLCM [45] and MT-Closed [38] are parallel implementations of
two fastest algorithms LCMv2 [56] and DCI Closed [37] according to the
FIMI’04 workshop3, which provided a benchmark of submitted frequent itemset
mining implementations [44]. The recently proposed ParaMiner [44] algorithm
yields comparable execution times to PLCM and MT-Closed, while it allows
to mine not only for closed frequent itemsets, but also for additional types of
patterns such as connected relational graphs and gradual itemsets.

For surveys of frequent set mining and association rule discovery we refer
the reader to [22, 63]. A freely accessible implementations of multiple frequent
itemset mining implementations can be found at http://borgelt.net/fpm.

html, ParaMiner is also made available by the authors under an open license.

Connections to Mathematical Logic and Statistics The notion of asso-
ciation rules was introduced already in mid 1960’s by Petr Hájek in the frame
of development of the GUHA method (abbrev. of General Unary Hypothesis
Automaton) [23]. The purpose was to automatically generate large number of
(statistical) hypotheses which had the form of association rules. These hypothe-
ses are automatically verified using a number of criteria, including Chi-square
and Fisher statistical tests and what is now known as support and confidence.
The hypotheses that pass the criteria are represented as (true) logical formulas
of observational calculi, a theoretical framework for exploratory data analysis
combining logic and mathematical statistics. Example of such a formula is:

bread(brown) ∧ butter(yes) =⇒ B,p milk(skimmed) ∧ cheese(french)

This example features the founded implication quantifier =⇒ B,p, which
asserts that the support of the rule is at least B instances and the confidence is
at least p. Observational calculi are further studied by Rauch [54]. One practical
result is the introduction of deduction rules, which allow to identify redundant
hypotheses a to deal with domain knowledge.

A maintained implementation of GUHA method is LISp-Miner, which is
freely available from lispminer.vse.cz. This software supports the distinct
GUHA features such as negated literals, e.g. ¬bread(brown), and disjunctions,
e.g. bread(brown)∨ butter(yes), or cheese(french∨ dutch). The higher ex-
pressiveness leads to a considerable increase in computational cost [28]. Kliegr
et al. [28] suggested that GUHA may find use in business rule learning, where
a lower number of more expressive rules can be desirable.
3 http://fimi.ua.ac.be/fimi04/
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3 Predictive Rule Learning

Whereas descriptive rule discovery aims at finding individual rules that capture
some regularities and patterns of the input data, the task of predictive rule
learning is to generalize the training data so that predictions for new examples
are possible. As individual rules will typically only cover part of the training
data, we will need to enforce completeness by learning an unordered rule set or
a decision list.

An unordered rule set is a collection of individual rules that collectively form
a classifier. In contrast to a decision list, the rules in the set do not have an
inherent order, and all rules in the set have to be tried for deriving a prediction
for an example. This may cause two types of problems that have to be resolved
with additional algorithms:

multiple rules fire: More than one rule can fire on a single example, and these
rules can make contradicting predictions. This type of conflict is typically
resolved by preferring rules that cover a higher fraction of training examples
of their class (typically estimated with Laplace correction). This is equivalent
to converting the rule set into a decision list that is ordered according to this
evaluation heuristic. More elaborate tie breaking schemes, such as using the
Naive Bayes algorithm, or inducing a separate rule set for handling these
conflicts (double induction [32]) have also been tried.

no rules fire: It may also occur that no rule fires for a given example. Such
cases are typically handled via a so-called default rule, which typically pre-
dicts the majority class. Again, more complex algorithms, such as FURIA
[26] trying to find the closest rule (rule stretching [13]) have been proposed.

A rule set in which all rules predict the same class needs to be complemented
with an (implicit) default rule that predicts the other class in case none of the
previous rules fires (very much like the closed world semantics in PROLOG).
If all rules are conjunctive, such rule sets may be interpreted as a definition in
disjunctive normal form for this class.

In contrast to an unordered rule set, a decision list has an inherent order,
which makes classification quite straightforward. For classifying a new instance,
the rules are tried in order, and the class of the first rule that covers the instance
is predicted. If no induced rule fires, a default rule is invoked, which typically
predicts the majority class of the uncovered training examples. Decision lists are
particularly popular in inductive logic programming [12, 10], because PROLOG
programs may be considered to be simple decision lists, where all rules predict
the same concept.

Both decision trees and rule sets are often learned with the same or very
similar strategies. The two most popular strategies for learning rule sets may be
viewed as extensions of the association rule and subgroup discovery algorithms
discussed in the previous section, and are discussed in the following.
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3.1 Classification by Association

A prototypical instantiation of this framework is associative classification, as
exemplified by the CBA rule learning algorithm [35, 36]. This type of algo-
rithm typically uses a conventional association rule discovery algorithm, such as
Apriori [2], to discover a large number of patterns. From these, all patterns that
have the target class in the head are selected, and only those are subsequently
used for inducing a rule set. This is formed by sorting the patterns according to
some heuristic function and adding the best to the rule set.

A variety of successor systems have been proposed that follow the same
principal architecture [e.g., 5, 27, 31, 60, 43]. Sulzmann and Fürnkranz [55]
compare various approaches for combining association rules into a rule-based
theory. Azevedo and Jorge [3] propose to generate an ensemble of rule sets instead
of a single rule set.

CBA and its direct successors such as CMAR are restricted to nominal
attributes. If the dataset contains numeric (quantitative) attributes, these at-
tributes need to be discretized e.g. using the minimum description length princi-
ple [14]. This is a severe limitation compared to many other learning algorithms
which natively handle numerical attributes.

As in association rule discovery, there are approaches to associative classifica-
tion that employ fuzzy logic to alleviate this problem. A recent example of such
an approach is the FARC-HD algorithm [1]. Alcala-Fdez et al. [1] also provide
a benchmark comparing their algorithm against the C4.5 decision tree learner as
well as against multiple association rule classification algorithms including CBA,
CBA2, CPAR and CMAR. The results show that FARC-HD provides a slight
improvement in average accuracy across the basket of 25 datasets but at a sev-
eral orders of magnitude higher computational cost. The benchmark also reveals
large differences in the size of the rule set among classifiers. While CBA achieves
slightly smaller accuracy than its successor algorithms CPAR and CMAR, it
produces a notably smaller number of rules.

Free implementations of CBA, CMAR and CPAR are available at http:

//cgi.csc.liv.ac.uk/~frans/KDD/Software/. A good survey of associative
classification and related algorithms can be found in [6].

3.2 Covering Algorithm

An alternative approach, the so-called covering or separate-and-conquer algo-
rithm, relies on repeatedly learning a single rule (e.g., with a subgroup discovery
algorithm). After a new rule has been learned, all examples that are covered by
this rule are removed. This is repeated until all examples are covered or a given
stopping criterion fires. A simple version of this so-called covering algorithm is
shown in Figure 3, a survey of this family of algorithms can be found in [17].
The members of this family differ mostly in the way the FindPredictiveRule
method is implemented.
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procedure Covering (Examples,Classifier)

Input: Examples, a set of positive and negative examples for a class c.

// initialize the rule set
R = ∅

//loop until no more positive examples are covered
while not all positive examples are covered do

// find the best rule for the current examples
r = FindPredictiveRule (Examples)

// check if we need more rules
if R ∪ r is good enough
then break while

// remove covered examples and add rule to rule set
Examples = Examples \ { examples covered by r}
R = R ∪ r

endwhile

Output: the learned rule set R

Fig. 3. The covering algorithm for finding a rule set.

4 Well-known Rule Learning Algorithms

AQ can be considered as the original covering algorithm. Its original version
was conceived by Ryszard Michalski in the sixties [39], and numerous versions
and variants of the algorithm appeared subsequently in the literature. AQ uses
a top-down beam search for finding the best rule. It does not search all possible
specializations of a rule, but only considers refinements that cover a particular
example, the so-called seed example. This idea is basically the same as the use
of a bottom clause in inductive logic programming [41, 42, 10].

CN2 [9, 8] employs a beam search guided by the Laplace or m-estimates,
and the above-mentioned likelihood ratio significance test to fight overfitting.
It can operate in two modes, one for learning rule sets (by modeling each class
independently), and one for learning decision lists.

Foil [51] was the first relational learning algorithm that received attention
beyond the field of inductive logic programming. It learns a concept with the
covering loop and learns individual concepts with a top-down refinement opera-
tor, guided by information gain. The main difference to previous systems is that
Foil allowed the use of first-order background knowledge. Instead of only being
able to use tests on single attributes, Foil could employ tests that compute
relations between multiple attributes, and could also introduce new variables in
the body of a rule.
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Ripper was the first rule learning system that effectively countered the over-
fitting problem via incremental reduced error pruning [16]. It also added a post-
processing phase for optimizing a rule set in the context of other rules. The key
idea is to remove one rule out of a previously learned rule set and try to re-learn
it not only in the context of previous rules (as would be the case in the regular
covering rule), but also in the context of subsequent rules. Ripper is still state-
of-the-art in inductive rule learning. A freely accessible re-implementation can
be found in the Weka machine learning library [58] under the name of JRip.

Opus [57] was the first rule learning algorithm to demonstrate the feasibility
of a full exhaustive search through all possible rule bodies for finding a rule that
maximizes a given quality criterion (or heuristic function). The key idea is the
use of ordered search that prevents that a rule is generated multiple times. This
means that even though there are l! different orders of the conditions of a rule
of length l, only one of them can be taken by the learner for finding this rule. In
addition, OPUS uses several techniques that prune significant parts of the search
space, so that this search method becomes feasible. Follow-up work has shown
that this technique is also an efficient alternative for association rule discovery,
provided that the database to mine fits into the memory of the learning system.

5 Applications in Linked Data and Semantic Web

While research in machine learning currently tends to move away from learn-
ing logical concept representations towards statistical learning algorithms, rules
are still used in many application areas. A particularly important case is the
Semantic Web, whose representation is built on rule-based formalisms. As it is
difficult to manually write a complete set of rules for representing knowledge,
rule learning algorithms have great potential in supporting automation of this
process.

Inductive logic programming algorithms are one obvious candidate for this
purpose, because they allow to operate in more expressive, relational logical
frameworks such as RDF4 or OWL5, which form the backbone of the Seman-
tic Web [33, 34]. However, their expressiveness has to be paid for with a high
computational complexity. Compared to approaches based on inductive logic
programming (ILP), Apriori and its successors are not only much more effi-
cient, but also they do not require counter examples [20], on which most ILP
approaches rely. This is important because semantic knowledge bases such as DB-
pedia (http://dbpedia.org) do not contain negative statements. Additionally,
since they are built under the open world assumption6, the negative statements
cannot be directly inferred. It was observed that semantic reasoners may not
provide meaningful results on real open world knowledge bases yet for another
reason: these crowd-sourced resources contain errors. A single erroneous fact can
cause the RDFS reasoner to infer an incorrect statement [49].

4 http://www.w3.org/TR/rdf-primer/
5 http://www.w3.org/TR/owl2-primer/
6 A statement which is not present in the knowledge base is not necessarily false.
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A current use case demonstrating advantages of association rule learning in
the linked data domain is the completion of the large DBpedia knowledge base.
Association rules were applied to infer missing types for entities in [48] and to
perform schema induction (infer new classes) in [61]. These approaches for DB-
pedia completion directly use the Apriori algorithm, which implies limitations
stemming from the inherently relational setting of linked data. AMIE [20] is a
state-of-the-art algorithm that extends the association rule learning principles
allowing to mine Horn clauses such as

hasAdvisor(x, y) ∧ graduateFrom(x, z) =⇒ worksAt(y, z)

AMIE is reported to be highly computationally efficient, it processes entire
DBpedia in less than 3 minutes and the larger YAGO2 ontology (www.mpi-inf.
mpg.de/yago/) in 4 minutes. In contrast, the authors report that in their bench-
mark state-of-the-art ILP approaches did not finish within days.

Rule learning may not only support the construction of Semantic Web
resources, but, conversely, the Semantic Web may also serve as a source for
background knowledge in many data mining tasks. For example, Paulheim and
Fürnkranz [50] have shown that unsupervised feature generation from various
knowledge sources in the Linked Open Data (LOD) cloud may yield interest-
ing and useful features. One can even go as far as trying to mine databases
that have no inherent background knowledge. For example, Paulheim [47] used
LOD knowledge for trying to find explanation for common statistics such as the
quality-of-living index of cities.

This short survey shows that rule learning algorithms can be with success
directly applied to large linked datasets available on the “Semantic Web”. Apart
from the inference of new facts or identification of errors in semantic knowledge
bases, it was recently suggested that association rule learning can serve e.g.
for schema alignment between ontologies [21]. There is an ongoing research into
specialized approaches tailored for RDF datasets which opens new opportunities
as well as challenges.

6 Conclusion

This paper provided a brief introduction to rule learning, mainly focusing on the
best-known algorithms for descriptive and predictive rule learning. Whereas the
main goal of association rule and subgroup discovery is to discover single rules
that capture patterns in parts of the data, the main task of classification by
association and the covering strategy for learning predictive rule sets and decision
lists is to be able to generalize the training data so that predictions on new data
can be made. In comparison with other popular classification algorithms such as
Support Vector Machines, predictive rule learning together with decision trees
has the advantage of easy interpretability. The individual rules that comprise
the classifier can be explained to a human expert.

Obviously, this brief survey is far from complete. Other techniques for gen-
erating rule sets are possible. For example, rules can be generated from induced
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decision trees. Standard algorithms for learning decision trees (such as C4.5 [53])
are quite similar to the covering algorithm for learning decision lists in that the
aim of extending a decision tree with another split is to reduce the class impurity
in the leaves (usually measured by entropy or the Gini index). However, whereas
a decision tree split is chosen to optimize all successor branches simultaneously,
a rule learning heuristic only focuses on a single rule. As a result, rule sets are
often more compact than decision trees. Consequently, a rule set can be consid-
erably simplified during the conversion of a decision tree to a set of rules [52, 53].
For example, Frank and Witten [15] suggested the Part algorithm, which tries
to integrate this simplification into the tree induction process by focusing only
on a single branch of a tree.

The Apriori algorithm [2], which provides means to discover association
rules in large datasets, is considered as one of the major advancements in data
mining technology in the seminal book of Hastie et al. [24]. Its recent successors,
such as the LCM group of algorithms provide further improvements in terms of
computational efficiency. Other algorithms, such as ParaMiner provide generic
framework allowing to discover not only frequent itemsets but also other types
of patterns. The performance of parallel implementations of association rule
learning stimulates novel applications on large datasets that are becoming freely
available as part of the linked open data initiative. Examples of such efforts
include completion of semantic knowledge bases with new facts.
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[21] Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge
bases. In Proceedings of the 2013 Workshop on Automated Knowledge Base
Construction (AKBC-13), pp. 43–48, ACM, New York, NY, USA (2013)



14 Johannes Fürnkranz and Tomáš Kliegr

[22] Goethals, B.: Frequent set mining. In Maimon, O., Rokach, L. (eds.) The
Data Mining and Knowledge Discovery Handbook, 2nd ed., pp. 321–338.
Springer-Verlag (2010)
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